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1 Introduction

An important problem in lattice cryptography is the problem of efficiently finding
short preimages of any given vector u (also called syndrome) for some wide matrix
A, that is finding a short vector v such that

Av = u

This results in an interesting problem as, with appropriate parameters, being able
to find short preimages is considered a hard problem (it is usually referred as the
Inhomogenous Short Integer Solution, or Module - Inhomogeneous Short Integer
Solution when working modulo q) and this gives a one-way function which can be
used as building block for cryptography.

The “shortness” constraint is usually expressed by requiring that the norm of
the vector v is limited by some constant or, as it is in this case, by requiring that
the preimage follows a prescribed distribution having a “short” output with high
probablity, such as a discrete gaussian distribution. This also ensures that the dis-
tribution of the preimages does not depend on the trapdoor R, effectively hiding
it. When working in modulo q it is important to check the “shortness” constraint
is a bound smaller than q as otherwise, at least for the homogeneous version of
the problem where u = 0, the problem becomes trivial.

In 2012 Micciancio and Peikert proposed a new definition of a trapdoor for
some matrix A consisting of a matrix R such that

A

[
R

I

]
= HG

for a gadget matrix G and some invertible tag matrix H (which is not strictly
necessary for the preimage problem and can be taken as H = I, but it allows for
some more flexibility when applying this concept in actual protocols). As shown in
section 3 this trapdoor R allows to reduce the problem from a preimage problem
on A to a preimage problem on G which can be solved efficiently [MP12].

Given A and R, one can consider them respectively as the public and the
private key of some public-key protocol, such as a signature protocol where the
syndrome is some message-dependant vector and the preimage is the signature,
allowing for easy verification using A.

The goal of this semester project is to unify in common notation and compare
three different preimage-sampling algorithms from [MP12], [LW15] and [JRLS23]
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that solve the problem above. In section 3 we will introduce the algorithms, with
details on different parameter choices and the different approaches. We will not
go into details on the correctness of the algorithms, for which we refer to the
original papers. At the beginning of section 3 we will also show breifly how to
obtain a matrix A and an associated trapdoor R, taking for granted the results
from [MP12] showing that for such a generated matrix A the preimage problem
with suitable parameters is hard (namely, showing that all the components of this
matrix are statistically close to uniformly random). In section 4 we will give first a
theoretical comparison of the three algorithms, analysing the pros and cons of each,
and then a numerical comparison citing the sperimental analysis from [JRLS23]
for the concrete parameter choices.

2 Preliminaries

We will use lowercase boldface (e.g. v,u,x) for vectors and uppercase boldface
(e.g. A,H,G) for matrices.

Let K = Q(ζ) be an algebraic extension field of degree n. We will denote
with R the ring of integers of K. Given a modulo q ≥ 2, we let Rq = R/qR.
In most applications we have R = Z[x]/⟨Φν(x)⟩ where Φν is the ν-th cyclotomic
polynomial, with n = φ(ν).

Given a positive-definite invertible matrix Σ, a center c ∈ Rd and a lattice
Λ ⊂ Rd, we define the centered discrete gaussian distribution over the coset c+Λ
with covariance matrix Σ as the distribution defined by the following density
function

D√
Σ,c,Λ(x) =

ρ√Σ,c,Λ(x)∑
z∈c+Λ ρ

√
Σ,c,Λ(z)

where

ρ√Σ,c,Λ(x) =

{
exp (−π · x⊺Σ−1x) if x ∈ c+ Λ

0 otherwise

This can be generalised to the case where Σ is not invertible by using Moore-
Penrose pseudoinverse in place of Σ−1. For simplicity’s sake, we use the following
notations:

• If Σ = s2I, we denote the distribution as Ds,c,Λ

• If c = 0, we omit it from the subscript
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• If both c = 0 and Λ = Rd, we denote directly as Dd√
Σ

(and similarly we

denote Dd
s if it also holds that Σ = s2I)

For ease of notation, given a matrix A ∈ Rh×k and a syndrome u ∈ Rk we will
use v ← A−1√

Σ
(u) to denote the distribution v ← Dh√

Σ
conditioned to Av = u.

