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Chapter 1

Introduction and Preliminaries

Random walks in the quarter-plane are frequently used to model queueing prob-
lems, they belong to the family of Quasi-Birth-Death processes and they are widely
studied in literature, for example in [11] we can �nd a detailed analysis of the prob-
lem.

The main purpose of this thesis is to analyze and compare algorithms that allow
us to calculate the invariant measure of the random walk when it is modelled as a
discrete time Markov chain or as a continuous time Markov process. We do this with
two approaches deeply di�erent from each other.

The �rst, based on the works of Bini et al. ([5], [6], [7]), is an operator approach.
The transition operator of this kind of process is semi-in�nite, block-tridiagonal,
almost block-Toeplitz with semi-in�nite almost-Toeplitz blocks; the idea behind this
approach is to adapt, to the in�nite case, the available algorithms valid for blocks
of �nite size. To do this we need �rst to de�ne the right space which these in�nite
blocks belong to and then to build an arithmetic in it. In particular we focus on
the algorithm of Cyclic Reduction and on the matrix geometric approach of [13].
We prove that, similarly to the �nite case, this algorithm converges to the minimal
solution of certain quadratic operator equations from which we can build the invariant
probability vector.

The second approach, named compensation approach, is based on the works of
Adan ([2], [1]). This is a more practical approach that exploits the structure of
the equilibrium equations in the interior of the quarter plane by imposing that linear
combinations of product forms satisfy these equations. This leads to a kernel equation
for the terms appearing in the product forms. Then, it is required that these linear
combinations satisfy the equilibrium equations on the boundaries as well. As it
turns out, this can be done by alternately compensating for the errors on the two
boundaries, which eventually leads to in�nite series of product forms. Convergence
of these series is a crucial issue, some su�cient conditions for the convergence of
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Chapter 1. Introduction and Preliminaries

these series are provided.
After introducing the two approaches and relying on the work of [12, Kapodis-

tria], we provide a comparison of the two approaches on both a theoretical and a
computational basis. Some results are stated, in particular we show that eigenvalues
and eigenvectors of the operators that we calculate in the �rst approach can be ob-
tained in the construction of the in�nite series of product forms in the compensation
approach.

An accurate numerical simulation is carried out relying on test problems taken
from the current literature. It turns out that the applicability of the compensation
approach is more restricted than the operator approach. On the other hand the
compensation approach shows a better performance in terms of accuracy. In fact it
provides approximation with very small relative error, whereas the operator approach
in the current implementation does not maintain a uniform bound to the relative
error, even though the absolute error in the approximation is quite small.

The thesis is organized as follows. In Chapter 1 we describe the problem of the
random walk in the quarter plane, we model it as a Markov chain and we recall some
of the most important de�nitions and results about the subject. In Chapter 2 we
extend the matrix geometric approach to the in�nite case, we introduce the space
of Quasi-Toeplitz operators and we describe a machine arithmetic for it. Chapter 3
concerns the Cyclic Reduction algorithm: we recall this algorithm together with its
properties valid in the �nite case, then we present its extension to the in�nite case.
In Chapter 4 we describe the compensation approach and we put it in relation with
the operator approach. Finally, in Chapter 5 we exhibit the numerical results of our
experimentation.

1.1 Short Summary on Markov Chain and Processes

Markov chains are used to model systems which evolve in time. They come
under various guises but we only consider here discrete-state processes, meaning
that the total number of states which the process may occupy is either �nite or
countably in�nite. Time may either increase by discrete, constant amounts, as when
the modeled system is controlled by a digital clock, or it may increase continuously.

A stochastic process is a family {Xt : t ∈ T} of random variables Xt indexed
by some set T and with values in a common set S: Xt ∈ S for all t ∈ T . Here, S
is a countable set and it is called the state space, and T is the time space. If T is
countable, say T = N, the process is said to be discrete, otherwise it is continuous.

De�nition 1.1. The stochastic process {Xt : t ∈ N} is a Markov chain if

P [Xt+1 = j|X0,X1, . . . ,Xt−1,Xt] = P [Xt+1 = j|Xt] ,

for all states j ∈ S, and for all times t ∈ N.
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This means that if one knows the state Xt of the system at time t, then the past
historyX0,X1, . . . ,Xt−1 does not help in determining which state might be occupied
at time t+ 1. One also usually requires that the laws which govern the evolution of
the system be time-invariant; this is formulated as follows.

De�nition 1.2. A Markov chain {Xt : t ∈ N} is homogeneous if

P [Xt+1 = j|Xt = i] = P [X1 = j|X0 = i] ,

for all states i, j ∈ S, and for all times t ∈ N.

In the sequel, we always assume that Markov chains are homogeneous. De�ne
the matrix (operator, in the case when S is in�nite) P = (pij)i,j∈S with one row and
one column for each state in S and such that

Pij = P [X1 = j|X0 = i] ,

for all i, j ∈ S. This is called the transition matrix of the Markov chain; it is a
row-stochastic matrix, that is, its element are nonnegative and its row sums are all
equal to 1.

The transition matrix plays a very important role in the dynamic behaviour of
the Markov chains, as we can see in the following propositions.

Proposition 1.1. For all times n ≥ 0, all intervals of time k ≥ 0 and all states

i, j ∈ S, we have
P [Xt+k = j|Xt = i] = (P k)i,j .

Proposition 1.2. For all times t ≥ 0, all intervals of time k ≥ 1 and all states

i, j1, . . . , jk ∈ S, we have

P [Xt+1 = j1,Xt+2 = j2, . . . ,Xt+k = jk|Xt = i] = pij1pj1j2 . . . pjk−1jk .

De�nition 1.3. Given a time-homogeneous Markov chain with transition matrix
(operator) P , a row (in�nite) vector π = (πi)i∈S is said to be invariant if πP = π.
If the invariant vector π is such that π ≥ 0 and π1 = 1, then it is said to be an
invariant probability measure.

Not all the Markov chains present an invariant probability measure. For that,
additional hypotheses have to be assumed.

1.1.1 Classi�cation of States and classes

The transition graph of a Markov chain with transition matrix P is the directed
graph (S,E), where the vertices are all possible states, and there is an edge from
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state i to state j if and only if pij > 0. We say that state i leads to j if there is a
path from i to j in the transition graph. We say that states i and j communicate if
each leads to the other. Communication forms an equivalence relation on the states,
so we call irreducible classes its equivalence classes. We say that the Markov chain
is irreducible if all its states communicate, else it is reducible.

De�nition 1.4. Given a Markov chain, we say that a state i ∈ S is periodic with
period ω ≥ 2 if all closed paths through i in the transition graph have a length that
is a multiple of ω. A state i ∈ S is aperiodic if it is not periodic.

De�nition 1.5. For any Markov chain Xt we de�ne the epochs of visits to a subset

S′ of states as the sequence {τ (S′)
t }t=0,1,..., where τt is the t-th time the Markov chain

visits a state in S′. In formulas:

τ
(S′)
0 = inf{i ≥ 0 : Xi ∈ S′},

τ
(S′)
t+1 = inf{i > τt : Xi ∈ S′} for t ≥ 0,

when the subset S′ is reduced to only a state, S′ = {i}, we write τ (i)
t . We omit the

superscript {(S′)} when there is no ambiguity. We also de�ne the restricted process

{X(S′)
t }t=0,1,... as follows

X
(S′)
t := Xτt for t ≥ 0,

so that X
(S′)
t is the actual state visited when the Markov chain is in S′ for the t-th

time.

Let us consider the quantity fi := P
[
τ

(i)
0 <∞|X0 = i

]
, that is the probability

that, starting from i, the Markov chain returns to i in a �nite time. We then classify
state i of the Markov chain as:

� transient if f1 < 1;

� recurrent if fi = 1; in this case we also distinguish between:

� positive recurrent if the expected return E
[
τ

(i)
0 |X0 = i

]
is �nite;

� null recurrent if the expected return E
[
τ

(i)
0 |X0 = i

]
is in�nite;

It can be shown that all states of a single irreducible class of a Markov chain
belong to the same classi�cation, so irreducible classes in turn can be transient, pos-
itive recurrent or null recurrent. In particular, if a Markov chain is irreducible, then
it is transient, positive recurrent or null recurrent, depending on the classi�cation of
its states. Similarly, it can be shown that periodicity is also a class property, that
is all states of a single irreducible class are aperiodic, or are periodic with have the
same period ω. We can then refer to the periodicity of each irreducible class, or even
to the periodicity of an irreducible Markov chain.
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Theorem 1.1. An irreducible Markov chain has an invariant probability measure π
if and only if it is positive recurrent. If the invariant probability measure exists, then

it is unique.

Theorem 1.2. Consider an irreducible and aperiodic Markov chain {Xt} with state

space S, and suppose that it has an invariant probability measure π. Then

lim
t→∞

P [Xt = i|X0 = j] = πi

for all i, j ∈ S.

