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1 Prerequisiti e fatti sparsi

ej è j-esimo vettore della base canonica e il vettore 1 = (1, 1, . . . 1)>.
Spectrum: σ(A)
Spectral radius: ρ(A)
Autospazio generalizzato: EA(λ) = Ker(A− λ I)
Algebraic multiplicity: mi of λi
Geometric multiplicity: di of λi
λi is simple if mi = 1, semi-simple if mi = di, defective if di < mi.
lim
k
Ak è il limite puntuale delle matrici.

Teorema di Gelfand e su ρ(A) = lim(||Ak||) 1
k

Cose su Jordan e scrittura astratta con il proiettore.
Si ha che lim

k
Bk = 0 se e solo se ρ(B) < 1.

Inoltre il limite di Bk non diverge solo se ρ(B) ≤ 1 e 1 è un autovalore semisemplice (guarda
la forma di Jordan).
DA COMPLETARE

Definition 1.1 Let A ∈ Cn×n. Then:

• A is zero-convergent if lim
n→∞

An = 0

• A is convergent if lim
n→∞

An = B ∈ Cn×n.

Achtung! Some authors call zero-convergent matrix convergent and convergent matrix semi-
convergent.

Theorem 1.2 Let A ∈ Cn×n, A is zero-convergent ⇐⇒ ρ(A) < 1.

Proof. Write A = CJC−1 where J is the Jordan Normal Form and note that A is zero-
convergent ⇐⇒ J is zero-convergent.

Theorem 1.3 Let A ∈ Cn×n, A is convergent ⇐⇒ ALL the three following conditions apply:

1. ρ(A) ≤ 1
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2. If ρ(A) = 1, then λ ∈ σ(A), |λ| = 1⇒ λ = 1

3. If ρ(A) = 1, then the eigenvalue λ = 1 is semi-simple.

Or, in an equivalent formulation, if we are in one of the following two mutually exclusive cases:

1. ρ(A) < 1

2. ρ(A) = 1, the eigenvalue µ = 1 is semi-simple, and if λ ∈ σ(A), |λ| = 1⇒ λ = 1.

Proof. Use the Jordan Normal Form

Remark 1.4 1 is a semi-simple eigenvalue of A if and only if rank(I −A) = rank(I −A)2 < n.
This is useful since it’s computationally easier to calculate the rank than all the eigenvalues

of A.

2 Perron-Frobenius theorem

2.1 Positive and non-negative matrices

Definition 2.1 (Positive and non-negative vectors) Let v ∈ Rn be a vector

• v is positive if for all i, 1 ≤ i ≤ n, we have vi > 0. We will indicate that v is positive by
writing v > 0.

• v is non-negative if for all i, 1 ≤ i ≤ n, we have vi ≥ 0. We will indicate that v is
non-negative by writing v ≥ 0.

The set of all non-negative vector of dimension n is called the non-negative orthant of Rn and
will be indicated with Rn

+.

Definition 2.2 (Positive and non-negative matrices) Let A ∈ Rn×n be a matrix

• A is positive if for all i, j, 1 ≤ i, j ≤ n, we have aij > 0. We will indicate that A is positive
by writing A > 0.

• A is non-negative if for all i, j, 1 ≤ i, j ≤ n, we have aij ≥ 0. We will indicate that A is
positive by writing A ≥ 0.

The set of all non-negative matrices of dimension n × n is called the cone of non-negative
matrices and will be indicated with Rn×n

+ .

We can define in similar way for A ∈ Rm×n to be positive or non-negative. The space of all
non-negative m× n matrices will be denoted by Rm×n

+ .

Remark 2.3 A is a non-negative matrix if and only if ∀x ∈ Rn
+, the product Ax is still a

non-negative vector.
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The definitions 1 and 2 can be used to state that a matrix (or a vector) is pointwise greater
than 0. Similarly we can introduce an ordering on Rn×n to state that a matrix is pointwise
greater than another.

Definition 2.4 (Partial ordering) Let A,B ∈ Rn×n, we say that

• A > B if the matrix A−B is positive, i.e. A−B > 0.

• A ≥ B if the matrix A−B is non-negative, i.e. A−B ≥ 0.

A useful observation is that (Rn×n,≥) is a partially ordered set: the relation ≥ is reflexive,
transitive and antisymmetric.

Definition 2.5 (Absolute value)
Let A ∈ Cm×n, we will denote by |A| the matrix that has as i, jth element |aij|.
Similarly we can define the absolute value of a vector |v|.
By this definition, we have |A| ∈ Rm×n

+ and |v| ∈ Rn
+ for every A ∈ Cm×n and v ∈ Cm.

Proposition 2.6 Properties of the ordering ≥:

1. If Ai ≥ Bi are matrices, then
m∑
i=1

Ai ≥
m∑
i=1

Bi

2. If A ≥ B are matrices and c ∈ R+ is a scalar, then cA ≥ cB

3. If A ≥ B and C ≥ 0 are matrices, then AC ≥ BC and CA ≥ CB if the products are
defined

4. If Ak ≥ Bk and there exist a pointwise limit lim
k
Ak = A and lim

k
Bk = B, then A ≥ B

5. If A ∈ Cm×n, then |A| ≥ 0 and |A| = 0 if and only if A = 0

6. If A ∈ Cm×n and γ ∈ C, |γA| = |γ| |A|

7. If A,B ∈ Cm×n then |A+B| ≤ |A|+ |B|.

8. If A,B ∈ Cn×n then |A ·B| ≤ |A| · |B|.
This is true also for every couple of matrices such that A · B is defined, i.e. A ∈ Cn×k

and B ∈ Ck×m.

9. If A ∈ Cn×n, and k ∈ N, then |Ak| ≤ |A|k.

Remark 2.7 There are a couple of simple but very useful particular cases of property 3 and 8:

• If A ≥ 0 is a matrix and v ≥ 0 is a vector, then Av ≥ 0.

• If A > 0 is a matrix, v ≥ 0 is a vector, v 6= 0, then Av > 0.

• Let A ∈ Cn×n and x ∈ Cn. Then |Ax | ≤ |A| · |x|
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Proposition 2.8 Let A ∈ Rn×n. Then:

1. A ≥ 0 ⇐⇒ ∀ v ∈ Rn, with v > 0, we have Av ≥ 0.

2. A > 0 ⇐⇒ ∀ v ∈ Rn, with v ≥ 0, v 6= 0, we have Av > 0.

Proof. The ⇒ implications follow easily from the above properties.
1) ⇐ If there were ai j < 0, then choosing v with vj = 1 and other components k 6= j, vk = ε
we have [Av]i = ai jvj +

∑
k 6=j

ai kε ≤ −ai j + (n− 1)ε ·max
k 6=j
|ai k| which is negative for sufficiently

small ε.
2) ⇐ If there were ai j ≤ 0, it is sufficient to choose v = ej, then [Av]i = ai jvj + 0 = ai j ≤ 0.

2.2 Spectral radius bounds

Theorem 2.9 (Lappo-Danilevsky)
Let A ∈ Cn×n and B ∈ Rn×n

+ such that |A| ≤ B. Then ρ(A) ≤ ρ(|A|) ≤ ρ(B)

Proof. It is sufficent to prove that for all matrices A1, B1 that satisfy the hyphothesis of the
theorem, it’s true that ρ(A1) ≤ ρ(B1).
Then taking A1 = A and B1 = |A| we obtain ρ(A) ≤ ρ(|A|), and by taking A1 = |A| and
B1 = B we obtain ρ(|A|) ≤ ρ(B).

Let’s prove the claim by contradiction, so assume ρ(B) < ρ(A). Then there exist a scalar
γ ∈ R+ such that

γρ(B) < 1 < γρ(A)

Which is the same as
ρ(γB) < 1 < ρ(γA)

This means that the lim
k

(γB)k = 0, while the sequence of matrices {(γA)k}k∈N does not converge

to any matrix (if it were to converge, then the spectral radius has to converge to a real number).
On the other hand, we have 0 ≤ |A| ≤ B, so 0 ≤ |γA| ≤ γB and 0 ≤ |γA|k ≤ (γB)k for all
k ∈ N. Since (γB)k converges to the 0 matrix, it follows that also |γA|k and (γA)k has to
converge to the 0 matrix, which is a contradiction.

Alternative proof. For every x ∈ Cn, we have:

|A · x| ≤ |A| · |x| ≤ B · |x|

Let || · || be an induced matrix norm from the vector norm || · ||v (for example, the 2-norm).
Then:

||Ax ||v ≤ || |A| · |x| ||v ≤ ||B · |x| ||v
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By taking the sup on all x ∈ Cn of unitary norm, ||x||v = 1, we obtain the matrix norm:

||A || ≤ || |A| || ≤ ||B ||

Since A ≤ |A| ≤ B, we have Ak ≤ |A|k ≤ Bk for every integer k > 0; then applying the above
method gives us

||Ak || ≤ || |A|k || ≤ ||Bk ||

||Ak ||
1
k ≤ || |A|k ||

1
k ≤ ||Bk ||

1
k

We can take the limit for k →∞ and apply Gelfand’s theorem to obtain:

ρ(A) ≤ ρ(|A|) ≤ ρ(B)

Theorem 2.10 Let A ∈ Rn×n
+ , let Ri =

n∑
j=1

ai j be the sum of entries of the ith-row and

Cj =
n∑
i=1

ai j be the sum of the jth-column.Then:

min
1≤i≤n

Ri ≤ ρ(A) ≤ max
1≤i≤n

Ri

min
1≤j≤n

Cj ≤ ρ(A) ≤ max
1≤j≤n

Cj

Proof. The maximum row-sum can be expressed as the infinity norm, since A is non-negative

max
1≤i≤n

Ri = ||A||∞

Furthermore, this is an induced norm, so ρ(A) ≤ ||A||∞ and we have the upper bound inequality.
For the column sums the argument is similar, using the 1-norm instead of the infinity norm.

ρ(A) ≤ ||A||1 = max
1≤j≤n

Cj

For the lower bound, let m = min
1≤i≤n

Ri and M = max
1≤i≤n

Ri. We can construct two matrices

B,C ≥ 0 such that the row sums of B are all m, and those of C are all M ; we can take A and
multiply every element in the ith row by m

Ri
≤ 1 for B and M

Ri
≥ 1 for C, obtaining B ≤ A ≤ C.

By ?.9 we have that ρ(B) ≤ ρ(A) ≤ ρ(C). ρ(B) ≤ ||B||∞ = m and B · e = me, which implies
that ρ(B) = m; similarly we get that ρ(C) = M .
We have obtained that m ≤ ρ(A) ≤M as desired. The case with column sums is analogous.

Corollary 2.11 If A > 0 then ρ(A) > 0.
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Since A is positive, all the row sums Ri are strictly greater than 0, which implies that ρ(A)
cannot be 0.

Corollary 2.12 If Â ∈ Rk×k is a principal submatrix of A ∈ Rn×n
+ , then ρ(Â) ≤ ρ(A).

Consider the matrix B ∈ Rn×n which has the corresponding entries equal to Â and all the other
are zeros. Then ρ(Â) = ρ(B) and apply Lappo-Danilevsky’s theorem.

Corollary 2.13 If A ≥ 0, then ρ(A) ≥ max
i
ai i.

Let x > 0 be a vector and D = diag(x1, . . . , xn), with all diagonal entries strictly greater than 0.

Then D is non-singular, it’s inverse is D−1 = diag(x−11 , . . . , x−1n ). Let Â = D−1AD, calculating
its entries we obtain âi j =

xj
xi
ai j.

Â is similar to A, so they have the same eigenvalues and ρ(Â) = ρ(A). We can use theorem

(2.10) with Â to obtain new bounds for ρ(A).

The row sums of Â are R̂ =
1

xi

(∑
j=1

ai j xj

)
, so applying theorem (2.10) leads us to:

Theorem 2.14 (Collatz - Wielandt) Let A ≥ 0, for all positive vectors x > 0 we have:

min
1≤i≤n

1

xi

(∑
j=1

ai jxj

)
≤ ρ(A) ≤ max

1≤i≤n

1

xi

(∑
j=1

ai jxj

)

This is true if we use columns instead of rows. However, the following theorems allows us to
give even better bounds.

Theorem 2.15 (Collatz 1) Let A ≥ 0 be a n × n matrix, x > 0 a vector and σ, τ ≥ 0 real
numbers.
If σx ≤ Ax ≤ τx (as vectors), then σ ≤ ρ(A) ≤ τ .

