Esercizi di Elementi di Teoria degli Insiemi Foglio 8

Enrico Berni, 582049

11/05/2020

Sommario

In questo foglio di esercizi sono presenti:

- 1. Prodotto tra ordinali come prodotto di buoni ordini
- 2. Esponenziale di ordinali come esponenziale di buoni ordini
- 3. Proprietà d'ordine di somma e prodotto tra ordinali
- 4. Proprietà algebriche di somma, prodotto ed esponenziale di ordinali
- 5. Calcolo di $(\omega + 1)^{\omega}$
- 6. Unioni di insiemi di cardinali
- 7. Crescenza della funzione ℵ
- 8. Immersione di ω_1 in $\mathcal{P}(\mathcal{P}(\mathbb{R}))$ (ZF)
- 9. Continuità della σ -algebra di Borel su $\mathbb R$

1 Prodotto tra ordinali come prodotto di buoni ordini

Proposizione 1.1. Siano α e β due ordinali. Allora, $\alpha \cdot \beta \cong \alpha \otimes \beta$.

Dimostrazione. Per induzione transfinita su β .

• $\underline{\beta} = \underline{0}$: Se $\beta = 0$, si ha che

$$\alpha \cdot 0 = \emptyset = \alpha \otimes 0$$

• β successore: Se esiste γ tale che $\beta=\gamma+1,$ allora

$$\alpha \cdot \beta = \alpha \cdot (\gamma + 1) = \alpha \cdot \gamma + \alpha \cong (\alpha \otimes \gamma) + \alpha \cong (\alpha \otimes \gamma) \oplus \alpha \cong \alpha \otimes (\gamma \oplus 1) \cong \alpha \otimes \beta$$

• $\underline{\beta} = \lambda$ limite: Per ipotesi induttiva, per ogni ordinale $\gamma < \lambda$ esiste unico l'isomorfismo $\psi_{\gamma} : \alpha \cdot \gamma \longrightarrow \alpha \otimes \gamma$. I ψ_{γ} sono uno estensione dell'altro, e dunque in particolare sono compatibili. Esiste ed è ben definita dunque la funzione

$$\bigcup_{\gamma<\lambda}\psi_{\gamma}=\Psi:\bigcup_{\gamma<\lambda}\alpha\cdot\gamma=\alpha\cdot\lambda\longrightarrow\alpha\otimes\lambda=\bigcup_{\gamma<\lambda}\alpha\otimes\gamma$$

È immediato osservare che la Ψ è un isomorfismo.

2 Esponenziale tra ordinali come esponenziale tra buoni ordini

Proposizione 2.1. Siano α e $\beta \neq 0$ due ordinali. Allora, $\alpha^{\beta} \cong \exp(\alpha, \beta)$.

Dimostrazione. Per induzione transfinita su β .

- $\beta = 1$: Se $\beta = 1$, $\alpha^1 = \alpha^0 \cdot \alpha = 1 \cdot \alpha = \alpha$, mentre $\exp(\alpha, 1) \cong \alpha$.
- β successore: Sia γ tale che $\beta = \gamma + 1$; allora,

$$\alpha^{\beta} = \alpha^{\gamma+1} = \alpha^{\gamma} \cdot \alpha \cong \exp(\alpha, \gamma) \otimes \alpha$$

Dove l'isomorfismo segue dall'ipotesi induttiva. Ora, mostriamo che $\exp(\alpha, \gamma + 1) \cong \exp(\alpha, \gamma) \otimes \alpha$. Per farlo, basta costruire la funzione

$$\Gamma : \exp(\alpha, \gamma + 1) \longrightarrow \exp(\alpha, \gamma) \otimes \alpha$$

$$\phi \longmapsto (\phi_{|\gamma}, \phi(\gamma + 1))$$

Mostrare che Γ è un isomorfismo d'ordine è immediato.

• $\beta = \lambda$ limite: Se λ è un limite,

$$\alpha^{\lambda} = \bigcup_{\gamma < \lambda} \alpha^{\gamma} \cong \bigcup_{\gamma < \lambda} \exp(\alpha, \gamma) = \exp(\alpha, \lambda)$$

Dove l'isomorfismo segue dall'ipotesi induttiva.