1.1.2 Continuous-time Markov Processes

A continuous-time Markov chain, or Markov process, is a stochastic process {Xt :
t ∈ T}, in which the index set is T = [0,+∞) ⊆ R, the set S of the possible values
assumed by Xt is countable, and the following Markov property is satis�ed:

P
[
Xtn+1 = i|Xt0 = j0, . . . ,Xtn = jn−1

]
= P

[
Xtn+1 = i|Xtn−1 = jn

]
for all (n + 2)-tuple of states i, j0, . . . , jn ∈ S and for all (n + 2)-tuple of times
0 ≤ t0 < · · · < tn+1. We call transition probabilities the quantities

pij(s, t) := P [Xt = i|Xs = j] ,

for i, j ∈ S and 0 ≤ s < t.
Again, we will consider only a proper subclass of Markov processes:

De�nition 1.6. A Markov process is time-homogeneous if it satis�es

pij(s, t+ s) = pi,j(0, t),

for all i, j ∈ S and all s, t ≥ 0, that is, if transition probabilities depend only on
states and time di�erence. We will then indicate pij(0, t) just by pij(t).

From now on, all Markov processes that we consider are assumed to be time-
homogeneous.

De�nition 1.7. A Q-matrix on S is a matrix Q = (qij)i,j∈S satisfying the following
conditions:

1. −∞ < qii ≤ 0 for all i ∈ S;

2. qij ≥ 0 for all ij ∈ S such that i 6= j;

3. Q1 = 0.
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De�nition 1.8. The transition matrix (operator, in the case when S is in�nite) of
a Markov process is P (t) := (pij(t))i,j∈S . The transition rate matrix or generator
matrix of a Markov process is

Qij :=

{
limh→0

pij(h)
h for i 6= j,

−
∑

j 6=iQij fori = j.

Under appropriate regularity hypotheses, it can be shown that, given a Markov
chain with transition matrix P (t) and generator matrixQ, they satisfy the di�erential
equation P ′(t) = QP (t), and Q is a Q-matrix. In particular, the generator matrix is
su�cient to de�ne uniquely the behaviour of the Markov process. This suggests to
give the following de�nition of invariant vector, in the continuous-time case:

De�nition 1.9. Given a Markov process with generator matrix (operator) Q, a
(in�nite) row vector π = (πi)i∈S is said to be invariant if πQ = 0. If the invariant
vector π is such that π ≥ 0 and π1 = 1, then it is said to be an invariant probability
measure.

We can de�ne the transition graph, the irreducible classes, transience and posi-
tive/null recurrence of Markov processes similarly as how we did for Markov chains.
Then, it can be shown that most results about discrete-time Markov chains are still
true for the continuous-time case. Most notably, the following theorems are valid:

Theorem 1.3. An irreducible Markov process has an invariant probability measure

π if and only if it is positive recurrent. If the invariant probability measure exists,

then it is unique.

Theorem 1.4. Consider an irreducible and positive recurrent Markov process {Xn},
with state space S and invariant probability measure π. Then

lim
t→∞

P [Xt = j|X0 = i] = πj ,

for all i, j ∈ S.

For all not proven results in this section on Markov chains and processes and for
a vast dissertation about this argument we refer to [17].

1.2 Re�ecting Random Walk on an Orthant

The random walk in a quarter plane belongs to a more general class of problems
whose full exposition can be found in [15], here we give a brief description of it.

We use some of standard notations for sets of numbers. Let R and R+ be the
sets of all real and of all real nonnegative numbers, respectively. Similarly, let Z be

6
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the set of all integers. Let d be a positive integer. Then, S = Zd+ is referred to as a
nonnegative orthant of Zd.

The re�ecting random walk is de�ned on this orthant, that is, it has state space
S. To describe a re�ection mechanism, we partition S into disjoint subsets. Let
J = {1, 2, . . . , d}, for each subset A ⊂ J , we de�ne

SA = {x ∈ S;xi ≥ 1, i ∈ A, xj = 0, j /∈ A}.

If A 6= J , then SA is called a boundary face; SJ represents the interior part of S,
and we also denote it by S+. That is,

S+ = SJ = {x = (x1, . . . , xd) ∈ S;xi > 0, i = 1, 2, . . . , d}.

The collection of all boundary faces is simply called the boundary, and denoted
by ∂S. That is,

∂S =
⋃
A(J

SA.

We now de�ne the re�ecting random walk. For each A ⊂ J , let {XA
t }t=1,2,... be

a sequence of independent identically distributed random variables; XA
t represents

a jump at time t when the random walk is in SA. We denote its distribution by
{pAx ;x ∈ Rd}, that is,

pAx = P(XA
t = x), x ∈ Zd.

We omit the superscript A of XA
t and pAx for A = J . We assume the following

condition:

pAx = 0 unless xi ≥ −1 ∀i ∈ A and xj ≥ 0 ∀j /∈ A. (1.1)

Let Z0 be a random vector taking values in S, and inductively de�ne a discrete
time process Zt for t = 0, 1, . . . by

Zt+1 = Zt +
∑
A⊂J

XA
t+11{Z∈SA}, t = 0, 1, . . . ,

where we denote by 1A the indicator function of an event A.
By the assumption (1.1), Zt remains in S for all t ≥ 0. We refer to this process as a

re�ecting random walk on a nonnegative orthant with downward skip-free transitions,
or simply as a re�ecting random walk.

Clearly, Zt is a discrete time Markov chain with state space S. Its transition
probability p(x,y) becomes

p(x,y) = P(Zt+1 = y|Zt = x), x,y ∈ S,

7
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where the right side of this equation does not depend on t ≥ 0 by the modeling
assumption. Let P be the in�nite-dimensional matrix whose (x,y)th entry is p(x,y);
P is a transition matrix, which is obviously stochastic.

We are interested in the stationary distribution of the re�ecting random walk Zt.
That is, we seek a distribution π on S such that

lim
t→∞

P(Zt = x) = π(x), x ∈ S.

Let Z be a random variable subject to the distribution π, and XA be a random
variable with the same distribution of XA

t for each t = 0, 1, 2, . . . and independent
to them, then, from the de�nition of the Markov Chain, it follows that

Z ' Z +
∑
A⊂J

XA(Z ∈ SA),

where ” ' ” stands for the equality in distribution; we can view the distribution π
as the row vector π whose xth entry is π(x) with x ∈ S.

1.2.1 Jackson network

Let us consider a continuous time queueing network with d nodes, numbered as
1, 2, . . . , d. We assume that exogenous customers arrive at node i subject to a Poisson
process with rate λi, and customers in node i have independent service times with
an exponential distribution with mean 1

µi
, and are served in �rst-in-�rst-out manner

by a single server. A customer who completes service at node i goes to node j with
probability rij or leaves the network with probability ri0, where

d∑
j=0

rij = 1, i = 1, 2, . . . , d.

We assume that all the movements are independent. This model, referred to as
a Jackson network, is usually described by a continuous time Markov chain. For
this, let Li(t) be the number of customers in node i at time t. The d-dimensional
vector-valued process L(t) = (L1(t), . . . , Ld(t)) is a continuous Markov chain, whose
state space is the d-dimensional nonnegative integer orthant S = Zd+. It is not hard
to see that its transition rate matrix Q = {q(x,y), x,y ∈ S} is given by, for x 6= y

q(x,y) =


λi if y = x + ei, i 6= 0,

µirij if y = x + ei + ej , xi > 0, i, j 6= 0,

µiri0 if y = x− ei, mi > 0, i 6= 0,

0 otherwise,

8
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and
q(x,x) = −

∑
y 6=x

q(x,y).

For notation's convenience, we let

r00 = 0, µ0 =

d∑
k=1

λk, r0i =
λi
µi

i = 1, 2, . . . , d.

In this case the stationary distribution π is de�ned as

lim
t→∞

P(L(t) = x) = π(x), x ∈ S,

and it is obtained as a nonnegative summable solution of the stationary equation

πQ = 0.

The Jackson network can be described by the re�ecting random walk in discrete
time. We �rst note that if we change time from t to bt for a constant b > 0, that
is, time scale is changed by b, then λi and µi are also increased b times. However,
this does not change the stationary distribution. Hence, for studying the stationary
distribution, we can assume without loss of generality that

d∑
i=1

(λi + µi) = 1.

By means of all previous notations, we de�ne, for each A ⊂ J , the probability
p̃Ax of the re�ecting random walk associated to the Jackson network as

p̃Ax =
∑

i∈A∪{0}

d∑
j=0

1{x=ej−ei}µirij + 1{x=e0}
∑
i/∈A

µi,

where e0 = 0. Moreover, the transition matrix P̃ of the re�ecting random walk is
de�ned by the following rules, for x ∈ SA,

p̃(x,y) = 1{x 6=y}q(x,y) + 1{x=y}
∑
i∈J

µi1{mi=0}.

With these de�nitions it turns out that for the in�nite row vector π̃ we have

π̃Q = 0⇔ π̃P = π̃.

9
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Figure 1.1: Transition rates of the random walk in the quarter plane.

1.2.2 Double QBD process

If all entries ofXA
t take values 0, 1 or −1, then the process {Zt} is called re�ecting

skip-free random walk, in queueing applications, it is also called multidimensional

quasi-birth-and-death (QBD) process. This kind of process has simpler transitions,
but still �exible for applications like Jackson network and some of its modi�cations.

