Esercizi di Elementi di Teoria degli Insiemi Foglio 2

Enrico Berni, 582049

21/03/2020

Sommario

In questo foglio di esercizi sono presenti:

- 1. Equipotenza di insiemi di funzioni infiniti
- 2. Dimostrazione alternativa del fatto che $|\mathbb{R} \times \mathbb{R}| = |\mathbb{R}|$
- 3. Equipotenza di $\mathcal{P}(\mathbb{R})$ e del prodotto cartesiano di due sue copie
- 4. Sequenze finite e parti finite di insiemi infiniti
- 5. Cardinalità di sottoinsiemi di $\mathcal{P}(\mathbb{R})$
- 6. Cardinalità della topologia euclidea su \mathbb{R}^n
- 7. Unione al più continua di insiemi al più continui è al più continua, con condizioni sufficienti per la continuità
- 8. Differenze di insiemi infiniti
- 9. Paradosso della classe universale
- 10. Cardinalità di sottoinsiemi infiniti di \mathbb{N}
- 11. Bigezioni canoniche tra unioni e prodotti di insiemi equipotenti
- 12. Equipotenza di parti finite e sequenze finite di insiemi equipotenti

1 Equipotenza di insiemi di funzioni

Proposizione 1.1. Siano A e B due insiemi disgiunti. Allora, dato un insieme X, vale $|X^A \times X^B| = |X^{A \sqcup B}|$.

Dimostrazione. La funzione

$$\phi: X^A \times X^B \longrightarrow X^{A \sqcup B}$$

$$(f,g)\longmapsto \psi_{f,g}$$

dove

$$\psi_{f,g}: A \sqcup B \longrightarrow X$$
$$x \longmapsto \begin{cases} f(x) & \text{se } x \in A \\ g(x) & \text{se } x \in B \end{cases}$$

è bigettiva.

2 Dimostrazione alternativa del fatto che $|\mathbb{R} \times \mathbb{R}| = |\mathbb{R}|$

Proposizione 2.1. Vale l'equipotenza $|\mathbb{R} \times \mathbb{R}| = |\mathbb{R}|$.

Dimostrazione. Dimostreremo che, equivalentemente, $|\mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})| = |\mathcal{P}(\mathbb{N})|$. Siano

$$f: \mathbb{N} \longrightarrow \mathbb{N}, n \longmapsto 2n$$

 $g: \mathbb{N} \longrightarrow \mathbb{N}, n \longmapsto 2n-1$

due funzioni iniettive. Sia ora

$$\phi: \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N}) \longrightarrow \mathcal{P}(\mathbb{N})$$
$$(A, B) \longmapsto f[A] \sqcup g[B]$$

Mostriamo che è bigettiva: date due coppie ordinate (A,B) e (C,D) diverse tra loro, dal momento che sia la f che la g sono iniettive si ha che $f[A] \sqcup g[B]$ e $f[C] \sqcup g[D]$ sono due insiemi diversi. Per mostrare che è suriettiva, basta notare che, dato un insieme $X \in \mathcal{P}(\mathbb{N})$, la coppia $(\{\frac{n}{2}|n \in 2X\}, \{\frac{n+1}{2}|n \in 2X-1\})$ ha come immagine proprio X. Dunque, vale la seguente uguaglianza:

$$|\mathbb{R} \times \mathbb{R}| = |\mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})| = |\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$$

3 Equipotenza di $\mathcal{P}(\mathbb{R})$ e del prodotto cartesiano di due sue copie

Proposizione 3.1. Vale l'uguaglianza $|\mathcal{P}(\mathbb{R}) \times \mathcal{P}(\mathbb{R})| = |\mathcal{P}(\mathbb{R})| = 2^{\mathfrak{c}}$.

Dimostrazione.

$$|\mathcal{P}(\mathbb{R})| = |2^{\mathbb{R}}| = |2^{2 \times \mathbb{R}}| = |2^{\mathbb{R} \sqcup \mathbb{R}}| = |2^{\mathbb{R}} \times 2^{\mathbb{R}}| = |\mathcal{P}(\mathbb{R}) \times \mathcal{P}(\mathbb{R})|$$

4 Sequenze finite e parti finite di insiemi infiniti

Definizione 4.1. Sia X un insieme. L'insieme $\mathfrak{F}(X) = \{A \in \mathcal{P}(X) | A \text{ è finito}\}$ si chiama insieme delle parti finite di X.

Definizione 4.2. Sia X un insieme. L'insieme $Seq(X) = \{f : n \to X | n \in \mathbb{N}\}$ si chiama insieme delle sequenze finite di X.