If there exists x ∈ Rh such that Ax = u, then this distribution is equivalent to
D√

Σ,x,Λ⊺(A). Similarly as before, if Σ = s2I we simply denote A−1
s (u).

Pay attention to the subscript: later on when dealing with preimages for the
gadget matrix G we will both use G−1√

Σ
as a distribution as well as G−1 being the

entry-wise base b decomposition, which in practice behaves as a (right) inverse for
G.

3 Preimage-sampling algorithms

We will first introduce the setting for the preimage problem, as well as the pro-
cedure to obtain the matrix-trapdoor pair and the reduction on the problem over
G.

Fix a modulo q, a base b and dimensions d and m. Let R be a ring as defined
in the preliminaries Rq = R/qR. Let k = ⌈logb(q)⌉. Let Ā ∈ Rd×m

q be a wide
matrix and let R ∈ Rm×dk be the trapdoor. Let H ∈ Rd×d

q be an invertible
matrix and let G ∈ Rd×dk

q be the gadget matrix associated to q in base b, that is

G = Id⊗ [1|b| . . . |bk−1]. Let A = [Ā|HG− ĀR] be the matrix for which we want
to be able to find preimages1. Given a syndrome u ∈ Rd

q , we want to find a vector
v ∈ Rm

q such that
Av = u

following a prescribed distribution A−1
s (u).

It is clear that R is a trapdoor for the matrix A, as by construction it holds

A

[
R

I

]
= HG

The reason why it is useful to have the trapdoor to solve this problem is that
since the relationship holds, then to obtain a vector v such that Av = u (albeit
with a skewed distribution) it suffices to find z such that Gz = H−1(u) and letting

1Ideally we would also want it to be difficult to find preimages for this matrix without knowl-
edge of R. This can indeed be achieved, and precise details on this can be found in section 5.2 of
[MP12], but the main idea is that it is possible to generate Ā and R such that A is statistically
close to uniform
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v =

[
R

I

]
z. Such a v clearly satisfies the desired equality, and can be computed

efficiently (if one can compute efficiently z) and it is then “just” a matter of fixing
the distribution. Indeed, such a vector v would have a skewed gaussian distribution
having covariance matrix that depends on R, so giving v would leak information
on the trapdoor. Instead, we would like to make sure that v follows the prescribed
target distribution that does not depend on R, making sure not to leak any in-
formation on R. To do so, one could add a perturbation to the result that would
hopefully fix the distribution, such as letting p be some perturbation and out-

putting v = p+

[
R

I

]
z. This of course would change the result of Av = u+Ap,

which is not the desired result. To solve this issue, one could preventively mod-
ify the syndrome and sampling z such that Gz = H−1(u−Ap) so that with this
choice of v we indeed get Av = u.

As for the matter of finding z such that Gz = u, i.e. solving the reduced
problem, we refer to section 4 of [MP12], where one can find efficient algorithms
to solve this problem for a variety of parameter choices.

3.1 Micciancio-Peikert sampling (2012)

For this algorithm we let m = 2d. As for the choice of the parameter s, this is
influenced by the way of generating z. For this purpose, Micciancio and Peikert use
an algorithm which is able to sample fromG−1√

ΣG
(u) for some parameter-dependant

positive-definite matrix ΣG. The subroutine proposed in [MP12] obtains ΣG =
s2GIdk where sG = 2 · ω(

√
log d) or sG =

√
5 · ω(

√
log d) depending on the modulo

q, but the sampling algorithm is presented with a generic ΣG to allow for easy
substitution of any other subroutine for sampling from G−1√

ΣG
(u). The parameter

s is then chosen such that s ≥ s1

([
R

I

]
·
√
ΣG

)
, that is such that the matrix

Σp = s2Id(2+k) −

[
R

I

]
ΣG

[
RT I

]
= s2Id(2+k) − s2G

[
RRT R

RT I

]

is positive-definite. As mentioned in the analysis in [JRLS23] this leads to a gaus-
sian width proportional to s = Θ(b(

√
2nd+

√
ndk)).