The multiple QBD process for d = 2 is called double QBD process, we can see
its transition diagram in Figure (1.1).

Remark 1.1. An e�ective way to visualize the double QBD process is to think of the
space S as a semi-in�nite chessboard and of the random variable Zt as the movement
of a King inside it.

The problem of �nding the stationary distribution for a random walk in a quarter
of plane is the main issue of this thesis. As we have seen in this chapter it can be
modeled equivalently either as a discrete time Markov chain or as a continuous time
Markov process. The approaches we present in the following chapters are based on
this equivalence of models.

In particular we give the explicit representation of the operators both in the case
of the Markov process and Markov chain, and also distinguishing between the case
when the space S = Z2

+ is considered with the lexicographic order and the case when

10
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it is considered with the anti-lexicographic order. First we de�ne the quantities

r := r10 + r01 + r11, h :=

1∑
i=−1

1∑
j=0

hij , v :=

1∑
i=0

1∑
j=−1

vij , q :=

1∑
i=−1

1∑
j=−1

qij .

Markov process: anti-lexicographic order. In this case the generator is given
by

Q(A) =


B

(A)
0 B

(A)
1

A
(A)
−1 A

(A)
0 A

(A)
1

A
(A)
−1 A

(A)
0 A

(A)
1

. . .
. . .

. . .


where the blocks are of the form

B
(A)
0 =


−r r10

h−10 −h h10

h−10 −h h10

. . .
. . .

. . .

B(A)
1 =


r01 r11

h−11 h01 h11

h−11 h01 h11

. . .
. . .

. . .



A
(A)
0 =


−v v10

q−10 −q q10

q−10 −q q10

. . .
. . .

. . .

A(A)
1 =


v01 v11

q−11 q01 q11

q−11 q01 q11

. . .
. . .

. . .



A
(A)
−1 =


v0−1 v1−1

q−1−1 q0−1 q1−1

q−1−1 q0−1 q1−1

. . .
. . .

. . .


Markov process: lexicographic order. In this case the generator is given by

Q(L) =


B

(L)
0 B

(L)
1

A
(L)
−1 A

(L)
0 A

(L)
1

A
(L)
−1 A

(L)
0 A

(L)
1

. . .
. . .

. . .


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where the blocks are of the form

B
(L)
0 =


−r r01

v0−1 −v v01

v0−1 −v v01

. . .
. . .

. . .

B(L)
1 =


r10 r11

v1−1 v10 v11

v1−1 v10 v11

. . .
. . .

. . .



A
(L)
0 =


−h h01

q0−1 −q q01

q0−1 −q q01

. . .
. . .

. . .

A(L)
1 =


h10 h11

q1−1 q10 q11

q1−1 q10 q11

. . .
. . .

. . .



A
(L)
−1 =


h−10 h−11

q−1−1 q−10 q−11

q−1−1 q−10 q−11

. . .
. . .

. . .


Markov chain: anti-lexicographic order. In this case the generator is given by

P (A) =


B̃

(A)
0 B̃

(A)
1

Ã
(A)
−1 Ã

(A)
0 Ã

(A)
1

Ã
(A)
−1 Ã

(A)
0 Ã

(A)
1

. . .
. . .

. . .


where the blocks are of the form

B̃
(A)
0 =


0 r10

r
h−10

h 0 h10
h

h−10

h 0 h10
h

. . .
. . .

. . .

 B̃(A)
1 =


r01
r

r11
r

h−11

h
h01
h

h11
h

h−11

h
h01
h

h11
h

. . .
. . .

. . .



Ã
(A)
0 =


0 v10

v
q−10

q 0 q10
q

q−10

q 0 q10
q

. . .
. . .

. . .

 Ã(A)
1 =


v01
v

v11
v

q−11

q
q01
q

q11
q

q−11

q
q01
q

q11
q

. . .
. . .

. . .



Ã
(A)
−1 =


v0−1

v
v1−1

v
q−1−1

q
q0−1

q
q1−1

q
q−1−1

q
q0−1

q
q1−1

q
. . .

. . .
. . .



12



Chapter 1. Introduction and Preliminaries

Markov chain: lexicographic order. In this case the generator is given by

P (L) =


B̃

(L)
0 B̃

(L)
1

Ã
(L)
−1 Ã

(L)
0 Ã

(L)
1

Ã
(L)
−1 Ã

(L)
0 Ã

(L)
1

. . .
. . .

. . .


where the blocks are of the form

B̃
(L)
0 =


0 r01

r
v0−1

v 0 v01
v

v0−1

v 0 v01
v

. . .
. . .

. . .

 B̃(L)
1 =


r10
r

r11
r

v1−1

v
v10
v

v11
v

v1−1

v
v10
v

v11
v

. . .
. . .

. . .



Ã
(L)
0 =


0 h01

h
q0−1

q 0 q01
q

q0−1

q 0 q01
q

. . .
. . .

. . .

 Ã(L)
1 =


h10
h

h11
h

q1−1

q
q10
q

q11
q

q1−1

q
q10
q

q11
q

. . .
. . .

. . .



Ã
(L)
−1 =


h−10

h
h−11

h
q−1−1

q
q−10

q
q−11

q
q−1−1

q
q−10

q
q−11

q
. . .

. . .
. . .


Remark 1.2. In the following we use both the model as Markov chain and the one
as Markov process, but always with the lexicographic order. With these de�nitions,
the invariant vectors π and π̃ such that

πQ(L) = 0, π̃P (L) = π̃,

are slightly di�erent. It can be veri�ed that, by partitioning them as

π = [π0 π1 π2 . . . ] ,

π̃ = [π̃0 π̃1 π̃2 . . . ] ,

where, for m ≥ 0,

πm = [πm,0 πm,1 πm,2 . . . ] ,

π̃m = [π̃m,0 π̃m,1 π̃m,2 . . . ] ,

we can transform them into each other with the following relations

π̃0,0 = rπ0,0, π̃m,0 = hπm,0 π̃0,n = vπ0,n, π̃m,n = rπm,n m,n > 0.

13



Chapter 1. Introduction and Preliminaries

An alternative approach consists into de�ne the transition operator of the Markov
chain approach starting from Q(L) in the following way

P (L) :=
1

θ
Q(L) + I, θ := max{q, v, h, r}. (1.2)

Let us observe that with this de�nition P (L) is always stochastic, besides P (L)

and Q(L) share the same invariant vector π, indeed

πP (L) =
1

θ
πQ(L) + π = π.

14



Chapter 2

Matrix geometric approach

In this chapter we consider our problem modeled as a discrete time Markov chain
on the space S = Z2

+ which we partition as

S =
⋃
n≥0

L(n),

where L(n) = {(n, 0), (n, 1), (n, 2), . . . } represents the set of states at level n.
All the ideas and the proofs of this chapter are taken from [4] and [13] and they

are adapted for the case of in�nite states.
The stationary probability vector π is the unique solution of the system{

π = πP,

π1 = 1,
(2.1)

where P is the transition operator, in this chapter it doesn't matter whether it is
the one based on the lexicographic order or the anti-lexicographic order or if it is the
one de�ned in 1.2, indeed we could obtain the same results by partitioning the space
of states de�ning L′(m) = {(0,m), (1,m), (2,m), . . . }.

We partition the vector π by levels into subvectors πn, for n ≥ 0. Let us observe
that all the subvectors πn have in�nite dimension. Because of this decomposition,
the de�ning system may be written as

π0(B0 − I) + π1A−1 = 0,

π0B1 + π1(A0 − I) + π2A1 = 0,

πn−1A−1 + πn(A0 − I) + πn+1A1 = 0 for n ≥ 2,∑
n≥0 πn1 = 1,

where I represents the identity operator whose entries are equal to 1 on the diagonal
and are equal to 0 on the o�-diagonal.

15



Chapter 2. Matrix geometric approach

Theorem 2.1. If the QBD is positive recurrent, then there exists a nonnegative

operator R such that {
πn+1 = πnR for n ≥ 1,

π1 = π0B1A
−1
1 R

(2.2)

Proof. Fix n ≥ 1 and partition the state space as T ∪TC , where T = L(0)∪· · ·∪L(n)
and TC = L(n+ 1)∪L(n+ 2)∪ . . . . From this, the following partition of the matrix
P holds

P =

[
PT PTTC

PTCT PTC

]
,

where PT and PTC are the submatrices of transition probabilities between states of
T and TC respectively. Let us observe that both PTTC and PTCT have just one non
zero block, in the lower left corner and in the upper right corner, respectively. From
(2.1) we obtain the following relation

[πn+1 πn+2 . . . ] = [π0 . . . πn]PTTC (I − PTC )−1,

where (I − PTC )−1 =
∑

i≥0 P
i
TC converges since we have assumed that the QBD is

irreducible.
We decompose the matrix NTC := (I − PTC )−1 into blocks Nkk′ with k, k

′ ≥ 1
where each block represents the expected number of visits to the states in L(n+ k′),
starting from a state in L(n+ k), before the �rst visit to any of the states in T .

