Foglio di esercizi

Alessio Del Vigna

17 marzo 2021

1 Diagonalizzabilità

Esercizio 1. Calcolare autovalori e autovettori in $\mathbb C$ della matrice 2×2 seguente:

$$A = \begin{pmatrix} i & 2 \\ i & 1 - i \end{pmatrix}.$$

Esercizio 2. Si consideri la matrice

$$A = \begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix}.$$

Trovare un modo intelligente di calcolare A^{23} , dove "intelligente" significa che non si deve calcolare in modo diretto A^{23} (sempre che a qualcuno fosse venuto in mente) e significa anche che uno deve riflettere sul fatto che questo esercizio si trova nella parte sulla diagonalizzabilità.

Esercizio 3. Siano $a, b \in \mathbb{R}$ e sia A la matrice

$$A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}.$$

Dimostrare che A è diagonalizzabile se e solo se b = 0.

Esercizio 4. Per ciascuna delle seguenti matrici 3×3 si dica se è diagonalizzabile su \mathbb{R} . Se non lo è, si dica se è diagonalizzabile su \mathbb{C} .

(i)
$$A = \begin{pmatrix} 3 & 1 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 0 \end{pmatrix}$$
 (iii) $C = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$

(ii)
$$B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$
 (iv) $D = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ -1 & 1 & -1 \end{pmatrix}$

Esercizio 5. Dire se la matrice

$$A = \begin{pmatrix} 2 & 1 & 1 & 1 \\ -1 & 0 & -1 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & -1 \end{pmatrix}.$$

1

è diagonalizzabile su \mathbb{R} .

Esercizio 6. Si determini per quali valori di $k \in \mathbb{R}$ la matrice seguente è diagonalizzabile su \mathbb{R} :

$$A_k = \begin{pmatrix} k & k+1 & k-1 \\ 0 & -1 & k \\ 0 & 0 & k^2 \end{pmatrix}.$$

Esercizio 7. Si determini per quali valori di $k \in \mathbb{R}$ la matrice seguente è diagonalizzabile su \mathbb{R} :

$$A_k = \begin{pmatrix} k-2 & 0 & -4 & 0 \\ 0 & k & 2 & 0 \\ 0 & 0 & k+2 & 0 \\ 1 & 1 & k & 2-k \end{pmatrix}.$$

Esercizio 8. Sia $a \in \mathbb{R}$ un parametro reale e si consideri la matrice

$$M_a = \begin{pmatrix} 10 & 3a & a \\ 0 & 9 & 2 \\ 0 & 2 & 6 \end{pmatrix}.$$

- (i) Studiare la diagonalizzabilità di M_a su \mathbb{R} al variare di $a \in \mathbb{R}$.
- (ii) Nel caso a = 0, determinare per quali $h \in \mathbb{R}$ si ha che $(0, 2, h)^{\top}$ è un autovettore di M_a .
- (iii) Per a=0, determinare per quali $h \in \mathbb{R}$ si ha che

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : 2y + hz = 0 \right\}$$

è un autospazio di M_a .

Esercizio 9. Sia $V = \mathbb{R}_{\leq 2}[x]$ lo spazio vettoriale dei polinomi di grado ≤ 2 a coefficienti reali e $f_k : V \to V$ l'endomorfismo

$$f_k(p)(x) = p(0) + p(k)x + p(1)x^2.$$

Per quali $k \in \mathbb{R}$ l'applicazione f_k è diagonalizzabile?

Esercizio 10. Si consideri la matrice

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

e l'endomorfismo $f: \operatorname{Mat}(2,\mathbb{R}) \to \operatorname{Mat}(2,\mathbb{R})$ dato da f(X) = AX. Scrivere la matrice associata a f rispetto alla base canonica di $\operatorname{Mat}(2,\mathbb{R})$ e dire se f è diagonalizzabile.

Esercizio 11*. Sia $A \in \text{Mat}(2,\mathbb{R})$ una matrice e $f_A : \text{Mat}(2,\mathbb{R}) \to \text{Mat}(2,\mathbb{R})$ l'endomorfismo dato da $f_A(X) = AX$.

- (i) Si provi che f_A è diagonalizzabile se e solo se A è diagonalizzabile.
- (ii) Scrivere una base di $Mat(2, \mathbb{R})$ costituita da autovettori di f_A nel caso in cui

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Esercizio 12. Si consideri l'endomorfismo $f: \operatorname{Mat}(2,\mathbb{R}) \to \operatorname{Mat}(2,\mathbb{R})$ dato da $f(X) = X^{\top}$. Si dica se f è diagonalizzabile.

Esercizio 13. Si consideri la matrice

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

e l'endomorfismo $f: \operatorname{Mat}(2,\mathbb{R}) \to \operatorname{Mat}(2,\mathbb{R})$ dato da $f(X) = AXA^{-1}$. Dire se f è diagonalizzabile.

Esercizio 14. Sia $S(2,\mathbb{R})$ lo spazio delle matrici 2×2 a coefficienti reali e simmetriche, ossia $S(2,\mathbb{R}) = \{A \in \operatorname{Mat}(2,\mathbb{R}) : A^{\top} = A\}$. Sia

$$P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

- (i) Si verifichi che $PXP \in S(2, \mathbb{R})$ per ogni $X \in S(2, \mathbb{R})$.
- (ii) Sia $f: S(2,\mathbb{R}) \to S(2,\mathbb{R})$ l'applicazione lineare definita da f(X) = PXP. Si dica se f è diagonalizzabile.

Esercizio 15. Si consideri la matrice

$$A = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{pmatrix}.$$

Si costruisca, se esiste, una matrice $B \in \text{Mat}(3,\mathbb{R})$ che soddisfi le seguenti proprietà:

(i) B è simile ad A;

(ii)
$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \in \operatorname{Ker} B;$$

(iii) Im
$$B = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x - y - 2z = 0 \right\}.$$

Esercizio 16. Sia V uno spazio vettoriale e sia $f:V\to V$ un endomorfismo di V invertibile. Dimostrare che f è diagonalizzabile se e solo se f^{-1} è diagonalizzabile.

Esercizio 17*. Sia \mathbb{K} un campo e $A \in \operatorname{Mat}(n, \mathbb{K})$. Si provi che A è diagonalizzabile se e solo se A^{\top} è diagonalizzabile.

Esercizio 18*. Si costruisca, se esiste, un endomorfismo $f:\mathbb{R}^3 \to \mathbb{R}^3$ con le proprietà seguenti:

3

(i)
$$f \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix};$$

- (ii) f ha un autospazio di dimensione 2;
- (iii) $\dim \operatorname{Im} f = 2$.