Esercizi di Elementi di Teoria degli Insiemi Foglio 3

Enrico Berni, 582049

30/03/2020

Sommario

In questo foglio di esercizi sono presenti:

- 1. Esistenza di dominio e immagine di una relazione
- 2. Esistenza di insiemi quoziente
- 3. Esistenza di insiemi di funzioni
- 4. Esistenza di prodotti cartesiani di sequenze di insiemi
- 5. Bigezione tra [0,1] e (0,1)
- 6. Ordine totale di (ω, \in)
- 7. Proprietà dei numeri naturali
- 8. Esempi di naturali non ben definiti
- 9. Equivalenza del principio del buon ordinamento e della forma debole del principio di induzione
- 10. Unione di funzioni compatibili è una funzione
- 11. Forma forte del teorema di ricorsione numerabile

1 Esistenza di dominio e immagine di una relazione

Proposizione 1.1. Sia R una relazione binaria su $A \times B$. Allora, esistono gli insiemi Dom R e Im R.

Dimostrazione. Innanzitutto, notiamo che $R \subseteq A \times B$, e dunque

$$DomR = \{a | \exists b(a, b) \in R\} \subseteq A$$

$$ImR = \{b | \exists a(a,b) \in R\} \subseteq B$$

Entrambi esistono per l'assioma di separazione.

2 Esistenza di insiemi quoziente

Proposizione 2.1. Sia \sim una relazione di equivalenza su A. Allora, esiste l'insieme quoziente A/\sim .

Dimostrazione. Notiamo che, fissato $a \in A$, la classe di equivalenza di a è $[a] = \{a' | a \sim a'\} \subseteq A$, e dunque esiste per separazione. Ora, per ogni a, $[a] \in \mathcal{P}(A)$ che esiste per l'assioma delle parti. Dunque, l'insieme

$$\{U|\exists a\in A\quad U=[a]\}=A/\sim$$

esiste per separazione.

3 Esistenza di insiemi di funzioni

Proposizione 3.1. Siano A e B due insiemi. Allora, esiste $B^A = \{f : A \to B | f \text{ funzione}\}$. Dimostrazione.

$$B^{A} = \{ f \in \mathcal{P}(A \times B) | \forall a \in A \exists ! b (a, b) \in f \} \subseteq \mathcal{P}(\mathcal{P}(A \times B))$$

e dunque esiste per separazione.

4 Esistenza di prodotti cartesiani di sequenze di insiemi

Proposizione 4.1. Sia $\langle A_i | i \in I \rangle$ una I-sequenza di insiemi. Allora, esiste $\prod_{i \in I} A_i$. Dimostrazione.

$$\prod_{i \in I} A_i = \{ f \in Fun(I, \bigcup_{i \in I} A_i) | f(i) \in A_i \} \subseteq Fun(I, \bigcup_{i \in I} A_i)$$

Dunque, il prodotto esiste per separazione.

5 Bigezione tra [0,1] **e** (0,1)

Proposizione 5.1. Vale l'equipotenza |[0,1]| = |(0,1)|.

Dimostrazione. Esibiamo una bigezione esplicita tra i due intervalli reali [0,1] e (0,1): consideriamo i due insiemi $A = \mathbb{Q} \cap [0,1]$ e $B = \mathbb{Q} \cap (0,1)$, numerabili perché sottoinsiemi di un insieme numerabile. Stabiliamo due enumerazioni di A e B: $A = \langle a_n | n \in \omega \rangle$, $B = \langle b_n | n \in \omega \rangle$. Definiamo adesso la nostra funzione come

$$f: [0,1] \longrightarrow (0,1)$$

$$x \longmapsto \begin{cases} x & \text{se } x \notin A \\ b_i & \text{se } x = a_i \text{ per qualche } i \in \omega \end{cases}$$

La f è la bigezione cercata, con inversa

$$g:(0,1) \longrightarrow [0,1]$$

$$x \longmapsto \begin{cases} x & \text{se } x \notin B \\ a_i & \text{se } x = b_i \text{ per qualche } i \in \omega \end{cases}$$

6 Ordine totale di (ω, \in)

Sia (X, <) un insieme ordinato. Un elemento $x \in X$ si dice **confrontabile** se, per ogni $y \in X$, vale una tra le tre: x < y, x = y, y < x.

Proposizione 6.1. Sia (ω, \in) l'insieme dei numeri naturali di Von Neumann, con la relazione di appartenenza canonica. (ω, \in) è totalmente ordinato.

Dimostrazione. Supponiamo di sapere che la relazione \in è un ordine parziale su ω : mostriamo che ogni elemento di ω è confrontabile secondo \in . Sia p(x) la proprietà "x è confrontabile"; dimostriamola per induzione su x.

- $\underline{x} = 0$: $0 \in n$ per ogni $n \in \omega$, per una proposizione dimostrata a lezione.
- $\underline{x} \Rightarrow \hat{x}$: Sappiamo che x è confrontabile; dunque, comunque preso $y \in \omega$, abbiamo tre casi:
 - Se $x = y, y \in \{x\}$, e dunque $y \in \hat{x}$.
 - Se $y \in x$, banalmente $y \in \hat{x}$.
 - Se $x \in y$, allora $x \subset y$, e $x \in y$ implica $\hat{x} = y$ o $\hat{x} \in y$.