Proposizione 4.1. Sia X un insieme infinito, tale che $|X \times X| = |X|$. Allora, vale che $|Seq(X)| = |\mathfrak{F}(X)| = |X|$.

Dimostrazione. Innanzitutto notiamo che $Seq(X) = \bigcup_{n \in \mathbb{N}} X^n$. Ora, banalmente $|X| \leq |\mathfrak{F}(X)|$, dato che $x \mapsto \{x\}$ è iniettiva. Inoltre, possiamo enumerare un elemento di $A \in \mathfrak{F}(X)$, e mandarlo nella sequenza finita che ha come coordinate gli elementi enumerati di A ($\langle a_k \rangle_{k \in \{1,\dots,n\}} \mapsto (a_1,\dots,a_n)$). Dunque, $|\mathfrak{F}(X)| \leq |Seq(X)|$. Infine, $|Seq(X)| = |\bigcup_{\mathbb{N}} X^n| = |\mathbb{N} \times X| \leq |X \times X| = |X|$. Vale pertanto la seguente catena di disuguaglianze:

$$|X| \le |\mathfrak{F}(X)| \le |Seq(X)| \le |X \times X| = |X|$$

Si conclude usando il teorema di Cantor-Bernstein.

5 Cardinalità di sottoinsiemi di $\mathcal{P}(\mathbb{R})$

Proposizione 5.1. Vale la seguente catena di uguaglianze:

$$|\mathbb{R}^{\mathbb{N}}| = |\mathbb{N}^{\mathbb{N}}| = |[\mathbb{R}]^{\aleph_0}| = |[\mathbb{R}]^{\leq \aleph_0}| = \mathfrak{c}$$

Dimostrazione. Dimostriamo la catena di uguaglianze in tre parti:

$$\begin{split} |\mathbb{R}^{\mathbb{N}}| &= |(2^{\mathbb{N}})^{\mathbb{N}}| = |2^{\mathbb{N} \times \mathbb{N}}| = |2^{\mathbb{N}}| = \mathfrak{c} \\ &\mathfrak{c} = |(2^{\mathbb{N}})^{\mathbb{N}}| \ge |\mathbb{N}^{\mathbb{N}}| \ge |2^{\mathbb{N}}| = \mathfrak{c} \\ &\mathfrak{c} = |\mathbb{R}^{\mathbb{N}}| \ge |[\mathbb{R}]^{\le \aleph_0}| \ge |[\mathbb{R}]^{\aleph_0}| \ge 2^{\aleph_0} = \mathfrak{c} \end{split}$$

Qualche parola sulle disuguaglianze di sopra: $[\mathbb{R}]^{\leq\aleph_0}$ può essere visto come insieme delle immagini delle successioni a valori in \mathbb{R} : infatti, se un sottoinsieme di $X\subseteq\mathbb{R}$ è finito, posso enumerarlo (per esempio in ordine crescente), generando una successione definitiva-

mente costante: considero $X = \{\lambda_1, ..., \lambda_n\}$, e la successione $x_k = \begin{cases} \lambda_k & k < n \\ \lambda_n & k \ge n \end{cases}$, mentre se

è numerabile, posso enumerarlo, inducendo un buon ordine, e poi costruire la successione similmente a quanto fatto sopra. Dunque, $|[\mathbb{R}]^{\leq\aleph_0}| \leq |\mathbb{R}^{\mathbb{N}}|$. Per quanto riguarda il passaggio seguente, $[\mathbb{R}]^{\aleph_0} \subseteq [\mathbb{R}]^{\leq\aleph_0}$. Infine, c'è un'iniezione tra 2^{\aleph_0} e i sottoinsiemi numerabili di \mathbb{R} , ottenuta mandando una funzione indicatrice nell'insieme su cui è positiva. Si conclude usando il teorema di Cantor-Bernstein.

6 Cardinalità della topologia euclidea su \mathbb{R}^n

Sia τ la topologia euclidea su \mathbb{R}^n .

Proposizione 6.1. *Vale l'uguaglianza* $|\tau| = \mathfrak{c}$.

Definizione 6.1. Sia (X, τ) uno spazio topologico. Una **base** di τ è un insieme di aperti $\mathcal{B} \subseteq \tau$ tale che ogni aperto di τ si possa esprimere come unione di elementi di \mathcal{B} .

