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BFGS Algorithm

1. Obtain a direction dk by dk = −BBFGSk ∇f(xk).
2. Perform a one-dimensional optimization (line search) to find an acceptable step-size
αk in the direction found in the first step, so αk = argmin

α
f(xk + αdk).

3. Set pk = αkdk and update xk+1 = xk + pk.

4. qk = ∇f(xk+1)−∇f(xk).
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We consider the update for the matrix B as follows:

Bk+1 =
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Remark 0.0.1. In the previous update we only consider the case in which pk = 0
because pk =⇐⇒ qk = 0.

Proof. If pk = 0 then xk+1 = xk and ∇f(xk+1) = ∇f(xk), i.e. qk = 0.
On the other hand, if qk = 0, i.e. ∇f(xk+1) = ∇f(xk + αkdk) = ∇f(xk), there
are two cases:

• αk = 0 that means pk = 0.

• αk 6= 0, but since αk = argminφ(α) = argmin f(xk + αdk) from the first
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order condition

0 = φ′(αk)

= ∇f(xk + αkdk)
T dk

= ∇f(xk)T dk
= −∇f(xk)TBk∇f(xk) ≤ 0

we obtain ∇f(xk) = 0 since Bk is positive definite. But then dk = 0 and
pk = 0.

In both cases we showed that qk = 0⇒ pk = 0. �

This justifies the form of the update. J

Figure 1: A diagram summarizing the BFGS algorithm.

In the following we note rk = ∇f(xk−1) for each k ≥ 1.

Lemma 0.1. The three following statement are equivalent:

(i) ∃K ∈ N ∪ {+∞} ∀m ≥ K xm = x∗;

(ii) ∃K ∈ N ∪ {+∞} ∀m ≥ K Bm = B∗;

(iii) ∃K ∈ N ∪ {+∞} ∀m ≥ K rm = r∗;

Proof. First suppose K < +∞.

(i)⇒(ii) If (i) holds then ∀m ≥ K pm = 0 and that means Bm = BK = B∗ because
of the update formula (1).

2



(i)⇒(iii) If (i) holds, since ∀m ≥ K pm = 0 then qm = 0, i.e. ∇f(xm) = ∇f(x∗)
and rm = r∗.

(ii+iii)⇒(i) It follows from the algorithm that dm = −Bm∇f(xm) = −B∗r∗ =: d∗.
Then αm satisfies

0 = ∇f(xm + αmd
∗)T d∗ = r∗T d∗

which implies r∗ = 0⇒ d∗ = 0 and pm = 0 as before. This latter equation
is equivalent to (i).

If K = +∞ then the sequence xk does not converge to x∗ in finite time: for
all m ∈ N the stepsize pm 6= 0 which in particularly implies qm 6= 0 and this is
equivalent to the fact that rk does not converge in finite time. The sequence Bk
does not converge either, otherwise the secant equation B+q = p would give a
contraddiction. This proves the equivalence of the three statements in the case.

�

Remark 0.1.1. We can derive a lower bound on ‖B‖ using a Taylor expansion
on r:

rk+1 − rk = ∇f(xk)−∇f(xk−1)
= H(τ)(xk − xk−1)
= αk−1H(τ)pk−1

= αk−1H(τ)Bkqk−1

= αk−1H(τ)Bk(rk+1 − rk)

where τ is a point between xk−1 and xk. Taking the norms

‖rk+1 − rk‖ ≤ |αk−1| ‖H(τ)‖ ‖Bk‖ ‖rk+1 − rk‖ .

Now, if rk+1 6= rk we derive the lower bound on ‖Bk‖:

‖Bk‖ ≥
1

|αk−1| ‖H(τ)‖
and if rk+1 = rk then the algorithm has converged (reasoning as in the proof of
(Lemma 0.1)). J

Remark 0.1.2. Without loss of generality we can impose α ≥ 0 in the algorithm,
to require p to be a descent direction. This means that pTk∇f(xk) < 0 for every
k ≥ 0. In particular yields f(xk+1) ≤ f(xk). J

Remark 0.1.3. With the extra assumption α ≥ 0 and the update formula (1),
we can conclude that the (BFGS Algorithm) converges to a stationary point x∗.
If this happens in a finite number of steps K < +∞, then, by (Lemma 0.1), the
sequence of matrices Bk converges as well and their dynamics is clearly stable:
the sequence is modified for K steps and after it becomes constant. J
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