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Introduction

In the study of cosmology there are a few basilar equations and concepts
that we will need to know in order to begin our study.
The �rst assumption that we make,on which everything will be founded on, is
that we consider the Universe (on a very large scale) to be Homogeneous (the
Universe looks the same at each point) and Isotropic (the Universe looks the
same in all directions); this assumption is called the cosmological principle.
Let's take two arbitrary points in the universe with mass m and M (M>m)
respectively. Thanks to Newton we can write the gravitational force that
attracts the two bodies and so we can derive their potential energy from
it by multiplying per the distance r between the two. So we obtain: U =

−F · r = −G ·M ·m
r2

· r = −G · 4 · πρ · r
3 ·m

3 · r
= −G · 4 · π · r

2 ·m
3

, where

we outlined a sphere of radius r and density ρ with the center in the more
massive body. At this point we can introduce the total energy, given by
E = U + T where T = 1

2
· m · ṙ2 is the kinetic energy. The universe is

not a static frame, for this reason we need coordinates that may express
the expansion or collapse of this environment; so we adopt the comoving

coordinates, which allow us to maintain �xed the points but to extend or
restrict the space without loosing the position: −→r = a(t)−→x , where a(t) is
called the scale factor of the universe. If we substitute these coordinates in

the Energy equation (and multiply per
2

m · a2 · x2
) we obtain the Friedman

equation:
ȧ2(t)

a2(t)
=

8 · π ·G
3

· (ρM(t) + ρR(t) + ρΛ)− k · c2

a2(t)
, where ρM(t) is the

density of the matter(we won't consider dark matter) in the universe, ρR(t)
is the density of the radiation (relativistic matter like photons, neutrinos..)
in the universe, ρΛ is the Vacuum density (was introduced by Einstein as a
mathematical tool and today is used to represent the Dark energy density)

and the curvature constant k =
2 · E
m · x2

. In truth the Friedmann equation is

obtained from general relativity but the result is the same as derived from
Newtonian physics.
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Abstract

We are going to study a universe where there is no matter nor radiation,
thus the main aspect of our analysis will be the Cosmological Constant Λ
expressed through its density ρΛ (and its density parameter ΩΛ). We also

assume the Hubble constant (H0 = H(t0) =
ȧ(t0)

a(t0)
) to be positive.

In the �rst chapter we will introduce the Friedmann equation for such an
universe and we will study the correlation between the density parameter
ΩΛ0 and the curvature constant k. At the end we will introduce the study of
how ΩΛ0 in�uences the possible regimes of the universe.
In the second chapter we will see the inter-correlation between ΩΛ0 and a
universe with or without Big Bang giving at the end an overall description
of the attitude of ΩΛ0.
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Chapter 1

A Cosmological Constant only
universe

Say we live in a universe where there is no matter (ρM = 0) nor radiation
(ρR = 0). As we know the general form of the Friedman equation is

ȧ2(t)

a2(t)
= H2(t) =

8 · π ·G
3

· (ρM(t) + ρR(t) + ρΛ)− k · c2

a2(t)

where
ȧ(t)

a(t)
= H(t) is called the Hubble parameter and

ȧ(t0)

a(t0)
= H(t0) is called

the Hubble constant (t0 =present age of the universe=now). The Friedman
equation in the former hypothesis it reduces to:

ȧ2(t)

a2(t)
=

8 · π ·G
3

· ρΛ −
k · c2

a2(t)
.

Then we de�ne the vacuum density parameter ΩΛ(t) and the curvature den-

sity parameter Ωk(t) as:

ΩΛ(t) =
8 · π ·G · ρΛ

3 ·H2(t)
=

ρΛ

ρc(t)

Ωk(t) = − k · c2

a2(t) ·H2(t)

where ρc(t) =
3 ·H2(t)

8 · π ·G
is called the critical density. We are going to

calculate these parameters for t = t0, (we de�ne a(t0) = 1) then we �nd:

ΩΛ(t0) = ΩΛ0 =
8 · π ·G · ρΛ

3 ·H2
0

=
ρΛ

ρc(t0)
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ΩK(t0) = ΩK0 = −k · c
2

H2
0

where H2
0 stands for H2(t0) (let's observe that H2(t0) = ȧ2(t0) = ȧ2

0).
At this point we can rewrite the Friedman equation using the density param-
eters evaluated at the time t0; we �nd the following unit-less equation:

1 = ΩΛ0 + ΩK0.

Which gives us the following relation:

ΩK0 = 1− ΩΛ0.