The way Micciancio and Peikert solve the distribution issue is to sample a per-
turbation p from a gaussian of width Σp so that by the convolution theorem, the
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perturbed value v = p+

[
R

I

]
z has precisely distribution A−1

s (u).

The resulting algorithm is given in Algorithm 1.

Algorithm 1 Micciancio-Peikert preimage-sampling algorithm

Input: Ā,R,H,G, s,u as above
Output: A short preimage v ∈ Rd

q following a distribution statistically close to
A−1

s (u)

1: p← Dd(2+k)√
Σp

2: Parse p→

[
p1

p2

]
with p1 ∈ R2d and p2 ∈ Rdk

3: w̄← Ā(p1 −Rp2) mod qR
4: w← Gp2 mod qR
5: y← H−1(u− w̄)−w = H−1(u−Ap)
6: z← G−1√

ΣG
(y)

7: v2 ← p2 + z
8: v1 ← p1 +Rz

9: return v =

[
v1

v2

]

This algorithm is very straightforward, and will end up having the best parameter
sizes of all. The main downside is the high specialization, as it is built only on
gaussian distributions, and the necessity of sampling from a gaussian of width Σp

which is highly non-spherical, and that can be too computationally expensive in
some contexts.

3.2 Lyubashevsky-Wichs sampling (2015)

The approach developed by Lyubashevsky and Wichs [LW15] to fix the distribu-
tion of the output is to obtain the desired distribution via rejection-sampling. To
do so, they make use of a rejection-sampling lemma which allows a bit more flexi-
bility on the desired source and target distributions (respectively the distribution
of the perturbation and the distribution of the output). For comparison sake we
will give directly the instantiation in the gaussian setting. The original algorithm
also gives an instantiation for uniform distributions.

We will give a slightly modified version of the algorithm presented in [LW15] as
the original algorithm solves forA = [Ā|ĀR−HG] instead ofA = [Ā|HG− ĀR].
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The version presented here will find preimages for the latter, to keep the simme-
try with the other algorithms. In the end it is just a matter of changing some signs.

This algorithm uses slightly larger parameters with m = dk (compared to the
previous m = 2d). For the width of the gaussian, this algorithm uses s = 2k2

√
λ

where k2 = Θ(m +
√
λm) is a probabilistic bound on ||Rv2||, [Ver11]. This leads

to a slightly more challenging parameters comparison as the dependency on the
security level λ is left implicit in the choice of the other parameters in the other two
algorithms. In the analysis from [JRLS23], it is shown that concretely this leads
to a width proportional to s = α · (b − 1)

√
ndk(2

√
ndk + t) for a constant factor

α ≈ 8, which in practice, when applied to a signature scheme, lead to signature
sizes roughly twice as big as the ones obtained from [MP12].

This algorithm breaks the simmetry on the perturbation of v1 and v2, since
as pointed out more precisely in [JRLS23] there shouldn’t be a need of perturba-
tion on v2 to hide the secret key R since v2 does not depend in any way on the
secret key. This leads to leaving v2 = z unperturbed and perturbing only the v1

component of the output, using rejection sampling to “hide” R, as in to obtain a
distribution that does not depend on R.

Notice that this algorithm does not use the G-sampler like in [MP12] to find a
suitable preimage z, as it uses directly the deterministic function G−1. Note that
this is not the inverse of the matrix G, as this matrix isn’t invertible, but it is the
entry-wise base b decomposition function. It holds that G ·G−1x = x.