Proof. By the above remark, we have

ρ(A) ≥ min
1≤i≤n

1

xi

(∑
j=1

ai jxj

)
= min

1≤i≤n

1

xi
[Ax]i

By hypothesis Ax ≥ σx, so [Ax]i ≥ σxi.

ρ(A) ≥ min
1≤i≤n

1

xi
[Ax]i ≥ min

1≤i≤n

1

xi
σxi = σ

The proof for ρ(A) ≤ τ is analogous.

Corollary 2.16 If A ≥ 0 and p > 0 is a positive vector. Suppose that p is also an eigenvector
for A: Ap = µp. Then necessarily µ = ρ(A).
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Proof. First we note that since A ≥ 0 and p > 0, Ap ≥ 0 is a non-negative vector. This implies
that the eigenvalue µ is a real number. Since µp = Ap ≥ 0, we have that also µ ≥ 0.
Applying theorem 2.15 with σ = τ = µ and x = p, we obtain that µ ≤ ρ(A) ≤ µ, as
desidered.

Theorem 2.17 (Collatz 2) Let A ≥ 0 and suppose there is a positive vector p > 0 which is
an eigenvector for A. Then:

max
x>0

min
1≤i≤n

1

xi

(∑
j=1

ai jxj

)
= ρ(A) = min

x>0
max
1≤i≤n

1

xi

(∑
j=1

ai jxj

)

Where max
x>0

and min
x>0

taken for all possible values of x ∈ Rn
+. They should be thought as sup

and inf, but they actually obtain maximum for some x.

Proof. For the above corollary, p has to be an eigenvector relative to ρ(A), so Ap = ρ(A) p ,
which implies:

ρ(A) =
1

pi

(∑
j=1

ai jpj

)
∀ i

Which means that the inequalities stated in theorem ?.15 is obtained with x = p, both the
lower and upper.

In this theorem it’s crucial to have A with a positive eigenvector (which happens if A > 0 or
A ≥ 0 and A is irreducible, by Perron-Frobenius results); otherwise the min/max have to be
replaced with inf/sup.

2.3 Perron’s Theorem

Theorem 2.18 (Perron) Let A ∈ Rn×n
+ be a strictly positive matrix, A > 0, and let ρ = ρ(A)

be the spectral radius of A. Then:

1. ρ is an eigenvalue of A and ρ > 0.

2. There exists a positive vector p > 0 which is an eigenvector for ρ: Ap = ρ p. Similarly,
there exists a left-eigenvector q> for A with eigenvalue ρ and q> > 0.

3. If x > 0 is another positive eigenvector for A, so Ax = λx, then necessarily λ = ρ and
x = αp with α > 0 a positive number. Similarly, a positive left-eigenvector is a positive
multiple of a q>.

4. ρ is a simple eigenvalue of A

5. For each λ ∈ σ(A), λ 6= ρ, we have |λ| < ρ.

6. Let B =
1

ρ
A, so ρ(B) = 1. Then there exists the limit lim

k→∞
Bk = L = pq>
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7. For x ≥ 0 vector, x 6= 0, we have lim
k→∞

Bkx is a positive multiple of p.

8. For x ≥ 0 vector, x 6= 0, let γk = [Ak x]−11 be a scalar, such the vector bk = γkA
k x has

the first entry equal to 1. Then there exists the limit lim
k→∞

bk = θp with θ = 1
p1

.

Proof. Notice that for small ε > 0, A > ε I, which implies by Lappo-Danilevsky ?.9 that

ρ(A) ≥ ε > 0. We will prove the first 4 statements for B =
1

ρ
A. Since B is a positive scalar

multiple of A, they have the same eigenvalues and eigenvectors (with the same sign).

Step 1. ρ(B) = 1, so there exist an eigenvector x, Bx = λx with |λ| = 1. Then

|x| = |λx| = |Bx| ≤ |B| · |x| = B · |x|

Call y = B|x| − |x| = (B − I) · |x|, the above results means y ≥ 0. If it were y = 0, then
B|x| = |x| and so B has an eigenvector with eigenvalue 1, as desired. By contradiction, assume
that y 6= 0; then from y ≥ 0 and B > 0 we have By > 0.
Let z = B|x| > 0, then for a sufficiently small ε > 0 we have By > εz (observe that this is false
if we require only By ≥ 0).

εz < By = B(B − I) · |x| = (B − I)B · |x| = (B − I)z

So we obtained (B− I)z > εz, or Bz > (1 + ε)z. By theorem ?.15, this means that 1 = ρ(B) >
1 + ε, which is absurd.
This means that necessarily y = 0 and 1 ∈ σ(B).

Step 2. We have proved that if Bx = λx with |λ| = 1, then B|x| = |x|. Surely |x| ≥ 0, but
we do not know if |x| is strictly positive.
Let us look at the ith entry of Bx = λx:

n∑
j=1

bi j xj = λxj =⇒ |
n∑
j=1

bi j xj | = |λ| |xj| = |xj|

Also, by looking at the ith entry of B|x| = |x|
n∑
j=1

bi j |xj| = |xj|

These two equations give us the following, were the last equality is true because bi j > 0:

|
n∑
j=1

bi j xj | = |xj| =
n∑
j=1

bi j |xj| =
n∑
j=1

|bi j xj|

The sum of absolute values of complex numbers can be equal to the absolute value of the
sum only if all numbers have the same argument, i.e. there exists α ∈ [0, 2π] such that
bi jxj = bi j |xj|eiα and thus xj = |xj|eiα.
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We want to show that p = |x| is the positive eigenvector we’re looking for. We already have
B p = p, but B > 0 and p ≥ 0, so Bp > 0 and thus p > 0.
By applying the result to A> we find an eigenvector q such that A>q = ρq, which means
q>A = ρq.

Also from x = eiαp and Bx = λx we obtain

λeiαp = λx = Bx = eiαBp = eiαp

Which implies that λ = 1. In other words, every eigenvalue of absolute value 1 in σ(B) has to
be equal to 1, so there are no eigenvalues of A of absolute value ρ other than ρ itself, which is
point 5.

By corollary ?.16, every positive eigenvector y such that By = µy, has necessarily µ = 1. Then

Step 3. We will prove that 1 is a semi-simple, and then simple, eigenvalue of B.
From Bp = p it follows that Bkp = p for every k > 0. Let b

(k)
i j = [Bk]i j, then this equality can

be expanded as:
n∑
j=1

b
(k)
i j pj = pi ∀ k > 0, ∀i

This means that b
(k)
i j pj < pi and b

(k)
i j <

pi
pj

for every i, j, k, which is well defined since p > 0. So

the entries of Bk are bounded by above by max
i,j

pi
pj

.

Let J = XBX−1 be the Jordan normal form of B, and suppose that there is a Jordan block
for eigenvalue λ = 1 of size d ≥ 2. Then:

J =



1 1
1 1

1
. . .
. . . 1

1

B̂


Jk =



1 k
(
k
2

)
· · ·

(
k
d

)
1 k

1
. . .

...
. . . k

1

B̂k


This shows that the entries of Jk can be arbitrarily large, but Jk = XBkX−1 and the entries
of Bk are bounded, so we have a contradiction and λ = 1 must be a semi-simple eigenvalue.

To prove that is simple, assume by contradiction that there exists x, y ∈ Ker(B − I) which are
linearly independent.Then it is possible to choose α, β 6= 0 such that z = αx+βy has one entry
equal to zero.
We have that Bz = z and B |z| ≥ |Bz| = |z|. The proof of Step 1 gives us that there can’t
inequality and necessarily B |z| = |z|. Since B > 0 and |z| ≥ 0, it means that B |z| > 0, which
is absurd because |z| has a zero entry.
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We’ve proved point 4). Point 3) follows easily: let p be the positive eigenvector relative to ρ
and x another generic eigenvector. For corollary ?.16 x must have eigenvalue ρ, but ρ is simple
so x has to be a multiple of p.

Step 4. We will prove point 6). Since 1 is a simple eigenvalue of B, the Jordan normal form
of B is:

J = XBX−1 =

(
1

Ĵ

)
Where Ĵ ∈ C(n−1)×(n−1) and ρ(Ĵ) < 1. This means that the limit of Jk and Ak is

lim
k→∞

Jk =

(
1

0

)
L = lim

k→∞
Bk = X−1

(
1

0

)
X

Which is a matrix of rank one. Furthermore L is the product of the first column of X−1 and
the first row of X, which are eigenvectors p and q> respectively.
This means that L = pq> > 0.

The limit lim
k→∞

Bkx = Lx = pq>x = (q>x)p is a multiple of p by the scalar q>x, as desired.

Step 5. We will prove point 8).

We know that lim
k→∞

(
1

ρ
A

)k
x = lim

k→∞
Bkx = Lx = αp where α is a positive scalar.

From γkA
kx = bk we have

(
1

ρ
A

)k
x =

1

γkρk
bk; since bk(1) = 1, by taking the limit we see that

lim
k→∞

1

γkρk
= αp(1). This implies:

lim
k→∞

bk = lim
k→∞

γkρ
kBkx =

1

α p(1)
αp =

1

p(1)
p

We will present another proof of Perron’s theorem, based on Brouwer’s fixed-point theorem.

Theorem 2.19 (Brouwer’s fixed-point) Let S ⊆ Rn be convex and compact, and let f :
S → S be a continous map. Then there exists a fixed point x ∈ S, i.e. such that f(x) = x.

DA COMPLETARE Apply this theorem to the set of all non-negative vectors Rn
+ ⊆ Rn.

2.4 Non-negative Matrices

Passiamo ora a matrici non negative A ≥ 0

Theorem 2.20 (Frobenius 1) Let A ≥ 0 be a non-negative matrix, and ρ = ρ(A) it’s spectral
radius. Then:

10



1. ρ is an eigenvalue of A

2. There exists right and left non-negative eigenvectors for A.

Proof. DA COMPLETARE Approximate from above with positive matrices.

2.5 Graphs and Frobenius

Definition 2.21 (reducible and irreducible matrix)
A ∈ Rn×n is called reducible if there exists a permutation matrix P that transforms A in a

block triangular matrix: PAP> =

(
B11 B12

0 B22

)
.

If A is not reducible then it’s called irreducible

Proposition 2.22 Let A > 0, A ∈ Rn×n
+ . Then A is irreducibile ⇐⇒ (In +A)n−1 > 0.

Proof. ⇐ If A were reducible, there would exists a permutation P such that PAP> is block
triangular. Write:

P (I +A)n−1P> =(P (I +A)P>)n−1 = (I +(PAP>))n−1 =

= I +

(
n− 1

1

)
(PAP>) +

(
n− 1

2

)
(PAP>)2 + . . .+ (PAP>)n−1

The RHS is the sum of block triangular matrices with the same zero block, this means that
P (I +A)n−1P> has a zero block and thus (I +A)n−1 cannot be a positive matrix.

⇒ Basta dimostrare che (I +A)n−1x > 0 per ogni x ≥ 0. DA COMPLETARE

Definition 2.23 (Associated graph) For every A ∈ Cn×n, we can associate a directed graph
denoted by G(A). It has V = {1, 2, . . . n} as set of vertices, and there is an edge E(i, j) between
vertices i and j if and only if Ai j 6= 0.
A is called the adjacency matrix of G(A).

Proposition 2.24 Let A ≥ 0 and G(A) be its associated graph. For every pair of vertices i, j,
there is a path from i to j of length k if and only if [Ak]i j > 0.
If we construct G(A) as a weighted graph, then [Ak]i j is the sum of all weighted paths from i
to j of length k.

Proposition 2.25 A ∈ Cn×n is irreducible ⇐⇒ it’s associated graph G(A) is strongly
connected

Theorem 2.26 (Frobenius 2) Let A ≥ 0 be an irreducible matrix and let ρ = ρ(A) be its
spectral radius. Then:
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1. ρ > 0 and ρ is an eigenvalue of A

2. ρ is a simple eigenvalue

3. There exists a positive vector p > 0 which is an eigenvector for ρ: Ap = ρ p. Similarly
for the left eigenvalue.

Proof. DA COMPLETARE

Proposition 2.27 Let A ∈ Cn×n and B ∈ Rn×n, B ≥ 0 be matrices such that |A| ≤ B.
Assume also that B is irreducible and ρ(A) = ρ(B). Then necessarily |A| = B.

