Esercizi di Elementi di Teoria degli Insiemi Foglio 12

Enrico Berni, 582049

24/05/2020

Sommario

In questo foglio di esercizi sono presenti due risultati sull'esponenziazione dei cardinali limite, lasciati per esercizio in data 22/05/2020.

Vogliamo capire come si comportano gli esponenziali di cardinali limite, e per farlo dividiamo il problema in due casi: se κ è il nostro cardinale limite, e ν è l'esponente, si ha che $\nu < Cof\kappa$ o $\nu \geq Cof\kappa$.

1 $\nu < Cof \kappa$

Proposizione 1.1. Se κ è un cardinale limite e $\nu < Cof \kappa$ è un cardinale, allora $\kappa^{\nu} = \sup_{\mu < \kappa} \{\mu^{\nu}\}.$

Dimostrazione. Banalmente, $\kappa^{\nu} \geq \eta := \sup_{\mu < \kappa} \{\mu^{\nu}\}$; mostriamo l'altra disuguaglianza. Dato che $\nu < Cof\kappa$, ogni funzione $f: \nu \longrightarrow \kappa$ è limitata, e dunque $Fun(\nu,\kappa) = \bigcup_{\gamma < \kappa} Fun(\nu,\gamma)$. Dunque,

$$\kappa^{\nu} = |\bigcup_{\gamma < \kappa} Fun(\nu, \gamma)| \le \sum_{\gamma < \kappa} |\gamma|^{\nu} \le \sum_{\gamma < \kappa} \eta = \kappa \cdot \eta = \eta$$

Ciò conclude la dimostrazione.

$2 \quad \nu \geq Cof\kappa$

Proposizione 2.1. Se κ è un cardinale limite e $\nu \geq Cof\kappa$ è un cardinale, allora $\kappa^{\nu} = (\sup_{\mu < \kappa} \{\mu^{\nu}\})^{Cof\kappa}$.

Dimostrazione. Consideriamo κ come $\kappa = \sup_{i < Cof \kappa} {\{\kappa_i\}^1}$, con i κ_i debolmente crescenti e per ogni $i < Cof \kappa$ vale $\kappa_i < \kappa$. Allora, vale che

$$(\sup_{\mu < \kappa} \mu^{\nu})^{Cof\kappa} = (\sup_{i < Cof\kappa} \kappa_i^{\nu})^{Cof\kappa} = \prod_{i < Cof\kappa} k_i^{\nu} = \left(\prod_{i < Cof\kappa} k_i\right)^{\nu} = ((\sup_{i < Cof\kappa} \kappa_i)^{Cof\kappa})^{\nu} = \kappa^{\nu}$$

Abbiamo usato la crescenza debole dei κ_i per applicare la formula del prodotto infinito, altrimenti non valida.

¹Consideriamo κ dunque come estremo superiore dell'insieme delle immagini di ogni cardinale κ_i secondo la $Cof\kappa$ -sequenza, che sappiamo essere illimitata per definizione, e dunque l'uguaglianza è ben posta.