If we multiply the right hand side of the Friedman equation per
ȧ2

0

ȧ2
0

then

we obtain:

ȧ2(t)

a2(t)
= H2(t) = ΩΛ0 · ȧ2

0 + Ωk0 ·
ȧ2

0

a2(t)
.

And if we substitute the value of Ωk0 we �nd:

H2(t) = ΩΛ0 · ȧ2
0 + (1− ΩΛ0) · ȧ2

0

a2(t)
= ΩΛ0 ·H2

0 + (1− ΩΛ0) · H
2
0

a2(t)
.

As we know ρΛ doesn't depend on time, while we may have observed that
ΩΛ(t) does depend on time. This strange thing is due to the fact that in
order to �nd the density parameter for the cosmological constant we divide

the term
8 · π ·G · ρΛ

3
by H2(t) =

ȧ2(t)

a2(t)
, which depends on t.

We can also �nd a constant value for ΩΛ(t) simply applying the initial con-
dition ΩΛ(t) = ΩΛ0.
We can �nd such a constant value by solving the following equation for a(t):

8 · π ·G · ρΛ

3
· 1

ȧ2(t0)

a2(t0)(= 1)

=
8 · π ·G · ρΛ

3
· 1

ȧ2(t)

a2(t)

which solution is a(t) = e|ȧ(t0)|·(t−t0). Then if we replace this value of a(t) in
the previous equation we �nd:

1

ȧ2(t0)
=

1

ȧ2(t0) · e2·|ȧ(t0)|·(t−t0)

e2·|ȧ(t0)|·(t−t0)

,
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which match!
We still didn't take into consideration the curvature constant k. The meaning
of this constant is that it interprets our measurements and therefore it says
which is the geometry of the universe:

k = 0 The universe that we are taking into consideration has an Euclidean
geometry (where the Euclidean postulates are all valids). The V pos-
tulate says that if two straight lines are parallel in one point then they
will be parallel at any point, due to this axiom we have that such an
universe must be in�nite. Such a universe is usually called �at universe.

k > 0 The universe that we are taking into consideration can be described
using spherical coordinates. The surface traced by these coordinates is
�nite, then the dimension of this kind of universe must be �nite. Such
a universe is usually called closed universe.

k < 0 The universe that we are taking into consideration has a hyperbolic
geometry. This kind of universe must have a in�nite dimension. Such
a universe is usually called open universe.

The Friedman equation puts into close relationship our cosmological constant
Λ (and in particular ΩΛ(t)) with the curvature k. We can analyse in which
extent the value of ΩΛ(t0) is going to a�ect the geometry of the universe that
we are studying.
We might use a half extended version of the Friedman equation for density
parameters evaluated in t0:

1 = ΩΛ0 −
k · c2

H2
0

.

It is useful to observe that the sign of the second term on the right side of
the equation depends entirely upon the sign of k.
Say that this universe is a �at universe (k = 0), then we will �nd that
ΩΛ0 = 1.
If we suppose this universe to be closed (k > 0), then we will �nd that

ΩΛ0 = 1 +
k · c2

H2
0

= 1 + positive constant > 1.

Finally we may conjecture this universe to be a open universe (k < 0), then

we will �nd that ΩΛ0 = 1 +
k · c2

H2
0

= 1 + negative constant < 1.

As far as the previous study comprehends all the possible values of ΩΛ0 we
can reverse the implications and we �nd that:
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If ΩΛ0 = 1 then we �nd a �at universe (k = 0).

If ΩΛ0 < 1 then we �nd a open universe (k < 0).

If ΩΛ0 > 1 then we �nd a closed universe (k > 0).

Still we don't know in which term and condition the universe that we are
studying may expand, collapse or switch direction.
To begin our study we may easily �nd which is the value of a(t) at which the
universe stop in order to change direction..if it does.
To the Friedman equation we impose ȧ(thalt) = 0 which is the condition
for the halt point (the point where the universe stop and change velocity
direction), so we �nd that

a2(thalt) =
ΩΛ0 − 1

ΩΛ0

. It is important to observe that there can't be any

turning point (halt point) in the direction of the expansion (or collapse) of
the universe if 0 ≤ ΩΛ0 < 1 (in this case we would have ΩΛ0−1 < 0) because
it would assign a negative value to a2(thalt).
Now we can face the problem for how the value of ΩΛ0 may in�uence the
direction of the speed of the expansion of the universe.
By multiplying the Friedman equation per a2(t) we �nd:

