Esercizi di Elementi di Teoria degli Insiemi Foglio 6

Enrico Berni, 582049

14/04/2020

Sommario

In questo foglio di esercizi sono presenti:

- 1. Ogni ordinale non vuoto contiene \emptyset
- 2. ω è il minimo ordinale infinito
- 3. Unione ed intersezione di ordinali
- 4. Equivalenza di buon ordinamento e assenza di catene discendenti di ordinali
- 5. Esistenza di ω_1 , mediante assioma di rimpiazzamento
- 6. Esistenza di due insiemi, mediante assioma di rimpiazzamento
- 7. Definizione alternativa di ω_1

1 Ogni ordinale non vuoto contiene Ø

Proposizione 1.1. Sia α un ordinale, $\alpha \neq \emptyset$. Allora, $\emptyset \in \alpha$.

Dimostrazione. Se α è infinito, essendo \emptyset un numero naturale $\emptyset \in \alpha$. Altrimenti, se α è finito, α stesso è un numero naturale, ed essendo $\alpha \neq \emptyset$ vale per definizione che $\emptyset \in \alpha$.

2 ω è il minimo ordinale infinito

Proposizione 2.1. Sia α un ordinale infinito. Allora, $\omega \subseteq \alpha$.

Dimostrazione. Sappiamo che ω è il minimo order type infinito. Essendo α un ordinale, in particolare è un buon ordine, e dunque $ot(\alpha) \geq \omega$, che implica $\omega \cong \alpha_x$ per un certo elemento $x \in \alpha$. Per quanto visto a lezione, due ordinali isomorfi sono uguali, e dunque $\omega = \alpha_x \subseteq \alpha$, da cui la tesi.

3 Unione ed intersezione di ordinali

Proposizione 3.1. Sia X un insieme non vuoto di ordinali; allora sia $\bigcup X$ che $\bigcap X$ sono ordinali, e vale $\bigcup X = \sup X$ e $\bigcap X = \min X$.

Dimostrazione. Mostriamo che $\bigcup X$ è transitivo: se $x \in y \in \bigcup X$, allora esiste un certo ordinale $\alpha \in X$ tale che $y \in \alpha$, e dunque $x \in \alpha$ perché α è un insieme transitivo. Dunque, $x \in \bigcup X$; ora, dato che gli elementi di X sono buoni ordini, uno segmento iniziale dell'altro, la loro unione è filtrante e dunque $\bigcup X$ è un buon ordine. Ora, dato che $\bigcup X$ contiene ogni elemento di X, ovviamente $\bigcup X \geq \alpha$ per ogni $\alpha \in X$. Inoltre, se esistesse un ordinale β con la stessa proprietà, in particolare conterrebbe anche $\bigcup X$, da cui la tesi.

Per l'intersezione, basta notare che essere il minimo in un insieme di ordinali significa essere segmento iniziale di ogni altro elemento. Allora, detto α l'elemento di X con order type minimo, si ha che ovviamente $\bigcap X \subseteq \alpha$, e per quanto appena detto $a \subseteq \bigcap X$; segue la tesi.

4 Equivalenza di buon ordinamento e assenza di catene discendenti di ordinali

Proposizione 4.1. Un insieme di ordinali X ammette minimo se e solo se non esistono catene discendenti di ordinali in X.

Dimostrazione. 1. \Rightarrow : Se esistesse in X una catena discendente infinita della forma $\alpha_0 \ni \alpha_1 \ni ...$, allora α_0 conterrebbe una catena discendente infinita della forma $\alpha_1 \ni \alpha_2 \ni ...$, e questo sarebbe assurdo, dato che α_0 è ben ordinato per definizione.

2. \leq : Supponiamo che X non ammetta minimo, e mostriamo che esiste una catena discendente infinita: costruiamo per ricorsione numerabile

$$\begin{cases} \alpha_0 = f(X) \\ \alpha_{n+1} = f(\{x \in X | x \in \alpha_n\}) \end{cases}$$

Dove f è una funzione di scelta su X. Il supporto della successione è per costruzione la catena cercata.

5 Esistenza di ω_1 , mediante assioma di rimpiazzamento

Proposizione 5.1. La collezione $\omega_1 = \{\alpha \text{ ordinali } | |\alpha| \leq \aleph_0\}$ è un insieme.

Dimostrazione. Notiamo innanzitutto che non è restrittivo considerare un elemento di ω_1 come sottoinsieme di ω ; infatti, sia $\Omega = \{A \text{ buon ordine } | A \subseteq \omega\}$. Ogni buon ordine X al più numerabile è isomorfo ad un elemento di Ω , dato che la funzione iniettiva $f: X \to \omega$ ha come immagine un sottoinsieme ben ordinato di ω al più numerabile. Pertanto, vale che $\Omega \subseteq \mathcal{P}(\omega) \times \mathcal{P}(\omega \times \omega)$; per rimpiazzamento, associamo ad ogni buon ordine di Ω l'unico ordinale a cui è isomorfo secondo la formula $\varphi(x,\alpha) = x \cong \alpha$; l'insieme che ne deriva è proprio ω_1 .

6 Esistenza di due insiemi, mediante assioma di rimpiazzamento

Proposizione 6.1. Le seguenti due collezioni sono insiemi:

1.
$$A = \bigcup_{n \in \omega} \mathcal{P}^{(n)}(\omega)$$

2.
$$\Gamma = \{ \alpha \text{ ordinali } | |\alpha| \leq \mathfrak{c} \}$$

Dimostrazione. 1. Sia B l'insieme $\{y | \exists x \in \omega : \varphi(x,y)\}$, dove $\varphi(x,y) = \mathcal{P}^{(x)}(\omega) = y$. Allora, per rimpiazzamento l'insieme B esiste, e per l'assioma dell'unione esiste anche $A = \bigcup B$.

2. Usando l'assioma della scelta, ben ordiniamo $\mathcal{P}(\mathbb{R})$, e associamolo all'ordinale che a questo punto gli è isomorfo: sia β tale ordinale. Ora, sappiamo che $|\mathcal{P}(\mathbb{R})| = 2^{\mathfrak{c}} > \mathfrak{c}$, e dunque β contiene ogni ordinale di Γ , da cui segue $\Gamma \subset \beta$. Dato che β è un insieme, e un sottoinsieme di un insieme è un insieme, segue che la collezione Γ è in realtà un insieme.

7 Definizione alternativa di ω_1

Proposizione 7.1. Vale l'uguaglianza $\omega_1 = \{ \alpha \ ordinali | \exists A \subseteq \mathbb{R} \quad \alpha \cong A \}.$

Dimostrazione. Durante la dimostrazione, sia Y l'insieme di cui sopra.

Dato che ogni sottoinsieme di \mathbb{R} ben ordinato è al più numerabile, il contenimento $X \subseteq \omega_1$ segue immediatamente.

Per l'altro contenimento, comunque preso un ordinale $\beta \in \omega_1$, possiamo ben ordinare \mathbb{R} usando l'assioma di scelta e immergere β in \mathbb{Q} con una funzione iniettiva f_{β} . Ora, per ogni ordinale $\beta \in \omega_1$ esiste un sottoinsieme ben ordinato di \mathbb{R} a cui β è isomorfo $(f_{\beta}[\beta])$, e dunque $\beta \in Y$.

Ciò conclude la dimostrazione.