The adapted version of the algorithm from [LW15] is given in algorithm 2. We
stress that this is only the gaussian instantiation and not the general instantiation,
which allows any source and target distribution as long as rejection sampling can
be performed to obtain a distribution statistically close to the target one.
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Algorithm 2 Lyubashevsky-Wichs preimage-sampling with rejection sampling

Input: Ā,R,H,G, s,u as above
Output: A short preimage v ∈ Rd

q following a distribution statistically close to
A−1

s (u)
1: p1 ← Ddk

s

2: w̄← Ā(p1) mod qR
3: v2 ← G−1(H−1(u− w̄))
4: v1 ← p1 +Rv2

5: Sample a continuous u← U([0, 1])
6: if u > min

(
1, Ddk

s (v1)
M ·Ddk

s (p1)

)
then

7: Go to 1
8: end if

9: return v =

[
v1

v2

]

3.3 Jeudy-Roux–Langlois-Sanders sampling (2023)

Finally, we introduce the algorithm given proposed by Jeudy. Roux-Langlois and
Sanders [JRLS23]. This is an optimization of the algorithm proposed in [LW15].

The idea behind this optimization is to reasonably suppose that the syndrome
u cannot be controlled by an adversary and is instead an uniformly random vari-
able. This is the case, for example, in an Hash-and-Sign protocol where u would be
(a representation of) the hash of the message, and as such would be an uniformly
distribuited value. This reasonable additional hypothesis allows to relax a bit the
parameters at no security cost (although at a loss of generality for applications of
the algorithm).

This allows to use m = 2d which is the same parameter choice as the original
algorithm from [MP12]. As more precisely explained in Corollary 3.1 of [JRLS23],
choosing s = Θ(b

√
ndk(

√
2nd +

√
ndk)) enables the authors to use a rejection-

sampling lemma similar to the one in [LW15] to conclude that the distribution of
the output is statistically close to the desired one, hence the algorithm is correct.

We give the resulting algorithm in algorithm 3
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Algorithm 3 Jeudy-Roux–Langlois-Sanders preimage-sampling with rejection
sampling

Input: Ā,R,H,G, s,u as above
Output: A short preimage v ∈ Rd

q following a distribution statistically close to
A−1

s (u)
1: p1 ← D2d

s

2: v2 ← G−1(H−1(u− Āp1))
3: v1 ← p1 +Rv2

4: Sample a continuous u← U([0, 1])
5: if u > min

(
1, D2d

s (v1)
M ·D2d

s (p1)

)
then

6: Go to 1
7: end if

8: return v =

[
v1

v2

]

The resulting algorithm, while using the same sizes as the original from [MP12],
uses gaussians that are much wider. At the same time, just like in [LW15] this
construction is more general and while we only exhibit the gaussian instantiation,
this could also be applied to different source and target distributions. Again just
like in [LW15], this algorithm does not require to sample from highly non-spherical
gaussians, which can be computationally expensive.

4 Comparisons

We will now give a theoretical and numerical comparison of the three algorithms
from section 3. As noted in the algorithm explanations, they mainly differ in the
following aspects:

• The method used to ensure the desired target distribution for the output

• The parameter m, influencing the dimension of both public and private keys,
as well as the dimension of the preimages, which can matter in contexts such
as a signature scheme

• The width s, again influencing the expected norm of the preimages

• The method used to obtain a solution of the reduced problem on the gadget
matrix G

In the theoretical comparison we will focus mainly on the first and the second point.
We will analyse the difference in gaussian widths in the numerical comparison using
as a starting point the numerical analysis from section 4 of [JRLS23].
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4.1 Theoretical comparison

Starting with the analysis on the parameter m, we note that both algorithm 1
and algorithm 3 achieve m = 2d, while algorithm 2 uses m = dk. Since in any
reasonable setting one should expect to have k ≫ 2, algorithms 1 and 3 obtain
much smaller dimensions, which is clearly desirable.