ȧ2(t) =
8 · π ·G

3
· ρΛ · a2(t)− k · c2

If we derive it per t we will �nd:

2 · ȧ(t) · ä(t) =
8 · π ·G

3
· ρΛ · 2 · a(t) · ȧ(t) · ȧ

2(t0)

ȧ2(t0)

If we decide to study only the moment before and after the switching point
then we can divide per ȧ2(t) and we �nd:

ä(t) = a(t) · ȧ2(t0) · ΩΛ0

As far as a · ȧ2(t0) is always positive we �nd that the sign of ΩΛ0 directly
determines the sign of the acceleration, and while ΩΛ0 is a constant we have
that the acceleration depends on time.
Then we �nd the following interrelation:

If ΩΛ0 > 0 then ä(t) > 0.

If ΩΛ0 < 0 then ä(t) < 0.

4



At this point we may ask ourselves which kind of regimes the universe may
assume. One of our general assumption is that the Hubble constant H0 is
positive, which means that ȧ(t0) > 0, since that we understand that it is
impossible to have a universe where the velocity is negative and the acceler-
ation too because when it would cut the a(t) axis it would have a negative
slope.
This fact restricts the possible regimes to only three of them because the
acceleration doesn't change sign: an ever expanding universe, a collapsing-
then-expanding universe and an expanding-then-collapsing universe.
For the �rst two regimes we have sign(ä(t)) = sign(ΩΛ0) > 0 (then ΩΛ0 > 0)
and in particular for the second one we have also the condition that ΩΛ0 > 1
(otherwise there can't be any switching point), while for the last one we have
sign(ä(t)) = sign(ΩΛ0) < 0 (then ΩΛ0 < 0).
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Chapter 2

A Big Bang/non Big Bang
universe

We are now going to analyse under which condition the De Sitter (the
Dutch physicist who �rst theorized the Cosmological Constant only universe)
universe have a Big Bang or not.
As we saw in the previous chapter we can rewrite the Friedmann equation
as:

ȧ2(t) = H2
0 · (a2(t) · ΩΛ0 − ΩΛ0 + 1)

If we want to study the universe assuming that it has the Big Bang then we
can solve the Friedmann equation requiring the condition that a(0)=0. If we
consider ΩΛ0 > 0 then we �nd the following solution:

a(t) =
ΩΛ0 − 1

2 ·
√

ΩΛ0 − Ω2
Λ0

· (e
√

H2
0 ·
√

ΩΛ0·t − e−
√

H2
0 ·
√

ΩΛ0·t) =

1− ΩΛ0

2 ·
√

ΩΛ0 − Ω2
Λ0

· sinh(
√
H2

0 ·
√

ΩΛ0 · t)

The solution gives some existence condition to the Vacuum density: 0 <
ΩΛ0 < 1. Furthermore we may observe that both the velocity and the accel-
eration are positive. This gives us an ever-expanding universe. We can plot
an example with the following values: ΩΛ0 = 0.7, H2

0 = 0.5.

On the other hand if we require ΩΛ0 < 0 then we will �nd:

a(t) =
ΩΛ0 + 1

2 ·
√
−ΩΛ0 − Ω2

Λ0

· (ei·
√

H2
0 ·
√

ΩΛ0·t − e−i·
√

H2
0 ·
√

ΩΛ0·t)
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Figure 2.1: Expanding universe (ΩΛ0 = 0.7, H2
0 = 0.5).
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Figure 2.2: Expanding then collapsing universe (ΩΛ0 = −1.5, H2
0 = 0.5).
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Figure 2.3: Time of the universe depending on the values of a positive ΩΛ0

There are no existence condition for the Vacuum density except that: ΩΛ0 <
0. This kind of solution gives us an expanding-then-collapsing universe. As
an example we may choose: ΩΛ0 = −1.5, H2

0 = 0.5.
Now we can think about the age that a De Sitter universe with Big Bang

might have.
We start from our Friedman equation:

H2(t) =
ȧ2(t)

a2(t)
= H2

0 · (ΩΛ0 +
1− ΩΛ0

a2(t)
)

If we apply a square root to the equation and then multiply both sides per
a(t) we will �nd:

ȧ(t) =
da

dt
= a(t) ·H0 ·

√
ΩΛ0 +

1− ΩΛ0

a2(t)

from which we obtain:

dt

da
= ṫ(a) =

1

a ·H0 ·
√

ΩΛ0 +
1− ΩΛ0

a2

From this equation, if 0 < ΩΛ0 < 1 we �nd that:

age of the universe = t(1) =
−log((1− ΩΛ0) · ΩΛ0) + 2 · log(

√
ΩΛ0 + ΩΛ0)