Because of the extremely sparse structure of the matrix PTTC , we have that

PTTC (I − PTC )−1 =


0 0 0 . . .
...

...
...

0 0 0 . . .
A1N11 A1N12 A1N13 . . .


and that

[πn+1 πn+2 . . . ] = [πnA1N11 πnA1N12 . . . ] .

In particular we obtain that πn+1 = πnA1N , where we have de�ned N := N11.
Because of the homogeneity of the process, independently from the value chosen

for n, the matrix PTC is the same. Therefore, the matrix N is independent of n and
it records the expected number of visits to L(n+ 1), starting from L(n+ 1), before
the �rst visit to T , for all values of n ≥ 0.

Furthermore, the structure of PTTC is independent of n, thus we have that πn+1 =
πnA1N for all n ≥ 0, which may be written as πn+1 = π0R

n for all n ≥ 0. We
conclude the proof by observing that R records the expected number of visits to
L(n+ 1) starting from L(n) and avoiding T .

16
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For the case n = 0 with the same scheme of the other cases we obtain

[π1 π2 . . . ] = π0PTTC (I − PTC )−1,

where PTC = [B1 0 0 . . . ] and PTTC is de�ned as before. Considering again the
operator N , we get

[π1 π2 . . . ] = π0 [B1N11 B1N12 . . . ] ,

from which in particular it follows that

π1 = π0B1N11 = π0B1N = π0B1A
−1
1 R.

Remark 2.1. The operator R is such that, for any n ≥ 0, the entry Rij is the expected
number of visits to (n+1, j) before a return to L(0)∪· · ·∪L(n) given that the process
starts in (n, i).

In a similar way, the operator N which appears in the proof of the theorem above,
is such that, for any n ≥ 0, the entry Nij is the expected number of visits to (n, j),
starting from (n, i), before the �rst visit to any of the states in L(n− 1).

Let us assume that X0 is in L(n). De�ne τ as the �rst epoch of visit to the level
L(n− 1) and θ as the �rst epoch of return to level L(n). Let us de�ne the operator
U and G as follows,

Uij = P [θ < τ and Xθ = (n, j)|X0 = (n, i)] ,

Gij = P [τ <∞ and Xτ = (n− 1, j)|X0 = (n, i)] .

The operator U records the probability, starting from L(n), of returning to L(n)
before visiting L(n− 1); the operator G records the probability, starting from L(n),
of visiting L(n − 1) in a �nite time. In view of the homogeneity of the process the
values of U and G do not depend on n.

The following theorems show that the operators R, G and U are connected by
certain equation such that if one of the three operators is known, then it is possible
to determine the other two.

Theorem 2.2. With the previous de�nitions, the following equations hold:

R = A1(I − U)−1, (2.3)

G = (I − U)−1A−1, (2.4)

U = A0 +A1G, (2.5)

U = A0 +RA−1. (2.6)

17
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Proof. From the de�nition of the operator U it follows that its Uk for k ≥ 1 records
the probability starting from L(n), of returning to L(n) and remaining into this level
for k units of time, before visiting L(n− 1). Because of this we have that

N =
∑
i≥0

U i = (I − U)−1,

and therefore that

R = A1(I − U)−1 and G = (I − U)−1A−1.

Moreover we have
U = A0 +A1G,

indeed, in order to return to L(n) avoiding L(n − 1), the process may either re-
main in L(n) at time 1, with probabilities recorded in A0, or move up to L(n+ 1),
with probabilities recorded in A1; from L(n + 1), the process returns to L(n) with
probabilities recorded in G.

This last equation may also be written as

U = A0 +A1(I − U)A−1 = A0 +RA−1.

Remark 2.2. The equations we have obtained in the previous theorem allow us to
rewrite the relation between π0 and π1 as

π1 = π0B1(I − U)−1.

Theorem 2.3. The three operators U ,G and R satisfy the following equations:

U = A0 +A1(I − U)−1A−1, (2.7)

G = A−1 +A0G+A1G
2, (2.8)

R = A1 +RA0 +R2A−1. (2.9)

Proof. Equation (2.7) is simply obtained by inserting (2.4) into (2.5).
Starting from (2.4) and multiplying on the left by I − U we obtain

G = A−1 + UG,

inserting (2.5) into this equation we obtain (2.8).
Starting from (2.3) and multiplying on the right by I − U we obtain

R = A1 +RU,

inserting (2.6) into this equation we obtain (2.9).
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2.1 Boundary Distribution

In order to completely specify the stationary distribution, we need determine the
subvector π0. We do this with the help of the following theorem, whose proof can
be found in [13, pag. 119].

Theorem 2.4. Let {Xt}t≥0 be an irreducible, homogeneous, positive recurrent

Markov chain on a countable state space S with transition matrix P . Let S be par-

titioned into two arbitrary subsets S and SC .

The restricted process {X(T )
t }t≥0 is an irreducible, homogeneous, positive recur-

rent Markov chain on the state space S. Its transition matrix P (S) is given by

P (S) = PS + PSSC (I − PSC )−1 PSCS.

Its stationary probability vector πS is given by

πSP (S) = πS.

Consider the restricted process on S = L(0). By Theorem 2.4, its transition
matrix is given by

P (S) = B0 + [B1 0 0 . . . ]

 I −A0 A1 0
A−1 I −A0 A1 0

. . .
. . .

. . .
. . .


−1

A−1

0
0
...



= B0 + [B1 0 0 . . . ]
∑
i≥0

 A0 A1 0
A−1 A0 A1 0

. . .
. . .

. . .
. . .


i

A−1

0
0
...


= B0 +B1

∑
i≥0

U iA−1

= B0 +B1(I − U)−1A−1 = B0 +B1G.

Moreover, the vector π0 is such that π0 = π0P (S) and the normalization factor
is determined by the constraint π1 = 1. Since

π1 =
∑
i≥0

πi1 = π01 + π1(I −R)−11 = π01 + π0B1A
−1
1 R(I −R)−11,

we have thus proved the following

Lemma 2.1. The stationary distribution π0 of the boundary states in L(0) is the

unique solution of the system{
π0(B0 +B1G) = π0,

π01 + π0B1A
−1
1 R(I −R)−11 = 1.
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2.2 Minimal Solution of Quadratic Equation

The main purpose of this section is to prove that the operators R and G are
completely characterized as minimal nonnegative solutions of (2.9) and (2.8) respec-
tively.

We begin by de�ning γ(i) as the �rst passage time at the level L(i):

γ(i) := inf{t ≥ 1 : Xt ∈ L(i)} for i ≥ 0.

In terms of these quantities, we can review the de�nitions of the operators U and
G as follows

Gij = P
[
γ(0) <∞,Xγ(0) = (0, j)|X0 = (1, i)

]
,

Uij = P
[
γ(1) < γ(0), γ(1) <∞,Xγ(1) = (1, j)|X0 = (1, i)

]
,

for i, j ≥ 1. In order to simplify the equations, we shall use the short-hand notations

G = P
[
γ(0) <∞,Xγ(0)|X0 ∈ L(1)

]
,

U = P
[
γ(1) < γ(0), γ(1) <∞,Xγ(1)|X0 ∈ L(1)

]
.

With the same notation let us de�ne the sequences {G(k)}k≥1 and {U(k)}k≥1 as

G(k) = P
[
γ(0) < γ(k + 1),Xγ(0)|X0 ∈ L(1)

]
,

U(k) = P
[
γ(1) < γ(0), γ(1) < γ(k + 1),Xγ(1)|X0 ∈ L(1)

]
.

In this way Gij(k) is the probability that the process moves from the state (1, i)
at time 0 to the level L(0) in a �nite amount of time by visiting the speci�c state
(0, j) under the taboo of the states in L(k + 1) and higher level. Similarly Uij(k)
is the probability that, starting from (1, i), the process returns to the level L(1) by
visiting the speci�c state (1, j) under taboo of the states in L(0), L(k+1) and higher
level.

Theorem 2.5. The sequences {G(k)}k≥1 and {U(k)}k≥1 are connected by the iter-

ations

G(0) = 0,

U(k) = A0 +A1G(k − 1), (2.10)

G(k) = (I − U(k))−1A−1 for k ≥ 1. (2.11)

Moreover they are monotonically increasing and converge to the operators G and

U , respectively.
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Proof. If X0 ∈ L(1), then necessarily 0 < γ(2) < γ(3) < . . . because the process
may not increase by more than one level at a time. For the same reason, we have
that γ(k) ≥ k − 1, so that limk→∞ γ(k) = ∞. Thus the last statement is obvious,
and we only need to verify that the two sequences satisfy (2.10) and (2.11). Starting
from X0 ∈ L(1), the process can make a passage into L(0), avoiding L(k + 1), in
two mutually exclusive ways. One way is to visit L(0) at the very �rst step with
probabilities recorded in A−1; the other way is to return to L(1) avoiding L(0) and
L(k + 1) with probabilities recorded in U(k) and to start all over again from Xγ(1).
This leads to the equation

G(k) = A−1 + U(k)G(k);

since U(k) ≤ U , then I − U is invertible and we immediately obtain (2.10).
To prove (2.11) we observe that for k = 1 the following equivalence of events

holds
[γ(1) < γ(0), γ(1) < γ(2)] ≡ [γ(1) = 1] ≡ [X1 ∈ L(1)] ,

so that U(1) = A0. For k ≥ 2, in order to have γ(1) < γ(0), it is necessary either
that the process remains in L(1) at the �rst step with probabilities recorded in A0,
or that it moves up to L(2), with probabilities recorded in A1, from which level the
process will eventually have to return to L(1) avoiding L(k+ 1). Thus, we have that

U(k) = A0 +A1G̃(k),

where
G̃(k) = P

[
γ(1) < γ(k + 1),Xγ(1)|X0 ∈ L(2)

]
.