Dimostrazione. Banalmente, $\mathbb{R}^n \setminus \{x\}$ è un aperto per ogni $x \in \mathbb{R}^n$, dunque $\mathfrak{c} \leq |\tau|$. Ora, sappiamo che la topologia euclidea è a base numerabile. Sia $\mathcal{B} = \langle B_n \rangle_{n \in \mathbb{N}}$ una tale base. La funzione

$$\phi: \tau \longrightarrow \mathcal{P}(\mathcal{B})$$

$$U \longmapsto \{B \in \mathcal{B} | B \subseteq U\}$$

è iniettiva. Infatti, è inversa destra della funzione unione

$$\bigcup: \mathcal{P}(\mathcal{B}) \longrightarrow \tau$$

$$\langle B_i \rangle \longmapsto \bigcup_i B_i$$

suriettiva per definizione di base. Ciò garantisce che $|\tau| \leq |\mathcal{P}(\mathcal{B})| = \mathfrak{c}$. Si conclude con Cantor-Bernstein.

7 Unione al più continua di insiemi al più continui è al più continua, con condizioni sufficienti per la continuità

Proposizione 7.1. (AC) Sia $\langle A_i | i \in I \rangle$ una I-sequenza di insiemi tale che $|A_i| \leq \mathfrak{c}$ per ogni $i, e |I| \leq \mathfrak{c}$. Allora, $|\bigcup_I A_i| \leq \mathfrak{c}$. Inoltre, se una delle due seguenti condizioni è vera, $|\bigcup_I A_i| = \mathfrak{c}$:

- 1. Esiste $j \in I$ tale che $|A_j| = \mathfrak{c}$
- 2. $|I| = \mathfrak{c}, A_i \cap A_j = \emptyset \text{ se } i \neq j$

Dimostrazione. Usando (AC), considero la I-sequenza $\mathfrak{F} = \langle f_i | i \in I \rangle$, dove per ogni i

$$f_i: \mathbb{R} \longrightarrow A_i$$

è una funzione suriettiva. Esiste anche una funzione suriettiva

$$\psi: \mathbb{R} \longrightarrow I$$

Consideriamo adesso la funzione

$$\tau: \mathbb{R} \times \mathbb{R} \longrightarrow \bigcup_{I} A_{i}$$

$$(x,y) \longmapsto f_{\psi(x)}(y)$$

Osserviamo che la τ è suriettiva per costruzione. Dato che $|\mathbb{R} \times \mathbb{R}| = |\mathbb{R}| = \mathfrak{c}$, segue che $|\bigcup_I A_i| \leq |\mathbb{R} \times \mathbb{R}| = \mathfrak{c}$.

Mostriamo adesso che le due condizioni di cui sopra sono sufficienti affinché valga $|\bigcup_I A_i| = \mathfrak{c}$:

- 1. Sappiamo che esiste una funzione bigettiva da \mathbb{R} ad A_j . Esiste un'iniezione canonica da A_j in $\bigcup_I A_i$, e dunque esiste un'iniezione da \mathbb{R} a $\bigcup_I A_i$. Vale quindi $\mathfrak{c} \leq |\bigcup_I A_i|$. Per quanto detto prima vale anche la disuguaglianza opposta, e per Cantor-Bernstein segue la tesi.
- 2. Dato che $\langle A_i \rangle_{i \in I}$ è una famiglia di insiemi disgiunti a due a due, per (AC) esiste un selettore X per $\langle A_i \rangle$. La funzione

$$\phi: I \longrightarrow \bigcup_{i \in I} A_i$$

$$i \longmapsto X \cap A_i$$

è iniettiva, essendo gli A_i disgiunti a due a due. Vale quindi che $\mathfrak{c} \leq |\bigcup_I A_i|$, e similmente al punto (1) segue la tesi.

8 Differenze di insiemi infiniti

Proposizione 8.1. (AC) Siano A e B due insiemi infiniti tali che $A \subseteq B$, |A| < |B|. Allora, $|B \setminus A| = |B|$.

Dimostrazione. Assumendo l'assioma di scelta, vale che $|B \times B| = |B|$. Sia quindi $\psi: B \longrightarrow B \times B$ una bigezione. Consideriamo $A' = \psi[A]$, naturalmente equipotente ad A, e dunque $|A'| < |B \times B|$. Sia ora $\pi_1: B \times B \longrightarrow B$ la proiezione sulla prima coordinata (è suriettiva). Dato che |A| < |B|, esiste un elemento $b_0 \in (\pi_1[B \times B] \setminus \pi_1[A'])$. La sua fibra tramite π_1 è $\{b_0\} \times B$, che ha la cardinalità di B, ed è disgiunto da A' per costruzione. Vale dunque la seguente catena:

$$|B| = |B \times B| \ge |(B \times B) \setminus A'| = |B \setminus A| \ge |B|$$

Si conclude per Cantor-Bernstein.

9 Paradosso della classe universale

Sia ξ la classe universale, $\xi = \{x | x \text{ è un insieme}\}.$

Proposizione 9.1. Sia ξ come sopra. Allora, non esiste un insieme A tale che $A = \xi$.