Ciò conclude la dimostrazione.

3 Proprietà d'ordine di somma e prodotto tra ordinali

Proposizione 3.1. Siano α_1 e α_2 due ordinali tali che $\alpha_1 < \alpha_2$. Allora, per ogni ordinale β ,

1.
$$\alpha_1 + \beta \le \alpha_2 + \beta$$

2.
$$\alpha_1 \cdot \beta \leq \alpha_2 \cdot \beta$$

Dimostrazione. Per induzione transfinita su β .

- 1. $\beta = 0$: Se $\beta = 0$, si ritrova l'ipotesi.
 - $\underline{\beta}$ successore: Se β è un successore, esiste un ordinale γ tale che $\beta = \gamma + 1$. Allora, $\alpha_1 + \beta = (\alpha_1 + \gamma) + 1$, e $\alpha_2 + \beta = (\alpha_2 + \gamma) + 1$. Per ipotesi induttiva, $\alpha_1 + \gamma < \alpha_2 + \gamma$, e quindi esiste un ordinale $\delta \neq 0$ tale che $\alpha_1 + \gamma + \delta = \alpha_2 + \gamma$, e dunque si ha $(\alpha_1 + \gamma) + (\delta + 1) = \alpha_2 + \gamma + 1$. Ora, se $\delta \neq 0$ banalmente $1 \leq 1 + \delta$, e quindi esiste un ordinale $\xi \neq 0$ tale che $1 + \xi = \delta + 1$. Allora, la situazione è la seguente:

$$(\alpha_2 + \gamma) + 1 = (\alpha_1 + \gamma) + (\delta + 1) = (\alpha_1 + \gamma) + (1 + \xi)$$

Dall'uguaglianza di sopra segue la tesi.

• $\beta = \lambda$ limite: Per ipotesi induttiva, vale la seguente disuguaglianza

$$\alpha_1 + \lambda = \bigcup_{\gamma < \lambda} \alpha_1 + \gamma \le \bigcup_{\gamma < \lambda} \alpha_2 + \gamma = \alpha_2 + \lambda$$

Essa è equivalente alla seguente, dato che gli insiemi considerati hanno a due a due gli stessi sup

$$\alpha_1 + \lambda = \alpha_1 + \bigcup_{\gamma < \lambda} \gamma \le \alpha_2 + \bigcup_{\gamma < \lambda} \gamma = \alpha_2 + \lambda$$

Segue la tesi.

- 2. $\beta = 0$: Se $\beta = 0$, si ha $0 = \alpha_1 \cdot 0 \le \alpha_2 \cdot 0 = 0$.
 - β successore: Se $\beta = \gamma + 1$, allora

$$\alpha_1 \cdot (\gamma + 1) = \alpha_1 \cdot \gamma + \alpha_1 \le (\alpha_1 \cdot \gamma) + \alpha_2 \le (\alpha_2 \cdot \gamma) + \alpha_2$$

Dove la prima disuguaglianza è vera per il punto (1), e la seconda per ipotesi induttiva.

• $\underline{\beta} = \lambda$ limite: Per ipotesi induttiva, per ogni $\gamma < \lambda$ vale $\alpha_1 \cdot \gamma \leq \alpha_2 \cdot \gamma$, da cui segue

$$\bigcup_{\gamma < \lambda} \alpha_1 \cdot \gamma \le \bigcup_{\gamma < \lambda} \alpha_2 \cdot \gamma$$
$$\alpha_1 \cdot \lambda = \alpha_1 \cdot \bigcup_{\gamma < \lambda} \gamma \le \alpha_2 \cdot \bigcup_{\gamma < \lambda} \alpha_2 = \alpha_2 \cdot \lambda$$

Le due disuguaglianze sono equivalenti perché gli insiemi in questione hanno a due a due gli stessi sup.

4 Proprietà algebriche di somma, prodotto ed esponenziale di ordinali

Proposizione 4.1. Siano α , β e γ tre ordinali. Allora,

1.
$$\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$$

2.
$$\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$$

3.
$$\alpha^{\beta} \cdot \alpha^{\gamma} = \alpha^{\beta+\gamma}$$

4.
$$(\alpha^{\beta})^{\gamma} = \alpha^{\beta \cdot \gamma}$$

Dimostrazione. Le dimostrazioni sono tutte per induzione transfinita su γ .