2 · ΩΛ0 ·
√

ΩΛ0

While if −1 < ΩΛ0 < 0 we �nd:

t(1) =
arctg(

√
ΩΛ0)

H2
0 ·
√

ΩΛ0
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Figure 2.4: Time of the universe depending on the values of a negative ΩΛ0

Now we can consider the case in which there is no Big Bang, which means
that a(0) 6= 0; as far as we have the de�ning condition for the scale factor
a(t) ≥ 0 then we can simply say that for any positive real constant c > 0
a(0) = c.
Now we can solve the problem as we did in the case with the Big Bang but
changing the initial condition!
Thus for ΩΛ0 > 0 we �nd:

a(t) =
e−
√

H2
0 ·ΩΛ0·t

2(c · ΩΛ0 +
√

ΩΛ0 − Ω2
Λ0 + c2 · Ω2

Λ0)
· (ΩΛ0 − 1 + e2

√
H2

0 ·ΩΛ0·t − ΩΛ0 ·

e2
√

H2
0 ·ΩΛ0·t+2c2 ·ΩΛ0 ·e2

√
H2

0 ·ΩΛ0·t+2cΩΛ0 ·e2
√

H2
0 ·ΩΛ0·t

√
ΩΛ0 − Ω2

Λ0 + c2 · Ω2
Λ0)

And we �nd an ever expanding universe for any positive ΩΛ0), with the

condition that c2 ≥ ΩΛ0 − 1

ΩΛ0

.

On the other side for ΩΛ0 < 0 we �nd the same solution with the condition

that c2 ≤ ΩΛ0 − 1

ΩΛ0

.

As far as we don't have any Big Bang, to give a measure of the time we
have to distinguish two cases. The �rst one is the case in which the universe
is ever expanding; in such a case we could decide to calculate the time since
the universe had a certain value for the velocity; for example we could decide
to calculate how long time has passed since t(ȧ = d) where d > 0 is a real
number. In the case for a collapsing-then-expanding universe we could use
the distance since the universe changed direction, which means that we can
start measuring the time since thalt, where ȧ(thalt) = 0.
Until now we have studied the behaviour of the universe depending on the
value of ΩΛ0. But we may ask ourselves which is the behaviour of ΩΛ(t). We
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Figure 2.5: Expanding universe without Big Bang (ΩΛ0 = 1, H2
0 = 0.1 and

c = 1).
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Figure 2.6: Expanding then collapsing universe without Big Bang (ΩΛ0 =
−0.5, H2

0 = 0.1 and c = 0.5).
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Figure 2.7: Values for ΩΛ(t) for an expanding universe with Big Bang (ΩΛ0 =
0.1 and H2

0 = 1).
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Figure 2.8: Values for ΩΛ(t) for an expanding then collapsing universe with
Big Bang (ΩΛ0 = −0.5 and H2

0 = 1).

know that ΩΛ(t) =
8 · π ·G · ρΛ

3H2(t)
· H

2
0

H2
0

=
ΩΛ0 ·H2

0

H2(t)
. But H2(t) = H2

0 (ΩΛ0 −
ΩΛ0 − 1

a2(t)
), then we obtain

ΩΛ(t) =
ΩΛ0

ΩΛ0 −
ΩΛ0 − 1

a2(t)

At this point we are able to study ΩΛ(t) by plugging in di�erent values of
ΩΛ0 and choosing time by time the di�erent solutions found for a(t) (both
in the case for a Big Bang and a non-Big Bang universe). Let's see some
particular cases: �gures 2.7-2.10 .

Due to numerical errors especially the �gures 2.9 and 2.7 don't �t very
much the initial conditions, anyway they give good ideas of what is happen-
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Figure 2.9: Values for ΩΛ(t) for an expanding universe without Big Bang
(ΩΛ0 = 1.5, H2

0 = 0.1 and c = 1).
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Figure 2.10: Values for ΩΛ(t) for an expanding then collapsing universe with-
out Big Bang (ΩΛ0 = −0.5, H2

0 = 0.1 and c = 0.5).
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ing.
What we see is that the value of ΩΛ(t) maintains the same sign of the ΩΛ0;
moreover for the negative values ΩΛ(t) tents to in�nity while for the positive
values it tents to stabilize with small positive values.
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