We conclude the proof by observing that G̃(k) = G(k− 1), because of the homo-
geneity of the process.

Now we have all the instruments we need to prove the main theorem of this
section about operators G, R and U being the minimal solution of certain quadratic
equation.

Theorem 2.6. The operators U and G are the minimal nonnegative solutions of the

system

X = A0 +A1Y, Y = (I −X)−1A−1. (2.12)

The operators U and R are the minimal nonnegative solutions of the system

X = A0 +A−1Z, Z = A1(I −X)−1. (2.13)

The operator U is the minimal nonnegative solution of the equation

X = A0 +A1(I −X)−1. (2.14)
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The operator G is the minimal nonnegative solution of the equation

Y = A−1 +A0Y +A1Y
2. (2.15)

The operator R is the minimal nonnegative solution of the equation

Z = A1 + ZA0 + Z2A−1. (2.16)

Proof. As we have seen the operators U , G and R are solutions of the stated equa-
tions, now we have only to prove their minimality.

Assume that (X∗, Y ∗) is another nonnegative solution of (2.12). Since Y ∗ ≥ 0,
we have that U(1) = A0 ≤ A0 + A1Y

∗ = X∗. Now let us assume that U(k) ≤ X∗

for some k. Then

G(k) = (I − U(k))−1A−1 =
∑
j≥0

U(k)jA−1 ≤
∑
j≥0

(X∗)jA−1 = Y ∗

and
U(k + 1) = A0 +A1G(k) ≤ A0 +A1Y

∗ = X∗.

By induction, we obtain that U(k) ≤ X∗ and G(k) ≤ Y ∗ for al k, so the inequal-
ities hold at the limit, U = limk→∞ U(k) ≤ X∗ and G = limk→∞G(k) ≤ Y ∗.

To prove the second statement, we de�ne the following sequence

R(k) = A1

∑
j≥0

U(k)j ;

since {U(k)} monotonically converges to U , then {R(k)} monotonically converges to
R = A1

∑
j≥0 U

j . Now we proceed in a manner exactly similar to that of the �rst
statement.

In the same way we obtain also the third statement, while the fourth is obtained
by contradiction. Let us assume that there exists a nonnegative solution Y ∗ of (2.15)
such that Y ∗ ≤ G, Y ∗ 6= G. By de�ning X∗ = A0 +A1Y

∗, we have that

Y ∗ = A−1 + (A0 +A1Y
∗)Y ∗

= A−1 +X∗Y ∗ = A−1 +X∗Y ∗ + (X∗)2Y ∗ = . . .

=
∑
j≥0

(X∗)jA−1.

The series converges since X∗ = A0 +A1Y
∗ ≤ A0 +A1G = U . We thus �nd that

(X∗, Y ∗) is a solution of the system (2.12) and is smaller than (U,G), this is absurd
because of what we have proved in the �rst statement.
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For the last statement, we assume that Z∗ is a nonnegative solution of (2.16)
and we de�ne X∗ = A0 + Z∗A−1. Since Z

∗ ≥ 0, we have

Z∗ ≥ A1 + Z∗A0 ≥ A1

∑
j≥0

Aj0 = A1(I − U(1))−1 = R(1).

Now let us assume that R(k) ≤ Z∗ for some k, then

U(k + 1) = A0 +A1G(k)

= A0 +A1(I − U(k))−1A−1

= A0 +R(k)A−1

≤ A0 + Z∗A−1 = X∗,

by the inductive hypothesis. We also have that

Z∗ = A1 + Z∗(A0 + Z∗A−1)

= A1 + Z∗X∗

≥ A1 + Z∗U(k + 1)

≥ A1(I − U(k + 1))−1

= R(k + 1),

which proves the induction step. Thus, R = limk→∞R(k) ≤ Z∗ which concludes the
proof.

2.3 Quasi-Toeplitz operators

The operators Ai and Bj for i = −1, 0, 1 and j = 0, 1 share the same special
structure that is the topic we focus on in this section.

First we give a short list of well known results about linear operators, especially
from the spectral point of view, for an extended dissertation on this argument, we
refer to [10].

We shall denote by B(X) the space of all linear bounded operators A : X 7→ X
and we recall that it is a Banach space if X is a Banach space too with the natural
induced norm

‖A‖ = ‖A‖B(X) = sup
‖x‖X=1

‖Bx‖X .

The spectrum ΛA of A ∈ B(X) is given by the set

ΛA = {z ∈ C : zI −A is not invertible}.
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It is well known that ΛA is a closed subset of C. The real number δ(A) =
supλ∈ΛA

|λ|, called the spectral radius of A, is such that

lim
k→∞
‖Ak‖

1
k = δ(A),

moreover ‖Ak‖
1
k ≤ ‖A‖, so that δ(A) ≤ ‖A‖. We recall also that, if δ(A) < 1 then

I −A is invertible and (I −A)−1 =
∑∞

i=0A
i.

The following remark will be useful in next chapter.

Remark 2.3. From the limit property of ‖Ak‖
1
k it follows that for any ε > 0 there

exists an integer N > 0 such that for any k ≥ N it holds ‖Ak‖
1
k < δ(A) + ε.

In particular, if δ(A) < 1 and if ε > 0 is such that δ(A) + ε < 1, then ‖Ak‖ <
(δ(A) + ε)k < 1. Thus, if k ≥ N and k = qN + r, where q and r are quotient and
remainder of the division of k by N , one �nds that ‖Ak‖ ≤ ‖Ak‖‖AN‖q. This implies
that if δ(A) < 1, then limk→∞‖Ak‖ = 0.

We write ρ(A) for the set of all values z ∈ C such that (zI − A) is invertible, so
we have that ρ(A) = C r ΛA is an open subset of C. The map RA : ρ(A) 7→ B(X)
de�ned by

RA(z) := (zI −A)−1

is called the resolvent operator.
In the following of the section our main goal is to construct a space which these

operator belong to and an approximate matrix arithmetic in it. In order to do this
we recall the following

De�nition 2.1. A Banach Algebra B is a normed space such that

� it is complete in the metric induced by the norm,

� the norm is submultiplicative,

� it is closed under product.

Toeplitz operators can be studied from a functional point of view, by considering
the following sets

W =

{
a(z) : ∂B→ C : a(z) =

∑
i∈Z

aiz
i,
∑
i∈Z
|ai| <∞

}
,

W1 =

{
a(z) ∈W : a′(z) :=

∑
i∈Z

iaiz
i−1 ∈W

}
,

in the following, we denote by a+(z) and by a−(z) the power series de�ned by the
coe�cients of a(z) with positive and with negative powers, respectively, that is,
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a+(z) =
∑

i∈Z+
aiz

i and a−(z) =
∑

i∈Z− aiz
i, so that a(z) = a0 +a−(z)+a+(z). We

associate with the Laurent series a(z), and with the power series b(z) =
∑

i≥0 biz
i

the following operators

T (a) =(tij) := aj−i,

H(b) =(hij) := bi+j−1, i, j ∈ Z+,

we refer to a(z) as the symbol of the operator A = T (a) and with a slight abuse of
notation we write A ∈W. It is well known that both W and W1 are Banach algebras
with the norms ‖A‖W =

∑
i∈Z|ai| and ‖A‖W1 =

∑
i∈Z|ai|+

∑
i∈Z|iai|, moreover the

following Theorem holds, whose proof can be found in [9] as well as the proofs of the
facts mentioned above.

Theorem 2.7. For a(z), b(z) ∈ W let c(z) = a(z)b(z). Then we have T (a)T (b) =
T (c) − H(a−)H(b+). Moreover, for any a(z) ∈ W and for any p ≥ 1, including
p =∞, we have

‖T (a)‖p ≤ ‖a‖W, ‖H(a−)‖p ≤ ‖a−‖W, ‖H(a+)‖p ≤ ‖a+‖W.

The operators Ai and Bj for i = −1, 0, 1 and j = 0, 1 in general does not belong
to both W and W1, so we need to introduce the following operator set

F =

F = (fij)i,j∈Z+ ,
∑
i,j∈Z+

|fij | <∞

 .

Let us observe that F correspond with the space `1 if we look at its operators as
in�nite vectors. We have the following

Lemma 2.2. The space F equipped with matrix sum and multiplication and with the

norm ‖F‖F =
∑

i,j∈Z+
|fij | is a Banach algebra over C.