1.
$$\bullet \ \gamma = 0 : \alpha \cdot (\beta \cdot 0) = \alpha \cdot 0 = 0 = (\alpha \cdot \beta) \cdot 0$$

•
$$\underline{\gamma}$$
 successore : Notiamo che $(\alpha \cdot \beta) \cdot (\delta + 1) = (\alpha \cdot \beta) \cdot \delta + \alpha \cdot \beta = \alpha \cdot (\beta \cdot \delta) + \alpha \cdot \beta = \alpha \cdot (\beta \cdot (\delta + 1))^1$

• $\underline{\gamma} = \lambda$ limite : Se λ è limite, vale che

$$(\alpha \cdot \beta) \cdot \lambda = \bigcup_{\delta < \lambda} (\alpha \cdot \beta) \cdot \delta = \bigcup_{\delta < \lambda} \alpha \cdot (\beta \cdot \delta) = \alpha \cdot (\beta \cdot \lambda)$$

Dove l'ultima uguaglianza segue dal fatto che il prodotto di due ordinali è un successore solo se entrambi sono successori.

2.
$$\bullet \ \underline{\gamma = 0} : \alpha \cdot (\beta + 0) = \alpha \cdot \beta = \alpha \cdot \beta + 0 = \alpha \cdot \beta + \alpha \cdot 0$$

•
$$\underline{\gamma}$$
 successore : $\alpha \cdot (\beta + (\delta + 1)) = \alpha \cdot ((\beta + \delta) + 1) = \alpha \cdot (\beta + \delta) + \alpha = (\alpha \cdot \beta + \alpha \cdot \delta) + \alpha$. Si conclude per la proprietà associativa della somma.

¹Si è usata la distributività dimostrata nel punto (2)

• $\gamma = \lambda$ limite : Se λ è limite, allora $\beta + \lambda$ è limite, e quindi

$$\alpha \cdot (\beta + \lambda) = \bigcup_{\delta < \lambda} \alpha \cdot (\beta + \delta) = \bigcup_{\delta < \lambda} (\alpha \cdot \beta + \alpha \cdot \delta).$$

Dato che $\alpha \cdot \lambda$ è un prodotto di due ordinali, di cui uno limite, è esso stesso un limite, e dunque

$$\bigcup_{\delta < \lambda} (\alpha \cdot \beta + \alpha \cdot \delta) = \alpha \cdot \beta + \alpha \cdot \lambda$$

- 3. $\gamma = 0$: $\alpha^{\beta} \cdot \alpha^{0} = \alpha^{\beta} \cdot 1 = \alpha^{\beta+0}$
 - γ successore

$$\alpha^{\beta} \cdot \alpha^{\delta+1} = \alpha^{\beta} \cdot (\alpha^{\delta} \cdot \alpha) = (\alpha^{\beta} \cdot \alpha^{\delta}) \cdot \alpha = (\alpha^{\beta+\delta}) \cdot \alpha =$$
$$= \alpha^{(\beta+\delta)+1} = \alpha^{\beta+(\delta+1)}$$

• $\gamma = \lambda$ limite : Se λ è un limite,

$$\alpha^{\beta} \cdot \alpha^{\lambda} = \bigcup_{\delta < \lambda} \alpha^{\beta} \cdot \alpha^{\delta} = \bigcup_{\delta < \lambda} \alpha^{\beta + \delta} = \alpha^{\beta + \lambda}$$

- 4. $\gamma = 0 : (\alpha^{\beta})^0 = 1 = \alpha^0 = \alpha^{\beta \cdot 0}$
 - γ successore :

$$(\alpha^\beta)^{\delta+1} = (\alpha^\beta)^\delta \cdot \alpha^\beta = \alpha^{\beta \cdot \delta} \cdot \alpha^\beta = \alpha^{\beta \cdot \delta + \beta} = \alpha^{\beta \cdot (\delta+1)}$$

• $\gamma = \lambda$ limite : Se λ è limite,

$$(\alpha^{\beta})^{\lambda} = \bigcup_{\delta < \lambda} (\alpha^{\beta})^{\delta} = \bigcup_{\delta < \lambda} \alpha^{\beta \cdot \delta} = \alpha^{\beta \cdot \lambda}$$

5 Calcolo di $(\omega + 1)^{\omega}$

Proposizione 5.1. Vale l'uguaglianza $(\omega + 1)^{\omega} = \omega^{\omega}$.