Proof. By Lappo-Danilevsky’s theorem ?.9, we already know that necessarily ρ(A) ≤ ρ(|A|) ≤
ρ(B). So now assume that ρ(A) = ρ(B) = ρ.
Let µ ∈ C be an eigenvalue of A of maximum absolute value, i.e. |mu| = ρ, and let x be the
corresponding eigenvector, Ax = µx.
By taking the absolute value of this expression, we obtain:

ρ |x| = |ρ x| = |µx| = |Ax| ≤ |A| · |x| ≤ B · |x|

Since B is irreducible, by Frobenius theorem there exists a left positive eigenvector z, such that
z>B = ρz>. Multiplying this by |x| we obtain: z>B|x| = ρz>|x|, so z> (B|x| − ρ|x|) = 0. But
since z> > 0, necessarily the vector B|x| − ρ|x| is zero, so B|x| = ρ|x|. Then |x| is a right
Perron eigenvector for B, so |x| > 0.
Since ρ|x| ≤ |A| |x| ≤ B|x| = ρ|x|, we obtain that B|x| = |A| |x|, so (B − |A|)|x| = 0. Since
B − |A| ≥ 0 and |x| > 0, we have that necessarily B − |A| = 0, so B = |A| as desired.

Corollary 2.28 Let A,B ≥ 0 be matrices such that A ≤ B, A 6= B and B is irreducible.
Then ρ(A) < ρ(B).

Esempio che irriducibilità di B è necessaria. DA COMPLETARE

Definition 2.29 (index of imprimitivitiy) Let G be a directed, strongly connected graph.
The index of imprimitivity of G is k = gcd{Length of closed walk in G}.
If k = 1, then G is called primitive.

Theorem 2.30 Let G = (V,E) be a strongly connected graph, |V | = n and with index of
imprimitivity k. Then:

1. ∀ v ∈ V , k is the gcd of the lengths of all closed walks starting from v.

2. ∀ v, w ∈ V , if there are two walks from v to w of length L1, L2, then L1 ≡ L2 (mod k).

3. V can be partitioned in k disjoint sets V1, V2, . . . , Vk, such that every arc starting from a
vertex in Vi ends in a vertex in Vi+1, with Vk+1 = V1.

4. Take vi ∈ Vi, vj ∈ Vj and a path vi → vj of length L. Then L ≡ j − i (mod k).

12



The vertex sets Vi are called the imprimitivity sets of G.

Forma normale di Frobenius (diagonale a blocchi shiftata) per matrici imprimitive.DA COM-
PLETARE

Proposition 2.31 Let A ∈ Cm×l, B ∈ Cl×m, so AB ∈ Cl×l and BA ∈ Cm×m. Then AB and
BA have the same non-zero eigenvalues with the same multiplicity.

Proof. The following identity holds:(
λ Il−AB A

0 λ Im

)(
Il 0
B Im

)
=

(
λ Il A
λB λ Im

)
=

(
Il 0
B Im

)(
λ Il A
0 λ Im−BA

)
By equating the determinants and using Binet’s formula, we obtain:

det(λ Il−AB) · λm = λl · det(λ Im−BA)

This means that AB and BA have the same characteristic polynomial up to a λm−l factor, and
thus have the same eigenvalues with same multiplicity.

Proposizione sullo shift di autovettori per radice di unità. DA COMPLETARE

Definition 2.32 (Primitive matrix) Let A ≥ 0 be an irreducible matrix. A is primitive if
its associated graph G(A) has index of imprimitivity equal to 1.

In his original work, Frobenius defined primitive matrices to be the ones that don’t have other
eigenvalues of absolute value equal to ρ(A) except ρ itself.

Theorem 2.33 (Schur) Let S ⊆ N, S 6= ∅, such that S is closed under addition. Let d be the
gcd of all elements of S. Then there exists N ∈ N such that td ∈ S ∀ t ≥ N .

Proof. Without loss of generality we can assume that d = 1: we can create a new set with
gcd = 1 by diving all elements of S by d.
DA COMPLETARE

The minimum N that satisfies this condition is called the Schur-Frobenius index of S.

Proposition 2.34 Let G = (V,E) be a strongly connected graph and let k be its index of
imprimitivity. Let V1, . . . Vk be the imprimitivity partition of V . Then there exists N ∈ N
such that for every vertices vi ∈ Vi, vj ∈ Vj and ∀ t ≥ N , there exist a walk vi → vj of length
L = (j − i) + tk.

Proof. DA COMPLETARE

Corollary 2.35 If G is an imprimitive graph, then k = 1 and there exists N ∈ N such that
for every vertices v, w ∈ V , there exists a walk v → w of length L for every L ≥ N .

13



Theorem 2.36 (Equivalent formulation of imprimitive matrix, Frobenius 1912) Let
A ≥ 0 be an irreducible matrix. Then A is primitive ⇐⇒ there exists m such that Am > 0.
Observe that in this case, for every l ≥ m we have Al > 0.

Proof. DA COMPLETARE

Teorema su A ≥ 0 irriducible ma periodica di k, che tutti i suoi blocchi di Ak sono primitivi.

Theorem 2.37 (Frobenius 3) If A ≥ 0 is an irreducible, primitive matrix, then ρ = ρ(A) it’s

the only eigenvalue λ such that |λ| = ρ. Also, there exists the limit of lim
m→∞

(
1

ρ
)A)m

Combining with other Frobenius results for non-negative matrices, we obtain that for a non-
negative, primitive matrix, all properties of original Perron’s theorem hold.

Proof. Sugli appunti è spezzata in due parti DA COMPLETARE

Per le matrici imprimitive di indice k allora lo spettro è simmetrico per rotazioni nel piano
complesso di ω = 2π

k
, contate con molteplicità tranne che per l’autovalore 0. Inoltre ci sono k

autovalori di modulo massimo e sono esattamente ρ(A), ωρ(A), ω2ρ(A), . . . ωk−1ρ(A).

Theorem 2.38 (Wielandt) Let A ≥ 0 be a primitive matrix of size n×n, then surely Am > 0
where m = n2 − 2n+ 2 = (n− 1)2 + 1. This is also the optimal exponent for which it holds.

This results has been strengthened by J.Shan (?), as:

Theorem 2.39 (Shan, LAA 1995) Linear algebra applied
Let A ≥ 0 be a matrix, such that the degree of the minimal polynomial of A is m. Then A is
primitive ⇐⇒ A(m−1)2+1 > 0.

There are other similar results, in which the exponents is bounded depending on the number
of diagonal entries ai i 6= 0.
Parte sull’adjugate-adjoint e dimostrazione di Frobenius del suo teorema.

Theorem 2.40 Let A ∈ Cn×n, φ(λ) = det(λ I−A) be its characteristic polynomial and φi(λ) =
det(λ I−A \ {i, i}) be the characteristic polynomial of A \ {i, i}, the matrix with the ith row
and column removed. Then

φ′(λ) =
n∑
i=1

φi(λ)

Matrici riducibili, e forma normale per esse. Grafo condensato.

Theorem 2.41 (Gantmacher) Let A ≥ 0 written in Frobenius normal form. with A1, . . . , Ag
isolated components and Ag+1, . . . , At the non-isolated ones. Let ρ = ρ(A) be the spectral
radius of A. Then the Perron eigenvector z is strictly positive if and only if both the following
conditions apply:

14



1. ρ is an eigenvalue of every block A1, . . . Ag.

2. ρ is NOT an eigenvalue of any block Ag+1, . . . , At.

Achtung! Questo teorema funziona per autovalori dx ma non sx, va sistemato.

Proof. Note that σ(A) =
t⋃
i=1

σ(Ai), so ρ(Ai) ≤ ρ ∀i.

⇒ Let z > 0 be the Perron eigenvector of A. Then Az = ρz can be written as:Ai zi = ρzi ∀ 1 ≤ i ≤ g
j−1∑
k=1

Aj k zk + Aj zj = ρzj ∀ g + 1 ≤ j ≤ t
(1)

The first g equations tell us that ρ is an eigenvalue for A1, . . . , Ag.
From the other we have that Aj zj ≤ ρzj but surely Aj zj 6= ρzj, since Aj k can’t be 0 for all k.

We obtain that ρ ≥ [Aj zj]i
[zj]i

for all i, or also ρ ≥ max
i

[Aj zj]i
[zj]i

. For theorem ?.14, we have that

max
i

[Aj zj]i
[zj]i

≥ ρ(Aj).

Suppose by contradiction that ρ(Aj) = ρ, this means that the two above inequalities are
equalities, so there exists i such that [Aj zj]i = ρ(Aj) [zj]i. We want to prove that zj is an
eigenvector for Aj.
Recall the proof of ?.14, we used that ρ(B) ≤ max

h
{Rh : sum of kth row of B} where B =

D−1AD and D = diag(z1, . . . , zn). If there was an index k such that [Aj zj]k < ρ(Aj) [zj]k, then
the corresponding row sum Rk < Ri. There would exists a matrix B′ ≥ B with all row sums
equal to Ri, and it would be irreducible since A and thus B are irreducible. By ?.27, this would
mean that Ri = ρ(B) < ρ(B′) = Ri, which is a contradiction.
This means that the for all k, we have [Aj zj]k = ρ(Aj) [zj]k, i.e. zj is an eigenvalue for Aj
relative to ρ(Aj) = ρ. This means that Aj zj = ρzj and this is a contradiction because of
equation 1.

⇐ Assume that ρ is an eigenvalue for A1, . . . , Ag but not for Ag+1, . . . , At. Then we choose the
relative eigenvectors z1, . . . , zg such that Ai = ρzi.
For the other vectors, we need to solve the equation:

(ρ I−Aj) zj =

j−1∑
k=1

Aj k zk ∀ g + 1 ≤ j ≤ t

zj =
1

ρ

(
I−1

ρ
Aj

)−1( j−1∑
k=1

Aj k zk

)
∀ g + 1 ≤ j ≤ t

Which is a positive vector, because Aj is irreducible and thus the following matrix is strictly
positive: (

I−1

ρ
Aj

)−1
= I +

1

ρ
Aj +

(
1

ρ
Aj

)2

+

(
1

ρ
Aj

)3

+ . . .
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Theorem 2.42 Let A ≥ 0, ρ = ρ(A). The following are equivalent:

1. A has both right p and left q> eigenvectors for ρ, with p, q > 0.

2. The Frobenius Normal form of A is block-diagonal, and every block is irreducible.

Remark 2.43 Let A ≥ 0, ρ = ρ(A). If ρ is a simple eigenvalue and A has both right and left
positive eigenvectors for ρ, then A is irreducible.

Ultimo teorema

3 Related Matrix Classes

3.1 Z and M matrices

Definition 3.1 (essentially positive and non-negative matrix) Let A ∈ Rn×n, then:

• A is essentially non-negative if the off-diagonal entries are non-negative: ∀ i 6= j aij ≥ 0.

• A is essentially positive if is essentially non-negative and also irreducible.

Observe that if A ≥ 0 implies essential non-negativity and also A > 0 implies essential positivity.
Also, if A has all non diagonal entries strictly greater than 0, then A is essentially positive;
however, we chose to include a larger set of matrices in this definition.

Proposition 3.2 Let A be an essentially non-negative matrix. Then there exists a real
eigenvalue λ∗ of A such that for every eigenvalue λ ∈ σ(A), λ∗ ≥ Re(λ).

Proof. Since A is essentially non-negative, it’s off-diagonal entries are non-negative, but the
diagonal ones could be less than 0. Take α = max

1≤i≤n
|ai i|, then surely A+ α I is a non-negative

matrix. Then for Frobenius theorem we have ρ(A+ α I) = ρ is an eigenvalue of A+ α I.
Every eigenvalue λA+α I of A+α I corresponds to an eigenvalue λA of A such that λA+α I = λA+α.
So using the eigenvalue ρ, we obtain ρ = λ∗ + α; we claim that λ∗ is the eigenvalue we’re
searching for.
Take λA and λA+α I two corresponding eigenvalues, then ρ ≥ |λA+α I|, which implies:

λ∗ + α = ρ ≥ |λA+α I| ≥ Re(λA+α I) = Re(λA + α) = Re(λA) + α

From which we obtain λ∗ ≥ Re(λA), as desired.