Proof. We need to show that given E,F ∈ F and α ∈ C it holds

1. αE ∈ F,

2. E + F ∈ F,

3. EF ∈ F and ‖EF‖F ≤ ‖E‖F‖F‖F,

4. (F, ‖·‖F) is a complete metric space.

Clearly,
∑

i,j∈Z+
|αeij | = |α|

∑
i,j∈Z+

|eij | <∞ which proves 1. By the triangular
inequality one obtains that

∑
i,j∈Z+

|eij + fij | ≤
∑

i,j∈Z+
|eij | +

∑
i,j∈Z+

|fij | < ∞

25



Chapter 2. Matrix geometric approach

which implies 2. If H = EF = (hij) then hij =
∑

r∈Z+
|eirfrj | so that, de�ning

αr =
∑

i∈Z+
|eir|, and βr =

∑
j∈Z+
|frj |, we have

‖EF‖F ≤
∑

i,j,r∈Z+

|eir||frj | =
∑
r∈Z+

αrβr ≤

∑
r∈Z+

αr

∑
r∈Z+

βr

 = ‖E‖F‖F‖F,

which proves 3. Finally, we observe that any operator E ∈ F can be viewed as a
vector v = (vk)k∈Z+ obtained by suitably ordering the entries eij . Moreover, the
norm ‖·‖F corresponds to the `1 norm in the space of in�nite vectors having �nite
sum of their moduli. This way, the space F actually coincides with `1, which is a
Banach space. Thus, we get 4.

Thanks to F we are now able to build the right spaces for our operators:

QT : = {T (a) + F, a ∈W, F ∈ F} ,
QT1 : = {T (a) + F, a ∈W1, F ∈ F} .

Observe that given A ∈ QT there is a unique way to decompose it. In fact,
suppose by contradiction that there exist a1(z), a2(z) ∈ W and E1, E2 ∈ F with
a1 6= a2 and E1 6= E2 such that A = T (a1) +E1 = T (a2) +E2. Then we should have
E1 − E2 = T (a2) − T (a1) = T (a2 − a1), hence ‖E1 − E2‖F = ‖T (a2 − a1)‖F. On
the other hand, since T (a2− a1) 6= 0 we have ‖T (a2− a1)‖F =∞, which contradicts
the fact that E1 − E2 ∈ F. Obviously the same result holds for A ∈ QT1, since
QT1 ⊂ QT.

Lemma 2.3. The set QT endowed with the norm ‖T (a) + E‖QT = ‖a‖W + ‖E‖F is

a Banach space.

Proof. It clearly holds the isomorphism QT ' W ⊕ F. Since both W and F are
Banach spaces, the composition of the 1-norm of R2 with the vector valued function
T (a) + E 7→ (‖a‖W, ‖E‖F) makes W⊕ F a complete metric space.

The symbols associated with the operators in the process we are dealing with are
composed by a �nite sum, so they belong to both QT and QT1. As we will see in
the following, QT1 has more structure properties than QT and so it will be the space
in which we will develop our theory. The next statements have the common aim to
prove that QT1 is a Banach algebra.

Lemma 2.4. Let a(z), b(z) ∈W1 and set c(z) = a(z)b(z). Then T (a)T (b) = T (c) +
E, where E ∈ F. Moreover,

‖E‖F ≤ ‖H(a−)‖F‖H(b+)‖F = ‖(a−)′‖W‖(b+)′‖W ≤ ‖a′‖W‖b′‖W.
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Proof. From Theorem 2.7 we deduce that T (a)T (b) = T (c) + E where we set E =
−H(a−)H(b+).

Let us prove that H(a−), H(b+) ∈ F. We have ‖H(b+)‖F =
∑

i,j∈Z+
|bi+j−1|.

Setting k = i + j − 1 we may write ‖H(b+)‖F =
∑

k∈Z+
k|bk| which is �nite since

b(z) ∈ W1. The same argument applies to H(a−), F is a normed matrix algebra
therefore ‖E‖F ≤ ‖H(a−)‖F‖H(b+)‖F < ∞. We conclude the proof by observing
that the quantities

∑
i∈Z+

i|a−i| and
∑

i∈Z+
i|bi| coincide with the W-norms of the

�rst derivatives of the functions a−(z) and b+(z), respectively, and that hold the
inequalities ‖(a−)′‖W ≤ ‖a′‖W and ‖(b+)′‖W ≤ ‖b′‖W.

Theorem 2.8. Let A,B ∈ QT1, where A = T (a) + Ea and B = T (b) + Eb. Then

we have C = AB = T (c) + Ec ∈ QT1 with c(z) = a(z)b(z) and

‖Ec‖ ≤ ‖H(a−)‖W‖H(b+)‖W + ‖a‖W‖Eb‖F + ‖b‖W‖Ea‖F + ‖Ea‖F‖Eb‖F.

Proof. Applying Theorem 2.7 yields C = T (c) + Ec, where

Ec := −H(a−)H(b+) + T (a)Eb + EaT (b) + EaEb. (2.17)

Therefore it is su�cient to prove that ‖Ec‖ is �nite. From Lemmas 2.2 and 2.4
it follows that both ‖H(a−)H(b+)‖F and ‖EaEb‖F are �nite. It remains to show
that ‖EaT (b)‖F and ‖T (a)Eb‖F are �nite. We prove this property only for the �rst
since the boundedness of the other matrix norm follows by transposition, in fact, for
any F ∈ F one has ‖F‖F = ‖F T ‖F and T (a)T = T (â) where â(z) = a(z−1) and
‖a‖W = ‖â‖W.

Denote H = T (a)Eb = (hij) and Eb = (eij). We have hij =
∑

r≥1 ar−ierj so that

‖H‖F =
∑
i,j∈Z+

|hij | ≤
∑
i,j∈Z+

∑
r≥1

|ar−ierj |,

substituting k = r − i yields

‖H‖F ≤
∑
k∈Z+

|ak|
∑
j≥1

∑
i≥−k+1

|ek+ij |.

Since
∑

j≥1

∑
i≥−k+1|ek+ij | =

∑
j≥1

∑
i≥1|eij | = ‖Eb‖F for any k, we have

‖H‖F ≤
∑
k∈Z
|ak|‖Eb‖F = ‖a‖W‖Eb‖F <∞.

Thus taking norms in (2.17) yields

‖Ec‖ ≤ ‖H(a−)‖F‖H(b+)‖F + ‖a‖W‖Eb‖F + ‖Ea‖F‖b‖W + ‖Ea‖F‖Eb‖F

which completes the proof.
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Observe that we may rewrite the inequality of the previous Theorem as

‖Ec‖ ≤ ‖a′‖W‖b′‖W + ‖a‖W‖Eb‖F + ‖b‖W‖Ea‖F + ‖Ea‖F‖Eb‖F. (2.18)

Theorem 2.9. The set QT1 endowed with the norm ‖T (a)+E‖QT1 = ‖a‖W1 +‖E‖F
is a Banach algebra.

Proof. Theorem 2.8 ensures the closure of QT1 under multiplication. To prove the
submultiplicative property of the norm we observe that for any A,B ∈ QT1, with
A = T (a) + Ea and B = T (b) + Eb, we have

‖ab‖W1 = ‖ab‖W + ‖a′b+ ab′‖W ≤ ‖a‖W‖b‖W + ‖a′‖W‖b‖W + ‖a‖W‖b′‖W. (2.19)

Since ‖AB‖QT1 = ‖ab‖W1 + ‖Ec‖F, for c(z) = a(z)b(z), and where Ec is de�ned
as in Theorem 2.8, by applying (2.18) and (2.19) we obtain

‖AB‖QT1 ≤‖ab‖W1 + ‖a′‖W‖b′‖W + ‖a‖W‖Eb‖F + ‖b‖W‖Ea‖F + ‖Ea‖F‖Eb‖F
≤‖a‖W‖b‖W + ‖a′‖W‖b‖W + ‖a‖W‖b′‖W

+ ‖a′‖W‖b′‖W + ‖a‖W‖Eb‖F + ‖b‖W‖Ea‖F + ‖Ea‖F‖Eb‖F
=
(
‖a‖W + ‖a′‖W

)
+
(
‖b‖W + ‖b′‖W

)
+ ‖a‖W‖Eb‖F + ‖b‖W‖Ea‖F + ‖Ea‖F‖Eb‖F
≤ (‖a‖W1 + ‖Ea‖F) + (‖b‖W1 + ‖Eb‖F)

=‖A‖QT1‖B‖QT1 .

Concerning the completeness, observe that the isomorphism QT1 'W1⊕F holds.
Since both W1 and F are Banach spaces, the composition of the 1-norm of R2 with
the vector valued function T (a) + E 7→ (‖a‖W1 , ‖E‖F) makes W1 ⊕ F a complete
metric space.