Dimostrazione. Innanzitutto, osserviamo che per definizione $(\omega+1)^\omega=\bigcup_{n<\omega}(\omega+1)^n$; ora, naturalmente vale $\omega^\omega=\bigcup_{n<\omega}\omega^n\leq\bigcup_{n<\omega}(\omega+1)^n=(\omega+1)^n$, e altrettanto naturalmente $(\omega+1)^\omega=\bigcup_{n<\omega}(\omega+1)^n\leq\bigcup_{n<\omega}\omega^{2n}=\omega^\omega$. Vale dunque la seguente catena di disuguaglianze:

$$\omega^{\omega} \le (\omega + 1)^{\omega} \le \omega^{\omega}$$

Segue la tesi.

6 Unioni di insiemi di cardinali

Proposizione 6.1. Sia C un insieme di cardinali. Allora, $\bigcup C = \sup_{\kappa \in C} \kappa$.

Dimostrazione. Ogni cardinale è un ordinale, e la stessa proprietà è stata dimostrata per gli ordinali. \Box

7 Crescenza della funzione ℵ

Proposizione 7.1. La funzione \aleph è strettamente crescente.

Dimostrazione. È equivalente dimostrare che, dati $\alpha < \beta$ due cardinali, vale $\aleph_{\alpha} < \aleph_{\beta}$. Se $\alpha < \beta$, esiste $\gamma > 0$ tale che $\alpha + \gamma = \beta$. La dimostrazione è per induzione transfinita su γ .

- $\underline{\gamma} = \underline{1}$: Se $\gamma = 1$, $\aleph_{\beta} = \aleph_{\alpha+1} = \mathcal{H}(\aleph_{\alpha}) \supset \aleph_{\alpha}$. Il contenimento è stretto perché, per esempio, l'ordinale $\aleph_{\alpha} + 1$ appartiene a $\aleph_{\alpha+1}$ ma non ad \aleph_{α} .
- γ successore : $\aleph_{\alpha} < \aleph_{\alpha+\delta} < \aleph_{\alpha+(\delta+1)} = \aleph_{\beta}$, dove le disuguaglianze derivano rispettivamente dall'ipotesi induttiva e dal passo base.
- $\gamma = \lambda$ limite : Se λ è limite, anche $\beta = \alpha + \lambda$ lo è. Dunque, per definizione

$$\aleph_{\beta} = \aleph_{\alpha+\lambda} = \bigcup_{\xi < \alpha+\lambda} \aleph_{\xi}$$

Per ipotesi induttiva, vale che

$$\aleph_{\alpha} < \bigcup_{\xi < \alpha + \lambda} \aleph_{\xi} = \aleph_{\beta}$$

Segue la tesi.

8 Immersione di ω_1 in $\mathcal{P}(\mathcal{P}(\mathbb{R}))$ (ZF)

Proposizione 8.1. In ZF, vale la disuguaglianza $|\omega_1| \leq |\mathcal{P}(\mathcal{P}(\mathbb{R}))|$.

Dimostrazione. Senza l'assioma di scelta, sappiamo che per ogni ordinale numerabile α esiste una funzione iniettiva da α in \mathbb{R} (per definizione di cardinalità). Tuttavia, non possiamo scegliere un particolare sottoinsieme di \mathbb{R} , ben ordinato o meno, che sia l'immagine di tale iniezione. Tuttavia, consideriamo, per ogni $\alpha \in \omega_1$ l'insieme

$$X_{\alpha} = \{Y \subseteq \mathbb{R} | Y \text{ è ben ordinato } \land ot(Y) = \alpha\} \in \mathcal{P}(\mathcal{P}(\mathbb{R}))$$

La funzione

$$\phi: \omega_1 \longrightarrow \mathcal{P}(\mathcal{P}(\mathbb{R}))$$
$$\alpha \longmapsto X_\alpha$$

è chiaramente iniettiva.