Observe that transforming A to A+α I corresponds to shift the eigenvalues in the complex plane
by α. λ∗ is the ”rightmost” eigenvalue, so shifting by α can make it the farthest point from the
origin and thus the spectral radius ρ(A+α I), but λ∗ itself doesn’t have to be the spectral radius

of A. As an example take A =

−1 1 0
0 −1 1
1 0 −1

, it’s eigenvalues are λA = {0, −3+
√
3i

2
, −3−

√
3i

2
},

we have λ∗(A) = 0 but ρ(A) = 3.

Theorem 3.3 (Varga) Let A ∈ Rn×n. A is essentially positive ⇐⇒ ∀ t > 0 we have etA > 0.
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Proof. ⇒ Assume that A is essentially positive. Then it’s irreducible and the non diagonal
entries are non-negative. Take α0 = max

1≥i≥n
|ai i|, then for α > α0 the matrix A + α I is non-

negative, irreducible; its diagonal entries are all positive, so A+ α I is also primitive.
Since it’s primitive, it follows that (A + α I)k is non-negative for k ≥ 0 and is positive for k
sufficiently large. We can write et(A+α I) = I +t(A+α I)+ t2

2
(A+α I)2 + t3

3!
(A+α I)3 + . . ., which

means that et(A+α I) is positive ∀ t > 0 and ∀α > α0.
Observe that etA = et(A+α I) · e−tα where e−tα is a positive real number for all t and α. This
means that also etA is a positive matrix.

⇐ We need to prove that A is essentially positive, i.e is irreducible and with non-negative
off-diagonal entries. Write etA = I +tA+ t2

2
A2 + t3

3!
A3 + . . .

A is irreducibile. Suppose not, then exists a permutation matrix P such that PAP> is block
upper triangular; also (PAP>)k = PAkP> and PetAP> = etPAP

>
is the sum of block upper

triangular matrices (with the same zero block), so PetAP> is block upper triangular and cannot
be a positive matrix. Hence a contradiction.
If there exist ai j < 0 with i 6= j; for small t we have etA = I +tA + O(t2), so the [etA]i j =
tai j + O(t2). This means that for t small enough [etA]i j < 0, which is a contradiction. This
means that A is essentially non-negative.

The definition of essentially positive is useful in the solution of linear systems x′(t) = Ax(t)
with initial condition x(0) = x0. The solution is x(t) = etAx0; if A is essentially positive and
x0 ≥ 0, we have x(t) ≥ 0 ∀ t > 0. This has application, for example, in the heat equation.

Definition 3.4 (Z-matrix) A ∈ Rn×n is called a Z-matrix if it’s off-diagonal entries are non
positive: ∀ i 6= j we have ai j ≤ 0.

Remark 3.5 A is a Z-matrix if and only if −A is an essentially non-negative matrix.

Definition 3.6 (monotone matrix) A ∈ Rn×n is monotone if A is non-singular and it’s
inverse A−1 is a non-negative matrix, i.e. A−1 ≥ 0.

Theorem 3.7 Let A ∈ Rn×n be a non-singular matrix. Then A is monotone if and only if the
following condition holds: ∀x, y ∈ Rn, Ax ≥ Ay implies x ≥ y.

Proof. ⇒ Assume A monotone, then A−1 ≥ 0 and multiplying both sides of Ax ≥ Ay we get
A−1Ax ≥ A−1Ay, so x ≥ y.

⇐ Write A−1 columnwise, let cj be the jth column of A−1. Looking at the jth columnt of
the product A · A−1 = I we obtain Acj = ej, which has all entries 0 except the jth, so is a
non-negative vector. So we have 0 = A0 ≤ Acj, and if we apply the hypotesis we obtain that
0 ≤ cj. This is true for all columns cj, so it means that A−1 is a non-negative matrix.

Definition 3.8 (M-matrix) A ∈ Rn×n is a M-matrix if it can be written in the following
form: A = r I−B, where B ≥ 0 is a non-negative matrix and r ≥ ρ(B).
If we have strict inequality r > ρ(B), then A is called non-singular M-matrix.
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Remark 3.9 If A is a Z-matrix, for each r ∈ R it can be written in the form A = rI − B,
with ai i = r − bi i. The off-diagonal entries of B are bi j = −ai,j ≥ 0, and the diagonal entries
bi i = r − ai i are non-negative if r ≥ ai i ∀ i. So a Z-matrix can be always written in the form
rI −B with B ≥ 0, but it could be that ρ(B) < r, so A could not be a M-matrix. For example
take A = − I; write A = r I−B, then B = (r + 1) I and ρ(B) = r + 1 > r for all r ∈ R.

Remark 3.10 A is a (non-singular) M-matrix if and only if A> is a (non-singular) M-matrix.

Theorem 3.11 (ZM 1) Let A ∈ Rn×n be a Z-matrix. Then A is a non-singular M-matrix
⇐⇒ A is monotone.

Proof. ⇒ Since A is a non-singular M-matrix, it can be written as A = r I−B. It’s inverse is

A−1 = (I−rB)−1 = 1
r
(I−1

r
B)−1; since ρ(B) < r, we have ρ(1

r
B) < 1 and so we

(
1
r
B
)k −→

k→∞
0,

so the power series is convergent: A−1 = 1
r
(I−1

r
B)−1 = 1

r

(
I +
(
1
r
B
)

+
(
1
r
B
)2

+ . . .
)

Each term is non-negative so their sum is also non-negative.

⇐ As noted in ?.9, a Z-matrix can be written in the form A = r I−B with B ≥ 0. Suppose
by contradiction that for a such decomposition, r ≤ ρ(B). Applying Frobenius theorem to B
we obtain that ρ(B) is an eigenvalue of B, so r − ρ(B) is an eigenvalue of A with positive
eigenvector p > 0 (which is the Perron eigenvector of B).
If r = ρ(B), then A has eigenvalue 0, which is impossibile since we assumed A monotone and
thus non-singular.
If r < ρ(B), then Ap = (r I−B)p = (r−ρ(B))p < 0 because p > 0 as a vector and r−ρ(B) < 0
as scalar. Since A is monotone, A−1 > 0 and A−1Ap < A−10, so p < 0 which is a contradiction.
So the only remaining possibility is r > ρ(B), which implies that A is a non-singular M-
matrix.

Corollary 3.12 f A is non-singular M-matrix, then for every decomposition A = r I−B with
B ≥ 0, necessarily r > ρ(B).
Indeed for the ⇒ part of the above theorem, A being a non-singular M-matrix implies that A
is monotone. Applying the ⇐ part proof we obtain that every decomposition with B ≥ 0 has
r > ρ(B).

Proposition 3.13 Let A ∈ Rn×n be a singular, irreducible M-matrix. Then rank(A) = n− 1
and for every decomposition A = r I−B with B ≥ 0, necessarily r = ρ(B).

Proof. Since A is a M-matrix, there exists a decomposition A = r0 I−B0 with r0 ≥ ρ(B0). Since
A is singular 0 ∈ σ(A); this means there exists an eigenvalue λ0 ∈ σ(B) such that r0 − λ0 = 0.
Since |λ0| ≤ ρ(B0) ≤ r0, we obtain that necessarily λ0 = ρ(B0) = r0.
Take another decomposition A = r I−B with B ≥ 0. Then r I−B = r0 I−B0, or equivalently
B = B0 + (r − r0) I. This means that the eigenvalues of B are shifted by r − r0 compared to
the eigenvalues of B0. So λ = ρ(B0) + r − r0 is an eigenvalue of B, and is the maximum real
eigenvalue. Since B ≥ 0, for Frobenius theorem ρ(B) is an eigenvalue and it’s the maximum
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real eigenvalue, so necessarily ρ(B) = ρ(B0) + r − r0 = r since ρ(B0) = r0.

We have proved that for every decomposition A = r I−B with B ≥ 0, necessarily ρ(B) = r.
Now we will prove that rank(A) = n− 1. B ≥ 0 is also irreducible, thus for Frobenius theorem
ρ(B) is a simple eigenvalue of B, hence 0 = r − ρ(B) is a simple eigenvalue of A. This implies
that rank(A) = n− 1.

By combining the two above statements, we make the following conclusion: A is a Z-matrix,
then by taking any decomposition A = r0 I−B0 with B0 ≥ 0, we can have only one of the
following possibilities:

1. r0 > ρ(B0) and A is a non-singular M-matrix.

2. r0 = ρ(B0) and A is a singular M-matrix.

3. r0 < ρ(B0) and A is not a M-matrix.

For every other decomposition A = r I−B, r must be greater/equal/less than ρ(B) according
to the same case as above for r0 and ρ(B0).

Remark 3.14 Dice cose che A è M-matrice, allora ai i ≥ 0. Se è NSMM, allora > 0. DA
COMPLETARE Perché lo fa anche dopo

3.2 A lot of equivalences

Theorem 3.15 (ZM 2 irreducible) Let A ∈ Rn×n be a Z-matrix. Then the following are
equivalent:

1. A is an irreducible non-singular M-matrix.

2. A−1 > 0.

Proof. 1 ⇒ 2

Write A = r I−B with r > ρ(B). Then A−1 = (r I−B)−1 = 1
r

(
I +
(
1
r
B
)

+
(
1
r
B
)2

+ . . .
)

Since for irreducibility we need to check only if off-diagonal entries are 0 or 6= 0, it follows
that also B is irreducible. If B is primitive then for sufficiently large m, we have Bm > 0
and thus also A−1 > 0. If B is impritive of index k, write it a Frobenius canonical form with
primitive blocks B1 . . . Bk. It can be seen that the above sum cannot have zero entries. DA
COMPLETARE

2 ⇒ 1 By theorem ?.11, A is a non-singular M-matrix. If A = r I−B were reducible, then also
B would be reducible and it could be written by a permutation P in a block triangular form:

PBP> =

(
B1 1 B1 2

0 B2 2

)
. Thus we se that A−1 = 1

r

(
I +
(
1
r
B
)

+
(
1
r
B
)2

+ . . .
)

has to be in the

same block triangular form, and cannot be a positive matrix.
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Remark 3.16 A is an irreducible non-singular M-matrix, then −A is essentially positive.

We see that it’s just a matter of notation choosing to use ”Z- and M-matrices” opposed to
”essentially positive and non-negative matrices”. We’ll use mostly the former approach.

Definition 3.17 (stable positive-stable matrix) A ∈ Cn×n is a positive-stable matrix if for
any eigenvector λ ∈ σ(A), we have Re(λ) > 0.
A ∈ Cn×n is a stable matrix if for any eigenvector λ ∈ σ(A), we have Re(λ) < 0.

Observe that A is stable if and only if −A is positive-stable. The term stability comes from
the solution of differential equations like x′(t) = Ax, in which the orbit always converges to 0
if A is stable.

Proposition 3.18 Let A ∈ Rn×n be a non-singular M-matrix, then A is positive-stable.

Proof. Write A = r I−B with r > ρ(B) ≥ |λB| ≥ Re(λB) for every eigenvalue λB ∈ σ(B).
Since every λA ∈ σ(A) is related as λA = r − λB, we have that Re(λA) = Re(r − λB) =
r −Re(λB) > 0, as desidered.

Proposition 3.19 Let A ∈ Rn×n be a Z-matrix with Re(λ) ≥ 0 for every eigenvalue λ ∈ σ(A).
Then A is a M-matrix.

Proof. Write A = r I−B with B ≥ 0, we need to prove that r ≥ ρ(B). For Frobenius theorem
B has eigenvalue ρ(B), and let λA = r − ρ(B) be its associated eigenvalue.
Using the hypothesis we obtain 0 ≤ Re(λA) = Re(r − ρ(B)) = r − ρ(B), which implies
r ≥ ρ(B).

DA COMPLETARE unire i due statement sopra in un teorema

Definition 3.20 (Stieltjes matrix) A symmetric non-singular M-matrix is called a Stieltjes
matrix

Remark 3.21 The class of M-matrix is not closed under addition

Proposition 3.22 Let A,B ∈ Rn×n be monotone matrices such that A ≤ B.
Then A−1 ≥ B−1 ≥ 0.

Proof. Non dimostrato.

Theorem 3.23 (ZM 4) Let A ∈ Rn×n be a Z-matrix. Then the following are equivalent:

1. A is a non-singular M-matrix.

2. Every principal minor of A is positive.
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Proof. 1 ⇒ 2
Write A = r I−B, with B ≥ 0 and r > ρ(B). We will prove two propositions:
Step 1 det(A) > 0.
We can write det(A) =

∏
λi(A). Since A ∈ Rn×n, the complex eigenvalues λi(A) will come

in conjugate pairs λ, λ with real part greater than 0 for proposition ?.18. This implies that
λ · λ > 0. Similarly, the real eigenvalues of A will be already positive also for proposition ?.18.
This implies that their product det(A) is a positive number.