2.3.1 QT1 arithmetic

The properties that we have described in the previous sections imply that any
�nite computation which takes as input a set of QT1 operators and that performs
additions, multiplications, inversions, and multiplications by a scalar, generates re-
sults that belong to QT1. If the computation can be carried out with no breakdown,
say caused by singularity, then the output still belongs to QT1.

In order to manipulate QT1 operators e�ectively we have to provide a simple and
e�ective way of representing them, up to an arbitrarily small error, by means of a
�nite number of parameters.

Given A = T (a) + Ea, an element in QT1, since the symbol a(z) belongs to W1,
and since the correction matrix Ea has entries with �nite sum of their moduli, we
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may write A through its truncated form Ã. That is, for any ε > 0 there exist integers
n−, n+, k−, k+ such that

A = Ã+ Ea, ‖Ea‖QT1 ≤ ε, Ã = T (ã) + Ẽa, ã(z) =

n+∑
i=−n−

aiz
i,

where Ẽa = (ẽij), is such that ẽij = eij for i = 1, . . . , k− and j = 1, . . . , k+, while
ẽij = 0 elsewhere.

In this way, we can approximate any given QT1 operator A, to any desired pre-
cision, with a QT1 operator Ã where the Toeplitz part is banded and the correction
Ẽa has a �nite dimensional nonzero part.

Remark 2.4. In the context of our process the operators we are concerning of are
already in a truncated form, since the Toeplitz part has only three bands and the
correction has at most two nonzero elements, so they can be represented with ε = 0.

From the computational point of view, it is convenient to express the matrix
Ẽa by means of a factorization of the kind Ẽa = FaG

T
a , where matrices Fa and

Ga have a number of columns given by the rank of Ẽa and in�nitely many rows. In
this way, in presence of low-rank corrections, the storage is reduced together with the
computational cost for performing matrix arithmetic. This representation in product
form can be obtained by means of SVD up to some error which can be controlled at
run time and which can be included in Ea.

In the following, we represent the truncation of a QT1 operator A with Ẽa = FaG
T
a

where Fa has fa nonzero rows and ka columns, Ga has ga nonzero rows and ka
columns, and the error Ea has a su�ciently small norm. This way, Ẽa has fa nonzero
rows, ga nonzero columns and rank at most ka.

With this notation we may easily implement the operations of addition, mul-
tiplication and inversion of two QT1 operator Ã and B̃, which are the truncated
representations of two QT operator A and B, that is

A = Ã+ Ea, Ã = tr(A) = T (ã) + Ẽa, B = B̃ + Eb, B̃ = tr(B) = T (̃b) + Ẽb.

Denoting by ? any arithmetic operation, let us de�ne C = A?B, Ĉ = Ã ? B̃ and
C̃ = tr(Ĉ). Moreover we de�ne the total error in the operation ? as Etotc = C − C̃,
the local error as Elocc = Ĉ − C̃ and the inherent error as Einc = C − Ĉ so that
Etotc = Einc + Elocc .

Addition. Let ã(z) and b̃(z) be the Laurent polynomials of degrees n±a and n±b
respectively, associated to the truncation of A and B and Êa = FaG

T
a , Êb = FbG

T
b .

For the operator C = A+B we have the representation

C = Ã+ B̃ + Ea + Eb,
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from which we deduce that the inherent error is Einc = Ea + Eb. On the other hand,
concerning Ĉ = Ã+ B̃ we have

Ĉ = T (ã+ b̃) + Ẽa + Ẽb,

where ã(z) + b̃(z) is a Laurent polynomial of degrees n−c = max(n−a , n
−
b ) and n+

c =
max(n+

a , n
+
b ), while

Ec = Ẽa + Ẽb = FcG
T
c , Fc = [Fa, Fb] , Gc = [Ga, Gb] ,

where fc = max(fa, fb) and gc = max(ga, gb) are the number of nonzero rows of Fc
and Gc, respectively, and kc = ka + kb is the number of columns of Fc and Gc.

The Laurent polynomial ã(z) + b̃(z) can be truncated and replaced by a Laurent
polynomial c̃(z) of possibly less degree. Also the value of kc, can be reduced and
the operators Fc, Gc can be compressed, by using a technique, explained in next
sections, which guarantees a local error with norm bounded by a given ε. Denoting
by F̃c and G̃c the operators obtained after compressing Fc and Gc, we have

C̃ = tr(Ĉ) = T (c̃) + Ẽc + Elocc , Ẽc = F̃cG̃
T
c ,

where Elocc = Ã+ B̃ − tr(Ã+ B̃). This way we have

A+B = T (c̃) + Ẽc + Elocc + Einc .

Multiplication. For the product C = AB we have the equation

AB = ÃB̃ + ÃEb + EaB̃ + EaEb

from which we deduce that the inherent error is Einc = ÃEb +EaB̃+EaEb. Moreover
we have

Ĉ = ÃB̃ = T (ã)T (̃b) + T (ã)Eb + EaT (̃b) + EaEb

= T (ãb̃)−H(ã−)H (̃b+) + T (ã)Eb + EaT (̃b) + EaEb

= T (ãb̃) + Ec,

where Ec := −H(ã−)H (̃b+) + T (ã)Eb + EaT (̃b) + EaEb. Since ã−(z) and b̃+(z) are
polynomials, the operatorsH(ã−) andH (̃b+) have a �nite number of nonzero entries.
Therefore, we may factorize the product H(ã−)H (̃b+) in the form FGT . Thus, the
operator Ec can be written as Ec = FcG

T
c where

Fc = [F, T (ã)Fb, Fb] , Gc =
[
G,Gb, T (̃b)TGa +Gb(F

T
b Ga)

]
.
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This provides the �nite representation of the product Ĉ = ÃB̃ with n−c = n−a + n−b ,
n+
c = n+

a +n+
b , fc = max(fb+n

−
a , fa), fc = max(n+

b , ga+n−b , gb) and kc = ka+kb+n
+
b .

Also in this case we may apply a compression technique for reducing the degree
of the Laurent polynomial ã(z)̃b(z). We introduce a local error Elocc = ÃB̃− tr(ÃB̃),
denoting by c̃(z) the truncation of the Laurent polynomial ã(z)̃b(z) and with F̃cG̃

T
c

the compression of FcG
T
c , we have

Ĉ = ÃB̃ = T (c̃) + F̃cG̃
T
c + Elocc .

This way we have

C = AB = T (c̃) + F̃cG̃
T
c + Elocc + Einc .

which expresses the result C of the multiplication in terms of the approximated value
Ĉ = T (ĉ) + Êc, the local error E

loc
c and the inherent error Einc . The overall error is

given by Ec = Elocc + Einc .

Inversion. First, we consider the problem of inverting A = T (a), that is the special
case in which Ea = 0. For this, let us recall the following well known theorems, the
�rst relates the invertibility of the operator T (a) to the winding number of a(z), that
is, the (integer) number of times that the complex number a(cos θ + i sin θ), where
i2 = −1, winds around the origin as θ moves from 0 to 2π; the second is about
Wiener-Hopf factorization of a(z).

Theorem 2.10. Let a(z) be a continuous function from ∂B in C. Then the linear

operator T (a) is invertible if and only if the winding number of a(z) is zero and a(z)
does not vanish on ∂B.

Theorem 2.11. Let a(z) ∈ W be a function which does not vanish for z ∈ ∂B and

such that its winding number is κ. Then a(z) admits the Wiener-Hopf factorization

a(z) = u(z)zκl(z),

where u(z) =
∑

i≥0 uiz
i, l(z) =

∑
i≥0 liz

−i belong to W and u(z), l(z−1) do not

vanish in the closed unit disk. If κ = 0 the factorization is said canonical.

Assume that a(z) ∈ W1 does not vanishes on the unit circle and its winding
number is zero, from theorem 2.11 we deduce the following operator factorization

T (a) = T (u)T (l),

where T (l) is lower triangular and T (u) is upper triangular. Since u(z) and l(z−1)
do not vanish in the unit disk, the functions u(z) and l(z) have inverse in W1, such
that T (u)T (u−1) = T (u−1)T (u) = I, and T (l)T (l−1) = T (l−1)T (l) = I, so we have

T (a)−1 = T (l)−1T (u)−1 = T (l−1)T (u−1),
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and from what we have seen until now we get

T (a)−1 = T (a−1)−H((l−1)−)H((u−1)+) = T (a−1)−H(l−1)H(u−1) ∈ QT1. (2.20)

Thus, a �nite representation of A−1 is obtained by truncating the Laurent series
of 1

a(z) to a Laurent polynomial and by approximating the operators H((l−1)−) and

H((u−1)+) by means of operators having a �nite number of nonzero entries, an
in�nite number of rows and the same �nite number of columns. The latter operation
can be achieved by truncating the power series l−1(z) and u−1(z) to polynomials and
by numerically compressing the product of the Hankel operators obtained this way.