9 Continuità della σ -algebra di Borel su $\mathbb R$

Sia $\mathfrak{B}(\mathbb{R})$ la σ -algebra dei boreliani di \mathbb{R} .

Proposizione 9.1. *Vale l'uguaglianza* $|\mathfrak{B}(\mathbb{R})| = \mathfrak{c}$.

Avevamo già visto a lezione che la successione

$$\begin{cases} \mathcal{G}_0 = \tau \\ \mathcal{G}_{\alpha+1} = \mathcal{G}_{\alpha} \cup \{X^{c} | X \in \mathcal{G}_{\alpha}\} \cup \{\bigcup_{n < \omega} X_n | X_n \in \mathcal{G}_{\alpha}\} \\ \mathcal{G}_{\lambda} = \bigcup_{\gamma < \lambda} B_{\gamma} \end{cases}$$

definisce al passo ω_1 una σ -algebra su \mathbb{R} . Mostriamo che è contenuta in $\mathfrak{B}(\mathbb{R})$, da cui si concluderà che le due sono lo stesso oggetto per definizione dei boreliani. Per induzione transfinita su α :

- $\underline{\alpha} = \underline{0}$: La topologia euclidea è contenuta in $\mathfrak{B}(\mathbb{R})$ per definizione.
- $\underline{\alpha}$ successore : Sia $\alpha = \beta + 1$. Se $X \in \mathcal{G}_{\beta+1}$, allora ci sono due possibilità: o $X \in \mathcal{G}_{\beta}$, oppure X è ottenuto da operazioni elementari di elementi di \mathcal{G}_{β} , che preservano la "borelianità" di X. In ogni caso, $X \in \mathcal{G}_{\alpha+1}$.
- $\alpha = \lambda$ limite: Se $X \in \mathcal{G}_{\lambda}$, per definizione esiste un certo ordinale $\alpha \in \lambda$ tale che $X \in \mathcal{G}_{\alpha}$, e dunque è un boreliano per ipotesi induttiva.

Ora, dato che per definizione $\mathfrak{B}(\mathbb{R})$ è la minima σ -algebra che contenga la topologia euclidea, si conclude che $\mathfrak{B}(\mathbb{R}) = \mathcal{G}_{\omega_1}$. Mostriamo adesso, sempre per induzione transfinita, che $|\mathcal{G}_{\alpha}| = \mathfrak{c}$ per ogni $\alpha < \omega_1$, da cui concluderemo che effettivamente i boreliani di \mathbb{R} sono una quantità continua.

- $\underline{\alpha} = \underline{0}$: La topologia euclidea è continua, come già mostrato in un esercizio precedente.
- $\underline{\alpha}$ successore : Siano $A_1 = \{X^{\mathsf{c}} | X \in \mathcal{G}_{\alpha}\}$ e $A_2 = \{\bigcup_{n < \omega} X_n | X_n \in \mathcal{G}_{\alpha}\}$ i due insiemi che al passo $\alpha + 1$ -esimo vengono aggiunti a \mathcal{G}_{α} . Mostriamo che hanno la cardinalità del continuo. A_1 è banalmente in bigezione con \mathcal{G}_{α} , mentre gli elementi di A_2 sono

al più quanti i sottoinsiemi numerabili di \mathcal{G}_{α} , che sono $\mathfrak{c}_0^{\aleph} = \mathfrak{c}$. Inoltre, $|A_1| \geq \mathfrak{c}$, dato che per ogni $X \in \mathcal{G}_{\alpha}$, l'unione della successione costante $\langle X \rangle_{n < \omega}$ appartiene ad A_2 .

• $\underline{\alpha = \lambda \text{ limite}}$: $\mathcal{G}_{\lambda} = \bigcup_{\gamma < \lambda} \mathcal{G}_{\gamma}$ è unione al più numerabile di insiemi continui, e dunque è continua.

Ciò conclude la dimostrazione.