Vale dunque la tricotomia dell'ordine, che è pertanto un ordine totale.

7 Proprietà dei numeri naturali

Proposizione 7.1. Sia ω l'insieme dei numeri naturali di Von Neumann, e siano $x, y \in \omega$ due naturali. Valgono le seguenti proprietà:

- 1. $x \in y$ se e solo se $x \subset y$
- 2. $\hat{x} \in \hat{y} \to x \in y$
- 3. Per ogni $y \in \omega$, se $x \in y \in \omega$, allora $x \in \omega$
- 4. $x \cap y \ e$ un naturale, $e \ x \cap y = \min\{x, y\}$
- 5. $x \cup y \ \dot{e} \ un \ naturale, \ e \ x \cup y = \max\{x, y\}$
- 6. $\hat{x} = S(x)$, cioè non esiste $y \in \omega$ tale che $x \in y \in \hat{x}$

Dimostrazione. 1. • \Rightarrow : \in è transitiva, essendo una relazione d'ordine, quindi $n \in m \to n \subseteq m$: dal momento che $n \in m$ e $m \notin m$, $m \neq n$, e dunque l'inclusione è stretta.

- \leq : Sia $p(m)="\forall n \subset m, n \in m"$: dimostriamola per induzione.
 - $-\underline{m}=\underline{0}$: $\nexists n \ n \subset \emptyset$, dunque la proposizione è vera a vuoto.
 - $-\underline{m} \Rightarrow \hat{m}$: Se $n \subset m$ e $m \notin n$, allora $n \subseteq m$, e si rientra nell'ipotesi induttiva. Altrimenti, se fosse $m \in n$, allora varrebbe che $m \subseteq n$, assurdo.
- 2. Se $\hat{x} \in y \cup \{y\}$, ci sono due casi: se $\hat{x} = y$, banalmente $x \in y$. Se invece $\hat{x} \in y$, $x \in \hat{x} \in y$.
- 3. Sia p(y) l'enunciato numero 3: dimostriamolo per induzione su y.
 - y = 0: La proposizione è vera a vuoto.
 - $\underline{y} \to \hat{y}$: Sia $x \in \hat{y} \in \omega$, allora x = y o $x \in y$. Se x = y, allora $x \in \omega$, dato che $y \in \omega$. Se $x \in y$ si conclude per ipotesi induttiva.
- 4. Sia (WLOG) $x = \min\{x, y\}$. Allora, per il punto (1) vale che $x \subset y$, e quindi $x \cap y = x \in \omega$.
- 5. Sia (WLOG) $x = \max\{x, y\}$. Allora, per il punto (1) vale che $y \subset x$, e quindi $x \cup y = x \in \omega$.
- 6. Supponiamo che esista un tale y: allora, dato che $y \in \hat{x}$, abbiamo due casi. Se y = x, per l'irriflessività dell'ordine vale $x \notin y$, assurdo; se invece $y \in x$, $x \notin y$ per l'asimmetria dell'ordine, assurdo.

8 Esempi di naturali non ben definiti

Proposizione 8.1. 1. L'insieme $X = \{\{\emptyset\}\}\$ non è un numero naturale.

2. L'insieme $Y = \{\emptyset, X\}$ non è un numero naturale.

Dimostrazione. 1. Basta notare che $0 \notin X$, mentre per una proposizione vista a lezione $0 \in n$ per ogni $n \in \omega$.

2. Notiamo che $Y = \{0, \{1\}\}$: dunque, si ha che $\{1\} \in Y$, ma $1 \not\subset Y$. Per quanto detto sopra, ciò è sufficiente a dimostrare che Y non è transitivo e dunque $Y \notin \omega$.

9 Equivalenza del principio del buon ordinamento e della forma debole del principio di induzione

Proposizione 9.1. La forma forte del teorema di induzione è equivalente alla forma debole.

Dimostrazione. Abbiamo mostrato a lezione che la forma forte del teorema di induzione è equivalente al teorema del buon ordinamento. Mostreremo dunque che il teorema del buon ordinamento implica l'induzione debole, e che l'induzione debole implica quella forte.

• $(BO)\rightarrow (Ind.D)$:

Sia P una proprietà tale che P(0) e $P(n) \Rightarrow P(n+1)$: mostriamo che P vale per ogni $n \in \omega$. Sia $X = \{n \in \omega | \neg P(n)\}$, e supponiamo che non sia vuoto. Allora, per il teorema del buon ordinamento, X ammette un minimo k; innanzitutto, $k \neq 0$, dato che per ipotesi P(0), e quindi k sarà un successore, della forma n+1 per qualche $n \in \omega$. Per ipotesi però, anche P(n) è vera, dato che k è il minimo controesempio, e ciò implica che sia vera anche P(k), e ciò è assurdo. Pertanto, X non ha minimo, e per il principio del buon ordinamento questo implica direttamente che X è vuoto. La tesi segue immediatamente.