Step 2 Every principal submatrix Ã of A is a non-singular M-matrix.
We can write Ã = r I−B̃ where B̃ is the corresponding submatrix of B. For ?.9 we have
ρ(B̃) ≤ ρ(B) < r, so also Ã is a non-singular M-matrix.

Finally, we can see that every principal minor of A is the determinant of a principal submatrix
Ã. For step 2, Ã is a non-singular M-matrix, and for step 1 we have det(Ã) > 0.

2 ⇒ 1 We will prove this by induction on n.

For n = 1 it’s trivial. For n = 2, A is a Z-matrix so it can be written as A =

(
a1 1 −a1 2
−a2 1 a2 2

)
with

a1 2, a2 1 ≥ 0. The hypothesis is that a1 1, a2 2 > 0 and det(A) = a1 1a2 2 − a1 2a2 1 > 0. Write

explicitly the inverse A−1 = 1
detA

(
a2 2 a2 1
a1 2 a1 1

)
, we can se that A−1 ≥ 0 so A is a monotone

matrix. Then for theorem ?.11 A is a non-singular M-matrix.

Assume now that the thesis is true for n − 1 and let’s prove it for n. Write A = An in block
form of dimension n− 1, 1:

An =

(
An−1 −c
−b> ann

)
Since An is a Z-matrix, c, b > 0 are positive vectors and An−1 is a Z-matrix too. For hypothesis
all principal minors of An are positive, so all positive minors of An−1 are positive too and by
inductive hypothesis we can conclude that An−1 is a non-singular M-matrix. For theorem ?.11
this implies that An−1 is monotone, i.e. A−1n−1 ≥ 0.
Write the following block factorization of An:

An =

(
An−1 −c
−b> ann

)
=

(
In−1 0

−b>An−1 1

)(
An−1 −c

0 σ

)

With σ = ann− b>A−1n−1c. Since det(An), det(An−1) > 0 for hypothesis, from the above factori-
zation and Binet’s theorem we obtain det(An) = det(An−1) · σ, and thus σ > 0. Write now the
inverse of An in block form:

A−1n =

(
An−1 −c

0 σ

)−1(
In−1 0

−b>An−1 1

)−1
=

(
A−1n−1

1
σ
A−1n−1c

0 1
σ

)(
In−1 0

b>An−1 1

)
Since A−1n−1, b, c, σ are all positive, this implies that A−1n ≥ 0, thus An is monotone and by
theorem ?.11, An is a non-singular M-matrix.
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Theorem 3.24 (LU factorization for M-matrices)
Let A ∈ Rn×n be a non-singular M-matrix. Then there exists matrix L,U such that: A = LU ,
L is lower triangular, U is upper triangular, both L and U have non-positive off-diagonal entries
and positive diagonal entries.
This factorization is in general non unique, but it becomes so if we require that the diagonal
entries of L are all 1.

Proof. As in theorem ?.23, write An in block triangular factorization:

An =

(
An−1 −c
−b> ann

)
=

(
In−1 0

−b>An−1 1

)(
An−1 −c

0 σ

)
By using induction on An−1 we obtain an LU factorization with all diagonal entries of L equal
to 1.

Proposition 3.25 Let A ∈ Rn×n be a (lower or upper) triangular matrix, with all diagonal
entries > 0 and off-diagonal ≤ 0. Then A is a non-singular M-matrix.

Proof. We will prove the proposition for A upper triangular, as the other case is similar.
Write A = D − U where D is diagonal, D > 0, and U is strictly upper triangular (i.e it’s
diagonal entries are zero) and U ≥ 0.
Note that U is nilpotent with Un = 0; also call B = D−1U is also nilpotent and Bn = 0.
Since det(A) = det(D) > 0, A is non-singular and we can write the inverse:

A−1 = (D − U)−1 = (D (I −D−1U) )−1 = (I −B)−1D−1 = (I +B +B2 + . . .+Bn−1)D−1

Observe that ρ(B) = 0 and thus not only (I −B)−1 exists, but when written as a power series
it’s a finite sum since B is nilpotent.
We can see that the RHS of the above formula is non-negative, so A−1 ≥ 0 and by theorem
?.11 we obtain that A is a non-singular M-matrix.

Proposition 3.26 Let A be a Z-matrix and suppose A is also diagonally dominant. Then A
is a non-singular M-matrix.

Proof. By Gershgorin’s theorems we know that A is non-singular and all it’s eigenvalues lie on
the right half of the complex plane, i.e. Re(λ) > 0 ∀λ ∈ σ(A).
By theorem ?.19 we obtain that A is a non-singular M-matrix.

Theorem 3.27 (Schur’s complement is a non-singular M-matrix)
Let A ∈ Rn×n be a non-singular M-matrix. Write it in a block form:

A =

(
A1 1 A1 2

A2 1 A2 2

)
With A1 1 and A2 2 square matrices. Then A1 1, A2 2 and the Schur’s complement of A, defined
as S = A2 2 − A2 1A

−1
1 1A2 1, are all three non-singular M-matrices.
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Proof. Clearly A1 1 and A2 2 are Z-matrices since they have the same diagonal and off-diagonal
elements of A. Since A is a non-singular M-matrix it can be written as A = r I−B with
r > ρ(B); then by writing A1 1 = r I−B̂ with B̂ a principal submatrix of B, we have ρ(B̂) ≤
ρ(B) < r, so A1 1 is a non-singular M-matrix. The proof for A2 2 is analogous.
We have then that A1 1 and A2 2 are non singular. It is possibile to factorize A as follows:

A =

(
I 0

A2 1A
−1
1 1 I

)(
A1 1 A1 2

0 S

)

These two matrices are non-singular, so also S is non-singular and invertible.
Now we can write A−1 as a product of the inverses of the above matrices:

A−1 =

(
A1 1 A1 2

0 S

)−1(
I 0

A2 1A
−1
1 1 I

)−1
=

(
A−11 1 −A−11 1A1 2S

−1

0 S−1

)(
I 0

−A2 1A
−1
1 1 I

)

Calculate the last block of this matrix product (we do not care about the other blocks):

A−1 =

(
∗ ∗
∗ S−1

)

Since A is a non-singular M-matrix, A is monotone and A−1 ≥ 0, this means that also S−1 ≥ 0,
so S is a monotone matrix.
Now we prove that S is also a Z-matrix. S = A2 2 −A2 1A

−1
1 1A2 1; Since A2 1 and A1 2 are blocks

that do not contain any diagonal of A, all they entries are ≤ 0 since A is a M-matrix. A−11 1 ≥ 0
since A1 1 is a non-singular M-matrix, so all these observations imply A2 1A

−1
1 1A2 1 ≥ 0. This

means that S is formed by a Z-matrix A2 2 from which be subtract a non-negative matrix, so
S is also a Z-matrix.
Since S is a Z-matrix and monotone, from theorem ?.11 we obtain that is also a non-singular
M-matrix.

Observe that we can further expand the factorization for A:

A =

(
A1 1 A1 2

A2 1 A2 2

)
=

(
I 0

A2 1A
−1
1 1 I

)(
A1 1 0

0 S

)(
I A−11 1A1 2

0 I

)
If A is a symmetric, positive-definite matrix, then the Schur’s complement S is also symmetric

and positive-definite. Indeed, we have that
(
A2 1A

−1
1 1

)>
= A−11 1A1 2 and the above is a congruence

relation. This implies that

(
A1 1 0

0 S

)
is a symmetric positive-definite matrix and so also S

is.

Proposition 3.28 Se A è non-singular M-matrix, allora ogni sottomatrice principale di A è
non-singular M-matrix. Inoltre se B ≥ A è sempre Z-matrix, allora anche B è non-singular
M-matrix. La seconda cosa corrisponde ad aumentare i valori diagonali, oppure a diminuire in
modulo i valori fuori diagonale che sono negativi. DA COMPLETARE
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Definition 3.29 Let A ∈ Cn×n, a difference decomposition A = M −N is called a splitting if
M is a non-singular matrix.
If we have that ρ(M−1N) < 1, then it’s called a convergent splitting

DA COMPLETARE Inserire esempio con il metodo del punto fisso

Definition 3.30 Let A ∈ Rn×n, a splitting A = M −N is called:

• regular if M−1 ≥ 0 and N ≥ 0.

• weak regular if M−1 ≥ 0 and M−1N ≥ 0.

Remark 3.31 Regular splitting ⇒ weak regular splitting

Theorem 3.32 (Ortega, Varga) Let A ∈ Rn×n and A = M −N be a weak regular splitting.
Then the following are equivalent:

1. A is monotone.

2. The splitting is convergent, i.e. ρ(M−1N) < 1

Proof. 1 ⇒ 2
Call T = M−1N , by hypothesis T ≥ 0. Note that I − T = M−1M −M−1N = M−1A, so
(I − T )A−1 = M−1 which is ≥ 0 still by hypothesis.Also A−1 ≥ 0 because A is monotone.
Consider the following expression:

(I+T+T 2+. . .+Tm)M−1 = (I+T+T 2+. . .+Tm)(I−T )A−1 = (I−Tm+1)A−1 = A−1−Tm+1A−1

Let us call Sm =
m∑
k=0

T k, then from the leftmost expression we obtain that SmM
−1 ≥ 0 since

it’s a product of non-negative matrices, and from the rightmost we obtain that SmM
−1 =

A−1−Tm+1A−1 ≤ A−1 since both T,A−1 ≥ 0, so we’re subtracting a positive matrix from A−1.
So for all m ∈ N we obtain 0 ≤ Sm ≤ MA−1. This means that the sequence of partial sums

of non-negative matrices Sm =
m∑
k=0

T k is bounded, so it must converge to some matrix in Cn

(because each term T k ≥ 0). This means that lim
m→∞

Tm = 0, which is possible only if ρ(T ) < 1,

which is what we wanted to prove.

2 ⇒ 1 Assume that ρ(M−1N) = ρ(T ) < 1.
Note thatM−1A = I−M−1N ; since ρ(M−1N) < 1, then 0 cannot be an eigenvalue of I−M−1N ,
so M−1A is non-singular and thus A is invertible.
From M−1A = I − T we obtain that M−1 = (I − T )A−1 and M−1(I − T )−1 = A−1. Write

(I − T )−1 as
∞∑
k=0

T k (the limit exists since ρ(T ) < 1), so A−1 =

(
∞∑
k=0

T k
)
M−1 is a product of

non-negative matrices, thus A−1 ≥ 0 and A is monotone.

Theorem 3.33 (ZM 5) Let A ∈ Rn×n be a Z-matrix. The following are equivalent:
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1. A is a non-singular M-matrix.

2. A has a convergent, weak splitting

Proof. Since A is a Z-matrix, then it can be written as A = r I−B with B ≥ 0. By taking
M = r I and N = B, we obtain a regular splitting for A, since M−1 = 1

r
I > 0 and N = B ≥ 0,

thus it’s also a weak regular splitting.

1 ⇒ 2 If A is a non-singular M-matrix, then r > ρ(B) and M−1N = 1
r
B has spectral radius

ρ(1
r
B) < 1. This means that the splitting is convergent.

2 ⇒ 1 A has a convergent weak regular splitting, then by theorem ?.32 it follows that A is
monotone. Combining this with the fact that A is a Z-matrix we obtain by theorem ?.11 that
A is a non-singular M-matrix.

DA COMPLETARE Considerazioni su Jacobi e Gauss-Seidel

Theorem 3.34 (ZM 6) Let A ∈ Rn×n be a Z-matrix. The following are equivalent:

1. A is a non-singular M-matrix.

2. A+ I is non-singular. Define G = (A+ I)−1(A− I), we have ρ(G) < 1.

Proof. 1 ⇒ 2
Consider the function ϕ : C \ {−1} → C \ {1}, ϕ(z) = z−1

z+1
. ϕ is a biolomorphic map between

the right half-plane H = {z|Re(z) > 0} and the disk D = {z| |z| < 1}.
When viewed as matrix function, we have φ(A) = G and there is a relation between eigenva-

lues: λi(G) =
λi(A)− 1

λi(A) + 1
. Since A is a non-singular M-matrix, its eigenvalues λi(A) ∈ H and

so λi(G) = ϕ(λi(A)) ∈ D, i.e. |λi(G)| < 1.