Dimostrazione. Procediamo per assurdo. Supponiamo che un tale A esista: consideriamo l'insieme delle parti di A, $\mathcal{P}(A)$. Per il teorema di Cantor, $|A| < |\mathcal{P}(A)|$. Tuttavia, per ipotesi $\mathcal{P}(A) \subseteq A$, e dunque $|\mathcal{P}(A)| \le |A|$; ciò è assurdo, pertanto un tale A non esiste. \square

10 Cardinalità di sottoinsiemi infiniti di N

Proposizione 10.1. Sia $A \subseteq \mathbb{N}$ infinito. Allora, $A \in \mathbb{N}$ infinito.

Dimostrazione. Sia $a \in A$. Definiamo per ricorsione numerabile

$$a_0 = a, a_{n+1} = \min\{A \setminus \{a_0, ..., a_n\}\}\$$

Allora, la successione $\langle a_n \rangle_{n \in \mathbb{N}}$ è una funzione iniettiva da \mathbb{N} in A. Vale quindi $\aleph_0 \leq |A|$. Ma A è un sottoinsieme di \mathbb{N} , e quindi l'iniezione canonica da A in \mathbb{N} garantisce che $|A| \leq \aleph_0$. Si conclude per Cantor-Bernstein.

11 Bigezioni canoniche tra unioni e prodotti di insiemi equipotenti

Proposizione 11.1. Siano $\langle A_i \rangle_{i \in I}$ e $\langle A'_i \rangle_{i \in I}$ due I-sequenze di insiemi tali che $|A_i| = |A'_i|$ per ogni $i \in I$. Allora, $|\prod_I A_i| = |\prod_I A'_i|$.

Dimostrazione. Sia $\mathfrak{F} = \langle f_i \rangle_{i \in I}$ una I-sequenza di funzioni, tali che $f_i : A_i \longrightarrow A'_i$ sia bigettiva per ogni i. La funzione

$$\phi: \prod_{i\in I} A_i \longrightarrow \prod_{i\in I} A_i'$$

$$\langle a_i \rangle_I \longmapsto \langle f_i(a_i) \rangle_I$$

è bigettiva. Infatti, dati due elementi $\langle a_i \rangle \neq \langle b_i \rangle \in \prod_I A_i$, esiste un $j \in I$ tale che $a_j \neq b_j$, e dunque $f_j(a_j) \neq f_j(b_j)$ per bigettività di f_j , da cui $f(\langle a_i \rangle_I) \neq f(\langle b_i \rangle_I)$. Per la suriettività, basta notare che per ogni $\langle a_i \rangle_I \in \prod_I A_i'$, vale $f(\langle f_i^{-1}(a_i) \rangle_I) = \langle a_i \rangle_I$. \square

Proposizione 11.2. Siano $\langle A_i \rangle_{i \in I}$ e $\langle A'_i \rangle_{i \in I}$ due I-sequenze di insiemi a due a due disgiunti e tali che $|A_i| = |A'_i|$ per ogni $i \in I$. Allora, $|\bigcup_I A_i| = |\bigcup_I A'_i|$.

Dimostrazione. Sia $\mathfrak{F} = \langle f_i | i \in I \rangle$ una *I*-sequenza di funzioni bigettive come sopra. Per ogni $a \in \bigcup_I A_i$, esiste un certo indice $j(a) \in I$ dipendente da a tale che $a \in A_{j(a)}$. Allora, la funzione

$$\phi: \bigcup_{i \in I} A_i \longrightarrow \bigcup_{i \in I} A'_i$$
$$a \longmapsto f_{j(a)}(a)$$

è bigettiva. La dimostrazione della bigettività è analoga a quella fatta per il prodotto.

12 Equipotenza di parti finite e sequenze finite di insiemi equipotenti

Proposizione 12.1. Siano X e Y due insiemi equipotenti. Allora, $|\mathfrak{F}(X)| = |\mathfrak{F}(Y)|$.

Dimostrazione. Sia $g: X \longrightarrow Y$ una bigezione. Consideriamo la funzione

$$\psi : \mathfrak{F}(X) \longrightarrow \mathfrak{F}(Y)$$

$$A \longmapsto q[A]$$

La ψ è bigettiva, segue dalla bigettività di q.

Proposizione 12.2. Siano X e Y due insiemi equipotenti. Allora, |Seq(X)| = |Seq(Y)|. Dimostrazione. Sia $g: X \longrightarrow Y$ una bigezione. Consideriamo la funzione

$$\psi : Seq(X) \longrightarrow Seq(Y)$$

 $(x_0, ..., x_n) \longmapsto (g(x_0), ..., g(x_n))$

La ψ è bigettiva, segue dalla bigettività di g.