• $(Ind.D) \rightarrow (Ind.F)$:

Sia P una proprietà tale che valga P(0) e $(\forall x < yP(x)) \Rightarrow P(y)$. Mostriamo che P è vera per ogni $n \in \omega$. Sia $Y = \{n \in \omega | P(n)\}$; vogliamo mostrare usando l'induzione forte che $Y = \omega$.

- $-0 \in Y$ per ipotesi;
- Se $n \in Y$, e per ogni m < n vale P(m), in particolare vale anche P(n) per ipotesi, e dunque $n \in Y$ per ogni n successore.

Dato che Y contiene 0, ed è chiuso per successore, per il teorema di induzione debole si conclude che $Y = \omega$, come voluto.

Ciò conclude la dimostrazione.

10 Unione di funzioni compatibili è una funzione

Proposizione 10.1. Sia \mathfrak{F} una famiglia di funzioni a due a due compatibili. Allora, $F = \bigcup \mathfrak{F}$ è una funzione di dominio $\bigcup_{f \in \mathfrak{F}} Dom f$.

Dimostrazione. Se $(a,b) \in F$, allora esiste $f \in F$ tale che $(a,b) \in f$; se ci fosse una coppia del tipo $(a,b') \in f$, con $b' \neq b$, ovviamente per definizione di funzione $(a,b) \notin f$, ma ciò non escluderebbe l'esistenza di una g tale che $(a,b') \in g$. Tuttavia, dato che le funzioni sono compatibili a due a due, deve valere f(a) = g(a) per ogni $a \in Dom f \cap Dom g$. Ciò assicura che F sia una funzione.

Mostriamo adesso una doppia inclusione per far vedere che $Dom F = \bigcup_{f \in \mathfrak{F}} Dom f$.

- \subseteq : Sia $a \in DomF = Dom(\bigcup \mathfrak{F})$: allora, esiste $f \in \mathfrak{F}$ tale che $a \in Domf$, e dunque $a \in \bigcup Domf$.
- $\underline{\supseteq}$: Viceversa, supponiamo di avere $a \in \bigcup Dom f$: allora, esiste $f \in \mathfrak{F}$ tale che $a \in Dom f$, e quindi $a \in Dom(\bigcup_{\mathfrak{F}} f) = Dom F$.

11 Forma forte del teorema di ricorsione numerabile

Teorema 11.1 (di ricorsione numerabile, forma forte). Sia A un insieme, sia $a \in A$ un suo elemento e sia $g: \omega \times Seq(A) \longrightarrow A$ una funzione. Allora, esiste ed è unica $f: \omega \longrightarrow A$ tale che

$$\begin{cases} f(0) = a; \\ f(n+1) = g(n, f_{|\{0,\dots,n\}}) \end{cases}$$

Dimostrazione. Mostriamo che le approssimazioni finite (AF) di f sono a due a due compatibili. Se ϕ e ψ fossero due AF non compatibili, sia $k := \min\{i \in \omega | \phi(i) \neq \psi(i)\}$. Innanzitutto osserviamo che $k \neq 0$, dato che per definizione $\phi(0) = \psi(0) = a$. Dunque, k = m+1 per qualche $m \in \omega$. Tuttavia, $\phi(m+1) = g(m, \phi_{|\{0,\dots,m\}}) = g(m, \psi_{|\{0,\dots,m\}}) = \psi(m+1)$, assurdo.

Non resta dunque che dimostrare l'esistenza delle AF, per induzione su p(n)="Esiste un'AF $\phi_n:n+1\to A$ ".

- n = 0: $\phi: 1 \longrightarrow A$ tale che $\phi(0) = a$ è l'AF cercata.
- $\underline{n} \to \hat{n}$: Se $\phi: n+1 \longrightarrow A$ è AF, anche $\tilde{\phi} = \phi \cup (n+1, g(n, \phi_{|\{0,\dots,n\}}))$ è AF, e $Dom\phi = n+1 \cup \{n+1\} = n+2$.

Adesso, definiamo $f := \bigcup_{\phi AF} \phi$: f è ben definita, dato che è unione di funzioni a due a due compatibili. Si nota che $f(0) = \phi(0) = a$ per ogni AF ϕ , e che, se ψ è un'AF tale che $n+1 \in Dom\psi$, allora $\psi(n+1) = g(n,\psi_{|\{0,\dots,n\}}) = g(n,f_{|\{0,\dots,n\}}) = f(n+1)$.

Adesso che sappiamo per certo esistere una funzione f come da tesi, mostriamo che è unica per induzione. Siano f e f' due funzioni che estendono le AF a tutto ω : ovviamente vale f(0) = f'(0) = a per definizione; inoltre, si ha anche che

$$f(n+1) = g(n+1, f_{|\{0,\dots,n\}}) = g(n+1, f'_{|\{0,\dots,n\}}) = f'(n+1)$$

Per induzione al secondo ordine, $\{n \in \omega | f(n) = f'(n)\} = \omega$, e quindi f = f'. Ciò conclude la dimostrazione del teorema.