2 ⇒ 1 DA COMPLETARE

Theorem 3.35 (General conditions for non-singular M-matrices)
Let A ∈ Rn×n with n ≥ 2. The following are equivalent:

1. A is a non-singular M-matrix.

2. ∀ D non-negative diagonal matrix, A+D is a monotone matrix.

3. ∀α ≥ 0, A+ αI is a monotone matrix.

4. Every principal submatrix of A is monotone

5. Every principal submatrix of A of size 1,2,n is monotone.
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Proof. We immediatly see that 2 ⇒ 3 and 4 ⇒ 5, as the latter are special cases of the former.
We already saw in theorem ?.23 that if A is a non-singular M-matrix, then every principal
minor of A is positive, so 1 ⇒ 4.

1 ⇒ 2 Let D be a non-negative diagonal matrix and A is a non-singular M-matrix. Then A+D
is certainly a Z-matrix, since its off-diagonal entries are still ≤ 0. Let dmax be the maxium entry
of D, then dmax I−D ≥ 0. Since A is a non-singular M-matrix, we can write it as A = r I−B
with r > ρ(B).

A+D = r I−B +D = (r + dmax) I−(B + dmax I−D)

This gives us a Z-matrix splitting for A+D, since B + dmax I−D ≥ 0. If we prove that A+D
is a non-singular M-matrix, then by theorem ?.11 we will obtain that A+D is monotone.
We have B + dmax I−D ≤ B + dmax I, then by theorem 9 and using that B ≥ 0 we obtain
ρ(B + dmax I−D) ≤ ρ(B + dmax I) = ρ(B) + dmax. This is exactly what we needed to prove
that A+D is a non-singular M-matrix.

3 ⇒ 1 By taking α = 0, we obtain that A is a monotone matrix. We want to prove that A is
also a Z-matrix. Assume by contradiction that there exists ai j > 0 with i 6= j.
Take β > 0 small enough such that ρ(βA) < 1. Then I + βA is invertible, its inverse can
be written as a power series and (I +βA)−1 = I − βA + O(β2), then the i, jth component of
(I +βA)−1 is approximately −βai j < 0. This means that (I +βA) is not monotone, and neither
is 1

β
(I +βA) = 1

β
I +A, which is a contradiction.

5 ⇒ 1 The principal submatrices of size one are the diagonal entries ai i, it’s inverse is 1
ai i

and
is non-negative because the submatrix is monotone; this means that ai i ≥ 0 ∀ i.
Now let’s prove that A is a Z-matrix, so take i 6= j and we want to show that ai j, aj i ≤ 0.
Take the size 2 principal submatrix given by ith, jth row an column,

B =

(
ai i ai j
aj i aj j

)
We can explicitly write the inverse B−1, which is non-negative for the hypothesis:

B−1 =
1

det(B)

(
aj j −ai j
−aj i ai i

)
=

1

ai i aj j − ai j aj i

(
aj j −ai j
−aj i ai i

)
≥ 0

By looking at the diagonal entries we have that ai i
det(B)

≥ 0 and since ai i ≥ 0, we obtain that

det(B) > 0. Now by looking at the off-diagonal entries, we have
−ai j
det(B)

≥ 0 and thus ai j ≤ 0.

Finally, we have that A−1 ≥ 0 still from the hypothesis; combined with the fact that A is a
Z-matrix, we obtain that A is a non-singular M-matrixfor theorem ?.11.

Ci starebbe anche fare un mega teorema ZM che raccoglie tutti i se e solo se detti in precedenza
DA COMPLETARE
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We have obtained a lot of properties for non-singular M-matrices, so let’s see how these results
can be applied to (singular) M-matrices.

Theorem 3.36 (M-matrix is the limit of non-singular M-matrices)
Let A ∈ Rn×n be a Z-Matrix. The following are equivalent:

1. A is a M-matrix.

2. A+ ε I is a non-singular M-matrix for every ε > 0.

Proof. 1 ⇒ 2
A is a M-matrix, so it can be written as A = r I−B with r ≥ ρ(B) adn B ≥ 0. This means
that A+ ε I = (r + ε) I−B has r + ε > r ≥ ρ(B), and so is a non-singular M-matrix.

2 ⇒ 1
As a Z-matrix, A can be written as A = r I−B with B ≥ 0. Then A + ε I = (r + ε) I−B is
a non-singular M-matrix, and we have showed that for every decomposition of this form with
B ≥ 0, necessarily r + ε > ρ(B). By taking the limit ε→ 0, we obtain that r ≥ ρ(B).

We have obtained that a singular M-matrix can be always viewed as limit of non-singular M-
matrices. This means that a lot of theorems proved for non-singular M-matrices are valid even
for singular M-matrices, changing strict inequalities > with ≥ when needed.

Theorem 3.37 (Z-matrix is a M-matrix when...)
Let A ∈ Rn×n be a Z-matrix. The following are equivalent:

1. A is a M-matrix.

2. Every principal minor of A (including det(A)) is ≥ 0

3. Every eigenvalue of A, λ ∈ σ(A) satisfies Re(λ) ≥ 0. (A is positive semi-stable)

4. Every non-zero eigenvalue λ ∈ σ(A) satisfies Re(λ) > 0.

5. Every real eigenvalue of A is non-negative: λ ∈ R⇒ λ ≥ 0.

6. For every positive diagonal matrix D, A+D is non-singular.

7. ∀α > 0, A+ α I is non-singular.

8. There exists a P permutation, L lower triangle and U upper triangle matrices such that
the diagonal entries of L and U are non-negative and PAP> = LU

9. A+ I is non-singular. Define G = (A+ I)−1(A− I), we have ρ(G) ≤ 1

Proof. We will not prove it :(

The following is an analogous of theorem ?.35 for general M-matrices.

Theorem 3.38 (General conditions for M-matrices)
Let A ∈ Rn×n. The following are equivalent:
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1. A is a M-matrix.

2. A+D is monotone for every diagonal D with positive diagonal entries.

3. A+ α I is monotone for every α > 0

Proof. We will not prove it :(

3.3 Property c

Definition 3.39 Let A ∈ Cn×n. The index of A is the smallest integer k ∈ N sucht that
rank(Ak) = rank(Ak+1). It will be denoted by index(A)

Remark 3.40 The index is the size of the largest Jordan block of A relative to eigenvalue 0.

Remark 3.41 A is non-singular ⇐⇒ the index of A is 0.

Definition 3.42 Let A ∈ Rn×n be a M-matrix. We say that A has property c if there exists

s ∈ R, s > 0 such that A = s I−B with B ≥ 0 and such that T =
1

s
B is convergent.

We recall that T is convergent if there exists the limit lim
m→∞

Tm = B ∈ Cn×n, and that T is

zero-convergent if such limit is zero.

Remark 3.43 If A is a non-singular M-matrix, then A has property c.

Indeed, write A = r I−B, with r > ρ(B). By taking s = r we have T =
1

r
B has ρ(T ) < 1, so

T is zero-convergent.

Not every M-matrix has property c. Take for example A =

(
0 −1
0 0

)
. Since A + ε I is a non-

singular M-matrix, then by theorem ?.36 we have that A is a M-matrix. For every s > 0,

A = s I−
(
s 1
0 s

)
, and we can easily see that the powers of 1

s
B =

(
1 1

s

0 1

)
diverge.

Cose sul caso opposto, DA COMPLETARE

Theorem 3.44 Let A ∈ Rn×n be a M-matrix. Then the following are equivalent:

1. A has property c.

2. index(A) ≤ 1.

Proof. 1 ⇒ 2 Write A = s I−B as the splitting given by property c, then T = 1
s
B is convergent.

Let J be the Jordan Normal form of T , it has a block (possibly of size 0) of eigenvalues equal
to 1, no other eigenvalues of absolute size 1, and the other eigenvalues have |λ| < 1.
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T = XJX−1 = X

(
I 0
0 K

)
X−1

With ρ(K) < 1. Then A = s(I − T ):

A = sX(I − J)X−1 = sX

(
I − I 0

0 I −K

)
X−1 = X

(
0 0
0 s(I −K)

)
X−1

Since ρ(K) < 1, s(I −K) is non singular and thus A has eigenvalues 0 only in the upper left
block, which means that index(A) ≤ 1.

2 ⇒ 1 If index(A) = 0, then A is a non-singular M-matrix; by the above remark A has property
c.
If index(A) = 1, write A = s I−B with B ≥ 0 and s = ρ(B). By Perron-Frobenius, T = 1

s
B

has spectral radius ρ(T ) = 1.
By theorem ?.37 and the fact that Re(λB) ≤ s for every eigenvalue of B, we obtain that
0 ≤ λA ≤ s for every λA ∈ σ(A).
Write A in its Jordan Normal form:

A = XJX−1 = X

(
0 0
0 K

)
X−1

With 0 < λK ≤ s for every λK ∈ σ(K). Let T =
1

s
B = I−1

s
A; change to the base given by X:

T = X

(
I−1

s
J

)
X−1 = X

(
I 0
0 I−1

s
K

)
X−1

DA COMPLETARE e sistemare tutto :(

Theorem 3.45 Let A ∈ Rn×n be a singular, irreducible M-matrix. Then:

1. rank(A) = n− 1

2. A has property c.

3. Every principal submatrix of A (escluding A itself) is a non-singular M-matrix.

Proof. DA COMPLETARE

Remark 3.46 Corollario che se A è singular irreducible M-matrix, esiste una fattorizzazione
LU con diag(L)=(1,1,...1) e diag(U) = (u1, u2 . . . un−1, 0). DA COMPLETARE
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3.4 Generalized inverses

A matrix A if invertible if and only if is square and is non-singular, in this case A ·A−1 = I. It
is possible to generalize this notion to singular or non-square matrices, by requiring that some
cancellation laws can be applied to the matrix and its pseudoinverse.

Definition 3.47 (Inner and outer inverse) Let A ∈ Cn×n, then X ∈ Cn×n is called an

• Inner inverse or {1}-inverse if AXA = A.

• Outer inverse or {2}-inverse if XAX = X.

If X is both inner and outer inverse, it is called also a {1,2}-inverse.
There are many matrices that are the {1,2}-inverse of A, but we can add other conditions to
have uniqueness, obtaining the:

Definition 3.48 (Moore-Penrose pseudoinverse) Let A ∈ Cn×n. Then there exists and
it’s unique a matrix X such that:

1. AXA = A.

2. XAX = X.

3. (AX)H = AX.

4. (XA)H = XA.

The first two are the inner-outer inverse conditions, while the last two require AX,XA to be
Hermitian. The Moore-Penrose pseudoinverse is usually denoted by A+. It can be defined also
through the singular-value decomposition. It exists and is unique also for non-square matrices
A ∈ Cm×n.

DA COMPLETARE Serve davvero irriducibile? Forse solo per avere L una NSMM

We have seen that if A is an irreducible, singular M-matrix, then it has a factorization
A = LDÛ , with L lower triangular, U upper triangular,D diagonal, diag(L) = diag(U) =
(1, 1, . . . , 1) and diag(D) = u1, . . . , un−1, 0.
Tben a {1,2}-inverse of A is given by A− = U−1D−L−1 where D− = diag(u−11 , . . . , u−1n−1, 0).
Scrivere A− con la forma a blocchi dell’induzione. DA COMPLETARE

Proposition 3.49 If A is a singular M-matric and A+ is its Moore-Penrose inverse, then A+ ≥ 0

if and only if : A = 0 or there exists P permutation matrix such that PAP> =

(
M 0
0 0

)
where M is a non-singular M-matrix.

We see that A is reducible, and A+ = P>
(
M−1 0

0 0

)
P .

Proof. We will not prove it. :(
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Remark 3.50 Not every singular M-matrix has an LU factorization. An example is A = 0 −1 0
0 0 0
−1 0 0

. However, this is possible if we allow to permute M :

Theorem 3.51 Let A be a (singular?) M-matrix. There exists a permutation matrix P , L lower
triangular with diag(L) = (1, 1, . . . 1), U upper triangular and singular such that PAP> = LU .