The main difference, though, is the way they obtain the desired target dis-
tribution for the output. On one side, algorithm 1 obtains the desired gaussian
by perturbing with some randomness from a suitably crafted gaussian, the pur-

pose of which is to fix the skewed distribution of the preimage

[
R

I

]
z. To do so,

they sample from a gaussian having covariance matrix being the difference of the
target covariance and the covariance of said preimage. By the convolution theo-
rem, this clearly results in the target distribution, but it ends up using a highly
non-spherical gaussian for the perturbation. As pointed out int [JRLS23], this
operation is computationally expensive, and ends up representing the most part
of the computation time.

On the other side, both algorithm 2 and algorithm 3 obtain the desired target
distribution via rejection sampling. This not only solves the problem of having
to sample from highly non-spherical gaussians, but also allows for a much wider
range of possible source and target distributions: while algorithm 1 is only ap-
plicable for gaussian distributions, algorithms 2 and 3 allow for any source and
target distributions for which rejection-sampling is possible, that is for any source
and target distribution with reasonably small Rényi divergence (see theorem 3.1
of [JRLS23]). This, of course, comes at a cost of possible repetition: while al-
gorithm 1 is “one-shot”, algorithms 2 and 3 have to perform rejection sampling
with possibly many repetitions, though with a reasonable bound on the number
of repetitions (see theorem 3.1 of [LW15]).

In conclusion, algorithm 1 from [MP12] leads to potentially smaller parame-
ters and a more succint algorithm, where algorithm 2 from [LW15] and algorithm
3 from [JRLS23] are preferrable for their adaptability and being potentially less
computationally expensive.

Furthermore, while algorithm 3 seems to be better than algorithm 2 in ev-
ery aspect, we remind that [JRLS23] obtains reduced dimensions by introducing
the additional hypothesis that the syndrome u is uniformly random and not con-
trollable by an andversary. This is clearly the case for applications such as an
Hash-and-sign paradigm, but is inherently less flexible.
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4.2 Numerical comparison

We take and analyse the results from the estimates in section 4 of [JRLS23].
The results are related to the application of these algorithms to an Hash-and-sign
protocol for a target λ = 128. The parameters d and q are chosen to minimize the
size of the signature for the given security level. The value λM-SIS is the resulting
security level for the associated M-SIS problem for the chosen parameters. The
ring degree is set to n = 256. The results are given for different choices of the
basis b.

λM-SIS q d s

b = 2 146 ≈ 215.2 5 2596

b = 4 150 ≈ 215.6 5 3461

b = q1/5 147 ≈ 216.8 5 7661

b = q1/3 131 ≈ 219.7 5 56804

b = q1/2 154 ≈ 226.7 7 6616938

Table 1: results relative to algorithm 1

λM-SIS q d s

b = 2 131 ≈ 223.6 6 572109

b = 4 130 ≈ 223.8 6 901768

b = q1/5 130 ≈ 227.3 6 5586865

b = q1/3 133 ≈ 230.6 7 105308864

b = q1/2 138 ≈ 240.5 9 96061795597

Table 2: results relative to algorithm 2

λM-SIS q d s

b = 2 157 ≈ 222.5 6 362140

b = 4 151 ≈ 223.2 6 645772

b = q1/5 134 ≈ 225.6 6 3576993

b = q1/3 137 ≈ 230.3 7 90206170

b = q1/2 138 ≈ 240.3 9 90202905475

Table 3: results relative to algorithm 3
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As we can see, algorithm 1 leads to gaussians that are much tighter than
the ones obtained from algorithms 2 and 3. This supports the results obtained
from the theory (though an exact comparison would be difficult) showing that
the algorithm from [MP12] obtains generally smaller parameters, leading to better
results at the cost of restriction to gaussian distributions only and a possibly more
computationally expensive algorithm.
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