Proof. DA COMPLETARE

Definition 3.52 (Core-nilpotent decomposition) Let A ∈ Cn×n and suppose that there
exists S ∈ Cn×n, S non singular and B ∈ Cn1×n1 , N ∈ Cn2×n2 square matrices with n1 +n2 = n
such that:

A = S

(
B 0
0 N

)
S−1

Then S,B,N form the so called core-nilpotent decomposition of A

There always exists a core-nilpotent decomposition for A: it is sufficient to take J the Jordan
normal form of A, so A = SJS−1, J is block diagonal and the block J0 relative to eigenvalue 0
(if 0 ∈ σ(A)) is nilpotent.
Clearly, the core-nilpotent decomposition is not unique. Nevertheless, we can give the following
definition that (we will prove) does not actually depend on the decomposition we have used.

Definition 3.53 (Drazin inverse)

Let A ∈ Cn×n and let A = S

(
B 0
0 N

)
S−1 be a core-nilpotent decomposition. Then the

following matrix:

AD = S

(
B 0
0 0

)
S−1

Is called the Drazin (generalized) inverse of A.

Cose sulla dimensione di N e sull’indice di A DA COMPLETARE

Proposition 3.54 The Drazin inverse of A does not depend on the chosen core-nilpotent
decomposition.

Proof. Take two core-nilpotent decompositions of A:

A = S

(
B 0
0 N

)
S−1 = T

(
C 0
0 M

)
T−1

With N,M nilpotent and B,C non-singular. By taking the kth power, we obtain:

Ak = S

(
Bk 0
0 Nk

)
S−1 = T

(
Ck 0
0 Mk

)
T−1

With k greater that the orders of nilpotency of N and M , we obtain that Bk and Ck must have
the same rank, i.e. B and C have the same size.
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Call R = T−1S, then the above equality for A can be rewritten as:

R

(
B 0
0 N

)
=

(
C 0
0 M

)
R(

R1 1 R1 2

R2 1 R2 2

) (
B 0
0 N

)
=

(
C 0
0 M

) (
R1 1 R1 2

R2 1 R2 2

)
(
R1 1B R1 2N
R2 1B R2 2N

)
=

(
C R1 1 C R1 2

M R2 1 M R2 2

)
By looking at the off-diagonal blocks, we obtain R1 2N = C R1 2 and R2 1B = M R2 1. We will
prove that this implies that R1 2 = 0, R2 1 = 0.
Indeed, N is nilpotent of index b, then R1 2N

b = 0 and 0 = R1 2N
b = (R1 2N)N b−1 =

C R1 2N
b−1. Since C is non singular, necessarily R1 2N

b−1 = 0. We can continue by in-
duction to obtain that 0 = R1 2N = C R1 2, which means that R1 2 = 0. Similarly we obtain
that R2 1 = 0. From this, the above matrix equation simplifies to:(

R1 1B 0
0 R2 2N

)
=

(
C R1 1 0

0 M R2 2

)
and TS−1 =

(
R1 1 0

0 R2 2

)
We want to show that the Drazin inverses constructed from the two decompositions are equal:

S

(
B−1 0

0 0

)
S−1

?
= T

(
C−1 0

0 0

)
T−1

T−1S

(
B−1 0

0 0

)
?
=

(
C−1 0

0 0

)
T−1S

(
R1 1 0

0 R2 2

)(
B−1 0

0 0

)
?
=

(
C−1 0

0 0

)(
R1 1 0

0 R2 2

)
The equality holds if and only if R1 1B

−1 = C−1R1 1, which is true since R1 1B = CR1 1 and
B,C are invertible.

Definition 3.55 (Equivalent definition of Drazin inverse)
Let A ∈ Cn×n be a matrix of index k. Then the Drazin inverse AD can be defined as the only
matrix that satisfies the following conditions:

1. AAD = ADA (commutation)

2. Ak+1AD = Ak (AD acts like A−1 algebraically)

3. ADAAD = AD (AD is an outer-inverse)

Remark 3.56 In general,AD is not an inner-inverse, i.e. AADA 6= A.
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In the following statement, we see that the inner-inverses can be used for solving systems of
linear equations, both if A is invertible or not.

Proposition 3.57 Let A ∈ Cn×n and b ∈ span(A) a vector, then a solution of Ax = b can be
obtained with x = A−b, where A− is an inner-inverse of A.

Proof. Since b ∈ span(A), then there exists c ∈ Cn such that Ac = b.
Take x = A−b = A−Ac, then Ax = A(A−Ac) = (AA−A)c = Ac = b since by definition of
inner-inverse we have AA−A = A.

Definition 3.58 (Group-generalized inverse) Let A ∈ Cn×n with index(A) ≤ 1. Then the
Drazin inverse is also written as A# and is called the group-generalized inverse of A.

Gruppo generalizzato, dirlo meglio DA COMPLETARE

Proposition 3.59 Let A ∈ Cn×n, then AADA = A if and only if index(A) ≤ 1

Proof. If index(A) = 0, then A is invertible and AD = A−1, so the equality holds. Assume now
that k ≥ 1, and take a core-nilpotent decomposition of A:

A = S

(
B 0
0 N

)
S−1 AD = S

(
B−1 0

0 0

)
S−1

Calculate AADA:

AADA =S

(
B 0
0 N

)(
B−1 0

0 0

)(
B 0
0 N

)
S−1

=S

(
I 0
0 0

)(
B 0
0 N

)
S−1 = S

(
B 0
0 0

)
S−1

Which is equal to A if and only if N = 0, i.e. only in the index of N (and so the index of A)
is equal to 1.

Theorem 3.60 Let A ∈ Cn×n. The following are equivalent:

1. A ∈ G, where G is a multiplicative group of matrices.

2. index(A) ≤ 1.

Proof. First of all, note that if A is non-singular then index(A) = 0 and A ∈ GL(C, n), which
is a multiplicative group of matrices. From now on, assume that A is singular.

1 ⇒ 2 If A ∈ G, there exists the group inverse Ag. Let IG be the identity of G; it is possible that
IG 6= I, and actually I can’t be in G if A is singular. In fact, we only require that IG ·B = B
for every B ∈ G, but not for every B ∈ Cn×n.
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However, we must necessarily have that AgA = AAg = IG from the group laws. This implies
that Am+1Ag = Am ∀m ≥ 1 and AgAAg = Ag.
These relations satisfy the definition ?.55, so Ag = AD must be the Drazin inverse of A.
From AgA = IG we obtain that AAgA = A, so by proposition ?.59 we obtain that index(A) ≤ 1.

2 ⇒ 1 If index(A) = 1, then the core-nilpotent decomposition of A is A = S

(
B 0
0 0

)
S−1

where B is non-singular and of size m.
Define the group G as follows:

G =

{
S

(
X 0
0 0

)
S−1 | size(X) = rank(X) = m

}
The group inverse IG is then:

IG = S

(
I 0
0 0

)
S−1

Basically this group is a copy of GL(C,m) ⊆ GL(C, n), and the embedding is given by the
change of basis associated to matrix S.

Remark 3.61 We give a more concrete example of such a group. Let e = (1, 1, . . . 1)> be the
vector of all ones in Cn, and J = e e> be the matrix in Cn×n of all ones, so J has rank 1 and
J2 = nJ .
The group G is defined as

G = {αJ | α ∈ C, α 6= 0}

The multiplication results in αJ · βJ = nαβJ , and the group inverse IG = 1
n
J . The inverse of

A = αJ is A# = 1
αn2J .

Proposition 3.62 (Properties of AD)

1. If λ ∈ σ(A), λ 6= 0 and x 6= 0 eigenvector relative to λ, so Ax = λx. Then 1
λ

is an
eigenvalue of AD with eigenvector x.

2. Given A, there is a polynomial p(x) such thath AD = p(A).

Proof. 1) Take the core-nilpotent decomposition of A, then λ must be an eigenvalue of B, and
the eigenvector x has the entries relative to N equal to 0. Then x is also an eigevector for B−1,
and the result follows.

2) First of all, if A is an invertible matrix, then A−1 can be expressed as a polynomial of A.
DA COMPLETARE
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Proposition 3.63 Let A ∈ Cn×n, with index(A) = k ≥ 0. Then

AD = lim
ε→0

(
Ak+1 + ε I

)−1
Ak

Proof. DA COMPLETARE

PROPOSIZIONE SU AAD̂ e proiettore. DA COMPLETARE

4 Stochastic Matrices and Markov Chains

Disclaimer: this chapter is very sloppily written, and assumes that the reader has already some
knowledge of Markov chains. For further (or propedeutic?) reading, we recommend the book
Markov Chains by James R. Norris.

4.1 Basic definitions

Definition 4.1 (Markov chain) A Markov chain, or also Markov process, can be thought as
a system that at discrete time intervals t0, t1, t2 . . . can be in one of the states si i ∈ I. The
process can go from state si to sj with probability Pi j, this does not depend on the states prior
to si.
We will work mainly with finite Markov chains, so we can take I = {1, 2, . . . , n} and P can be
thought as a matrix, called transition matrix.

Definition 4.2 (Stochastic matrix) A matrix P ∈ Rn×n is stochastic if:

1. 0 ≤ pi j ≤ 1 for every i, j. This clearly implies P ≥ 0.

2.
n∑
j=1

pi j = 1, the row sums of P are equal to 1.

Observe that a transition matrix is a stochastic matrix, since the sum of all probabilities of
possible paths from si must be 1.

Definition 4.3 (Doubly stochastic matrix) P is a doubly stochastic matrix if both P and
P> are stochastic, i.e. also the column sums of P are equal to 1.

If P is a permutation matrix, then it is doubly stochastic. Also, if U is unitary, which means
that UUH = UHU = I, then P given by pi j = |ui j|2 is doubly stochastic.
If A ≥ 0 and has a Perron eigenvector x > 0, Ax = ρx, then 1

ρ
A is diagonally similar do a

row-stochastic matrix P . Take D = diag(p), and P = D−1 1
ρ
AD.

Definition 4.4 (Probability vector) π = (π1, π2, . . . , πn) ∈ Rn is a probability vector (also

called a probability distribution) if π ≥ 0 and
n∑
i=1

πi = 1.

35



Proposition 4.5 Let π be a probability vector, and P,Q be row-stochastic matrices.
Then πP is a probability vector and PQ is a row-stochastic matrix.

Proof. Left as an exercise.

Proposition 4.6 Let P be a stochastic matrix. Then ρ(P ) = 1 and 1 = (1, 1, . . . 1)> is a right
Perron eigenvector for P .

Proof. The definition of a stochastic matrix is that the row sums are equal to one, i.e. P1 = 1,
so ρ(P ) ≥ 1. Also, by theorem ?.10, we have that ρ(P ) is less or equal than the maximum row
sum, so actually ρ(P ) = 1 and 1 is the right Perron eigenvector for P .

Definition 4.7 (Stationary distribution) A probabilty vector π is stationary for a stochastic
matrix P if πP = π.

Note that πP k = π for every k > 0. Also note that π is a left eigenvector for P , with eigenvalue
1; there always exists such a vector by Perron-Frobenius theorem, since ρ(P ) = 1.
If P is not an irreducible matrix, then there could be multiple linearly independent stationary
vectors for P ; but if P is irreducible, then by Perron-Frobenius theorem, it has a unique
left eigenvector (which is positive and can be normalized to a probability vector) relative to
eigenvalue 1.

Definition 4.8 (Steady state distribution) Let P be a stochastic matrix, and let {π(k)}∞k=0

be a sequence of probability vectors such that:

π(k+1) = π(k)P

A row vector π is called a steady state distribution (or also a limiting distribution) for P if for
every choice of π(0), the sequence π(k) has a limit and

π = lim
k→∞

π(k)

Observe that a steady state vector is necessarily a stationary vector, since π = lim
k→∞

π(k) =

lim
k→∞

π(k−1)P = πP . Altough, not every stationary vector is a steady state vector, it depends

on the properties of the Markov Chain P .

For example, take P =

(
0 1
1 0

)
, it has a stationary vector π = (1

2
, 1
2
) but for every π(0) 6= π,

the sequence π(k) does not converge and it alternates between π(0) and π(1).
Achtung: Some authors do not require that π is independent of initial choice π(0) to be a steady
state distribution; this blurs the distinction between steady state and stationary vectors.

Theorem 4.9
Let P be a primitive (therefore irreducible), stochastic matrix. Then there exists an unique
steady state distribution for P .
Also, there exists the limit lim

k→∞
P k = 1π, where 1 = (1, . . . , 1)> and π is the steady state

distribution (row vector).
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Proof. The result follows from Perron-Frobenius theorem, where π is the left Perron eigenvector
of P .
We want to remark that π is a steady state distribution: for every initial distribution π(0), we
have that

lim
k→∞

π(k) = lim
k→∞

π(0)P k = π(0) lim
k→∞

P k = π(0)(1π) = (π(0)1)π = π

Definition 4.10 Let P be stochastic, then define the δ(P ) = max{ |λ| |λ ∈ σ(P ), λ 6= 1}.
δ(P ) is related to the spectral gap of P , which is 1 − δ(P ). Also it controls the asintotic

convergence of P k, or the asintotic convergence of π(k) to π.
If P is primitive, then δ(P ) < 1. The smaller δ(P ) is, the faster the convergence.

Definition 4.11 Let P be the transition matrix of a Markov chain, then the Markov chain is:

• regular if and only if P is a primitive matrix. (⇒ ∃! steady state distribution)

• ergodic if and only if P is an irreducible matrix. (⇒ ∃! stationary distribution)

• periodic (or cyclic) if and only if P is an irreducible matrix with imprimitivity index
k ≥ 2.

Achtung: this terminology is not universal, in particular in Italian ergodico usually means
regular.

Definition 4.12 A state si has access to state sj, if there exists a path si → sj of finite length
with positive probability.
If si, sj have both mutual access to each other, they are called communicating states.
We see that we can partition all states in communicating classes.

Definition 4.13 (Absorbing state)
A state si of a Markov chain is called an absorbing state (or also trap, sink) if the process can
not exit state s. Equivalently, if P is the transition matrix, si is absorbing if the ith row of P
is all zeros, except Pi i = 1.

Definition 4.14 (Absorbing Markov chain) A Markov chain is called an absorbing chain
if there is at least one absorbing state and if for every non absorbing state, there is a positive
probability of reaching an absorbing state in finite time.
Equivalently, every process in the Markov chains ends in an absorbing state with probability 1.

Definition 4.15 (Transient state) A state si of a Markov chain is called transient if for every
initial state s(t0), the state si will be visited only a finite number of times with probability 1.

For an absorbing Markov chain, all the non absorbent states are transient.
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4.2 Reducible stochastic matrices

Now assume that the matrix P is reducible, i.e. the associated graph is not strongly connected
and there are states, called transient, that the system can reach some finite number of times
and then never again (with probability 1).
Applying the Frobenius Normal form to a stochastic matrix, we obtain:

P =



P1

P2

. . .

Pg
Pg+1,1 · · · · · · Pg+1,g Pg+1

...
...

...
. . .

Pn,1 · · · · · · Pn,g Pn,g+1 · · · Pt


Where the diagonal entries Pi 1 ≤ i ≤ t are all irreducible, P1, . . . Pg are isolated components.
This means the process cannot exit block Pj if it enters a state si ∈ Pj.
The Pi represent the communicating classes. The classes P1, . . . Pg are the transient classes,
and Pg+1, . . . Pt are the recurrent or ergodic classes.

Remark 4.16
A Markov Chain is absorbent ⇐⇒ every ergodic class consist of only one state, i.e.

Pi = [1] g < i ≤ t

Theorem 4.17 Let P be a stochastic matrix. Then λ = 1 is a semisimple eigenvalue with
multiplicity g, which is the number of ergodic classes. Also A = I−P is a singular M-matrix,
with index(A) = 1 (i.e. A has property c).

Proof.

P =



P1

P2

. . .

Pg
Pg+1,1 · · · · · · Pg+1,g Pg+1

...
...

...
. . .

Pn,1 · · · · · · Pn,g Pn,g+1 · · · Pt


=


P1

P2

. . .

Pg
R1 R2 · · · Rg C



Write P in the Frobenius normal form, where each diagonal block is irreducible, the first
blocks P1, . . . , Pg are isolated (the Markov process can not exit the block), and Pg+1, . . . , Pt are
transient.
By looking at the row sums of P1, . . . , Pg, we obtain that ρ(P1) = . . . = ρ(Pg) = 1. We will
prove that ρ(Pg+1), . . . ρ(Pt) < 1: take Pi, then its rows sums can’t be all equal to one (since

Pi has to connect to the absorbing classes), so there exists P̃i ≥ Pi with row sums equal to 1.

Pi and therefore P̃i are irreducible, so by theorem 27 we have that ρ(Pi) < ρ(P̃i) = 1.
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Another way to see that the spectral radius of transient classes Pg+1, . . . Pt is less than 1,
consider them all as one block C. Every transient state has a non zero probability to have a
path of length k to a recurrent state, for sufficiently large k. Then Ck has every row sum less
than 1, so 1 > ρ(Ck) = ρ(C)k, so ρ(C) < 1.

So the multiplicity of λ = 1 is given by that of P1, . . . Pg, and since they are irreducible λ = 1
is semisimple, so it has index 1 and A = I − P has property c.

Using this theorem, we can write P separating the eigenvalues equal to 1:

P = X

(
I 0
0 K

)
X−1

With 1 ∈ σ(K). So define

A = I−P = X

(
0 0
0 I−K

)
X−1

This is a core-nilpotent decomposition for A, so its Drazin inverse is:

A# = X

(
0 0
0 (I−K)−1

)
X−1

Then we can define the following matrix

L = I−(I−P )(I−P )# = I−AA# = X

(
I 0
0 0

)
X−1

Note that 1 ∈ σ(K) does not imply that ρ(K) < 1, since the ergodic classes Pi 1 ≤ i ≤ g could
be periodic.

Theorem 4.18 Let P be a stochastic matrix, then:

1. P is a convergent matrix ⇐⇒ γ(P ) < 1 ⇐⇒ ρ(K) < 1 ⇐⇒ all the ergodic classes
P1, . . . , Pg are primitive.

2. If the Markov chain is regular, then P is convergent.

3. If the Markov chain is absorbing, then P is convergent.

Proposition 4.19 Let P be a stochastic matrix and let S1, . . . Sg be the ergodic classes corre-
sponding to P1, . . . Pg. Then to each class Pi there corresponds an unique stationary distribution
πi, such that πi(j) = 0 if sj 6∈ Si and πi(j) > 0 otherwise.
Every stationary distribution π for P , is a linear combination of πi:

π =

g∑
i=1

aiπi with ai ≥ 0
h∑
i=1

ai = 1
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Proof. The first part follows from Perron-Frobenius theorem applied to each primitive matrix
Pi.
The eigenspace relative to eigenvalue 1 has dimension g, and π1, . . . πg are g linearly indepent
eigenvectors. This implies that every other stationary distribution has to be in their span.

Proposition 4.20 Let P be a stochastic matrix, and A,L defined as above. Then L can be
calculated as:

L = lim
k→∞

1

k

(
I +P + P 2 + . . .+ P k−1) Cesaro-summability

Also for each α ∈ (0, 1):

L = lim
k→∞

((1− α) I +αP )k Euler-summability

Also, if P is convergent, then:
L = lim

k→∞
P k

The first two formulas are used in the case P is periodic (or one of the ergodic classes Pi in the
normal form is periodic): we have to cancel periodicity either by averaging, or by transforming
Pi in Tα = (1− α) I +αPi, which is a primitive matrix. Also, δ(Tα) < 1, because the spectrum
Tα can be obtained from the spectrum of Pi by an homothety in 1 and ratio α.
In the case that all ergodic classes are primitive, then the stronger result from the third formula
holds.

Proposition 4.21 Let A = I−P , L = I−AA#. If si is a transient state, then the ith row of L
is zero, i.e. Lei = 0.

Proof. Si fa con la forma triangolare a blocchi. DA COMPLETARE

Proposition 4.22 Le si, sj be transient states. Then [A#]i j is the expected values of the
number of times the process with initial state si visits state sj.

4.3 Absorbing Markov chain

Proposition 4.23 ( Normal form for absorbing Markov chains)
If the transition matrix P has size n, and there are t transient states and r = n− t absorbing
states, by putting all the absorbing states at the end we obtain a normal form for P :

P =

(
Q R
0 Ir

)
Then we can calculate the powers of P :
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P k =

(
Qk Rk

0 Ir

)
Where Rk = (I +Q+Q2 + . . . Qk−1)R, and Rk+1 ≥ Rk.
Also, ρ(Q) < 1 and there exists the limit

lim
k→∞

P k =

(
0 (I−Q)−1R
0 Ir

)

Proof. The proof that ρ(Q) < 1 is a special case of ?.17.
Then I −Q is a non-singular M-matrix, so I +Q+Q2 + . . . = (I −Q)−1 ≥ 0.

The matrix (I−Q)−1 is called the fundamental matrix of the Markov chain. I − Q is a non-
singular M-matrixsince ρ(Q) < 1, so (I −Q)−1 ≥ 0.

Proposition 4.24 If P is an absorbing Markov chain in the above normal form, then the
stationary distributions are of the form π = (0|π2), where π2 is a probability vector of size r.

Proof. Let π = (π1|π2) be a stationary vector, so:

πP = (π1|π2)
(
Q R
0 Ir

)
= (π1Q | π1R + π2)

Since ρ(Q) < 1, then π1 = π1Q is possible only if π1 = 0. Then every choice of π2 satisfies this
equation.

Proposition 4.25 Let N = (I−Q)−1 be the fundamental matrix of an absorbing Markov
chain. Then

1. Ni j è il numero di volte che passa dal transiente si al transiente sj.

2. [N1]i, the sum of ith row of N is the expected number of steps needed to get to an
absorbent state starting from si.

3. NRi j represents the probability that the system will end in state sj by passing in si as
the last transient state. DA COMPLETARE

Questa proposizione è la stessa cosa di A# detta in generale, e può essere inglobata li.
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4.4 Ergodic Markov chain

Proposition 4.26 If the Markov chain is ergodic, then there exists a unique stationary
distribution π = (π1, π2, . . . , πn), which is positive π > 0.

Also mi =
1

πi
is the expected time of return to state si.

Definition 4.27 (Mean first passage time) Let mi j be the expect number of steps of a
path from si to sj.
The the matrix M = mi j is the mean first passage matrix.

Observe that this means mi i =
1

πi
.

Theorem 4.28 (Meyer) Let P be the transition matrix of an ergodic Markov chain and let
π > 0 be it’s stationary distribution. Let J = 1 · 1> be the matrix of all 1s, and A = I−P .

Let D = diag(
1

π1
,

1

π2
, . . . ,

1

πn
), then:

1. D−1 = diag(I−AA#)

2. M = (I−A# + Jdiag(A#))D

As an example, let’s calculate the diagonal entries of M :

mi i =
1

πi
− a#i i

(I − AA#)i i
+

a#i i
(I − AA#)i i

=
1

πi

So the theorem is true for the diagonal entries.

Theorem 4.29 (Meyer) Let P be the transition matrix of an ergodic Markov chain, π be the
(unique) stationary vector and A,A#,M defined as above. Then M satisfies:

[πM ]i = 1 +
a#i i
πi

1 ≤ i ≤ n

This represents the expected time to arrive in state si starting from a random state with
probability given by π.

Theorem 4.30 (Golub - Meyer, 1986) Questo è un teorema su piccole perturbazioni della
matrice stocastica.

Theorem 4.31 (Normal form for stochastic convergent matrices)

5 Graphs, walks and centrality measures

Page rank. Descrizione dell’algoritmo
Pagerank, Degree, Closeness, Betweenness, Eigenvector.
Katz centrality, Hub and authority,
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subgrpah centrality (does not distinguish hubs and authorities)
total communicability (hub and authority)
Articolo di Benzi e Klymko sull limite di Katz e subgraph a degree e eigenvector.
Laplaciano di un grafo.
Laplaciano normalizzato.
Misure di connettività

6 Economia, Leontief model

Carino.
Poi aggiungere le considerazioni finali.

7 todo

DA COMPLETARE Osservazioni sparse da inserire:

• Corollario di Lappo-danilevsky delle sottomatrici

• Se A è NSMM, se ho B ≥ A allora anche B è NSMM.

• Fare un mega teoremone TFAE per le matrici NSMM

• Se A è NSMM, B è NSMM e AB è Z-matrice, allora AB è NSMM.

• Esercizio proiettore di AAD.

• matrice substocastica

A1 = v = 1>B
Libro Berman - Plemons, applicazioni su M-matrici e condizioni nec e suff per Z-matrici.
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