Now consider the more general case of the matrix A = T (a) + FaG
T
a which

we assume already in its truncated form. Assume T (a) invertible and write A =
T (a)(I + T (a)−1FaG

T
a ). Denoting for simplicity U = T (u), L = T (l) we have

(T (a) + FaG
T
a )−1 = T (a)−1 − L−1(U−1Fa)Y

−1(GTaL
−1)U−1,

where Y = I +GTaL
−1U−1Fa is a �nite matrix which is invertible if and only if A is

invertible. This way, the algorithm for computing A−1 in its �nite representation is
given by the following steps:

1. compute the spectral factorization a(z) = u(z)l(z);

2. compute the coe�cients of the power series ũ(z) = 1
u(z) and l̃(z) = 1

l(z) so that

U−1 = T (ũ) and L−1 = T (l̃);

3. represent the operator H = L−1U−1 as T (c) + FhG
T
h where c(z) = l̃ũ;

4. compute the products G1 = T (l̃)Ga and F1 = T (ũ)Fa;

5. compute Y = I +GT1 F1, F2 = F1Y
−1, F3 = T (l̃)F2 and G2 = T (ũ)G1;

6. output the coe�cients of c(z) and the operators Fc = [Fh, F3] and Gc =
[Gh, G2].

Compression Given the matrix E in the form E = FGT where F and G are
matrices of size m × k and n × k, respectively, we aim to reduce the size k and to
approximate E in the form F̃ G̃T where F̃ and G̃ are matrices of size m× k̃ and n× k̃
with k̃ < k.

We use the following procedure. Compute the pivoted (rank-revealing) QR fac-
torizations F = QfRfPf and G = QgRgPg, where Pf and Pg are permutation
matrices, Qf and Qg are orthogonal and Rf and Rg are upper triangular; remove
the last negligible rows from the matrices Rf and Rg, remove the corresponding

columns of Qf and Qg. In this way we obtain matrices R̂f , R̂g, Q̂f , Q̂g such that, up
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to within a small error, satisfy the equations F = R̂f Q̂fPf , F = R̂gQ̂gPg. Then, in

the factorization FGT = F = Q̂f (R̂fPfP
T
g R̂

T
g )Q̂Tg , compute the SVD of the matrix

in the middle R̂fPfP
T
g R̂

T
g = UΣV T , and replace U , Σ and V with matrices Û , Σ̂, V̂ ,

obtained by removing the singular values σi and the corresponding singular vectors
if σi < εσ1, where ε is a given tolerance. In output, the matrices F̃ = Q̂f Û Σ̂

1
2 and

F̃ = Q̂gV̂ Σ̂
1
2 are delivered.

All the operations cited above are fully explained in [6] and are implemented in
a Matlab toolbox which is introduced in [7].
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Chapter 3

Cyclic Reduction in a Banach

Algebra

3.1 Cyclic Reduction in the Finite Case

The Cyclic Reduction algorithm is one of the most powerful methods to calculate
the invariant vector of a QBD with �nite size blocks, for a vast dissertation about
the properties of this algorithm we refer to [8]. Despite its success into the Markov
chain �eld, the original formulation of the Cyclic Reduction appears in the context
of solving the Poisson equation over a rectangle. Discretizing this problem with
�nite-di�erences formulas leads to a block linear system of the form

A C 0

B A
. . .

. . .
. . . C

0 B A




u1

u2
...
un

 =


b1

b2
...
bn


where A,B,C ∈ Rm×m and ui,bi ∈ Rm. Assuming that n = 2s − 1, we apply an
odd-even permutation to both block-columns and block-rows in the above system
and get 

A 0 C 0
. . . B

. . .
. . .

. . . C
0 A 0 B
B C 0 A 0

. . .
. . .

. . .

0 B C 0 A





u1

u3
...

u2s−1

u2

u4
...

u2s−2


=



b1

b3
...

b2s−1

b2

b4
...

b2s−2


.

34



Chapter 3. Cyclic Reduction in a Banach Algebra

Now, rewrite the above system as[
H11 H12

H21 H22

] [
uodd
ueven

]
=

[
bodd
beven

]
,

assume A nonsingular, eliminate the odd block components by means of block Gaus-
sian elimination, that is compute the Schur complement ofH11 and obtain the smaller
system of block size 2s−1 − 1:[

H22 −H21H
−1
11 H12

]
ueven = b(1), b(1) = beven −H21H

−1
11 bodd.

Surprisingly, the Schur complement has the same structure as the original matrix
and the above system takes the form

A(1) C(1) 0

B(1) A(1) . . .
. . .

. . . C(1)

0 B(1) A(1)




u2

u4
...

u2s−2

 =


b

(1)
1

b
(1)
2
...

b
(1)
2s−1−1


where

b
(1)
i = b2i −BA−1b2i−1 − CA−1b2i+1, i = 1, . . . , 2s−1 − 1

and

A(1) = A−BA−1C − CA−1B,

B(1) = −BA−1B,

C(1) = −CA−1C,

while for the odd indexed block components one has

Au2i−1 = b2i−1 −Bu2i−2 − Cu2i+2, i = 1, . . . , 2s−1,

where we set u0 = un+1 = 0.
This process, can be cyclically repeated and generates the sequence of systems

of block size 2s−k − 1:
A(k) C(k) 0

B(k) A(k) . . .
. . .

. . . C(k)

0 B(k) A(k)




u2k

u2k+1

...
u2s−2k

 =


b

(k)
1

b
(k)
2
...

b
(k)

2s−k−1

 ,
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for k = 0, 1, . . . , s− 1. The block matrices are de�ned by

A(k+1) = A(k) −B(k)
(
A(k)

)−1
C(k) − C(k)

(
A(k)

)−1
B(k),

B(k+1) = −B(k)
(
A(k)

)−1
B(k),

C(k+1) = −C(k)
(
A(k)

)−1
C(k),

while for the vectors the following recursion holds

b
(k+1)
i = b

(k)
2i −B

(k)
(
A(k)

)−1
b

(k)
2i−1 − C

(k)
(
A(k)

)−1
b

(k)
2i+1, i = 1, . . . , 2s−1 − 1

for k = 0, 1, . . . , q− 2 and A(0) = A, B(0) = B, C(0) = C, provided that detA(k) 6= 0
for any k. At the end of the process one recovers u2s−1 by solving the following
system of size m:

A(s−1)u2s−1 = us−1
1 ,

then, back substitution, performed by solving the system

A(k)u(2i−1)2k = b
(k)
2i−1 −B

(k)u(2i−2)2k − C(k)u(2i)2k ,

for i = 1, 2, . . . , 2s−k−1 and k = s − 2, . . . , 0 allows one to compute the remaining
unknowns.

3.2 Factorization and quadratic matrix equations

As we have seen in the previous chapter, the context of a Banach algebra is the
most natural space to handle with the operators which arise in our model. Because
of this, in this section, we assume that the operators A−1, A0 and A1 belong to a
Banach algebra B with norm ‖·‖ and identity I.

In the �nite case Cyclic Reduction is one of the most powerful algorithms known
in literature to solve the quadratic matrix equations. Now we want to apply Cyclic
Reduction iterations substituting all the matrices with Banach algebra elements, this
idea leads to the following sequences

S(h) = (I −A(h)
0 )−1,

A
(h+1)
0 = A

(h)
0 +A

(h)
1 S(h)A

(h)
−1 +A

(h)
−1S

(h)A
(h)
1 ,

A
(h+1)
1 = A

(h)
1 S(h)A

(h)
1 ,

A
(h+1)
−1 = A

(h)
−1S

(h)A
(h)
−1

Â(h+1) = Â(h) +A
(h)
−1S

(h)A
(h)
1 ,

Ã(h+1) = Ã(h) +A
(h)
1 S(h)A

(h)
−1 ,
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Chapter 3. Cyclic Reduction in a Banach Algebra

for h = 0, 1, . . . and with A
(0)
0 = Ã(0) = Â(0) = A0 ∈ B, A

(0)
1 = A1 ∈ B and

A
(0)
−1 = A−1 ∈ B.
In the following of the chapter we report some of the most important results

about Cyclic Reduction in a Banach algebra that can be found in [5], [6] and [8].
Let us introduce the Laurent operator polynomials

ϕ(z) = A−1z
−1 +A0 − I +A1z, ϕ(h)(z) = A

(h)
−1z

−1 +A
(h)
0 − I +A

(h)
1 z,

we have the following Lemma about their structure.

Lemma 3.1. Assume that ϕ(z) is invertible for z ∈ A(t−1, t) for a given t > 1.
Then ψ(z) = ϕ(z)−1 =

∑
j∈Z z

jHj with Hj ∈ B. Moreover for any t−1 < s < t we
have

‖Hj‖ ≤M(s)s−j

with M(s) := maxz∈∂B‖ϕ(zs)‖.

Proof. Let s such that t−1 < s < t. Since ϕ(z) is invertible for |z| = s, then ‖ψ(z)‖
depends continuously on z, so that the value M(s) is well de�ned and �nite. The
coe�cients of a Laurent series can be represented in the following integral form

Hj =
1

2πi

ˆ
|z|=s

z−(j+1)φ(z)dz,

where the integral is meant componentwise. Applying the norm on both sides yields

‖Hj‖ ≤
1

2π

ˆ
|z|=s

s−(j+1)‖φ(z)‖dz ≤M(s)s−j .

There exist a special factorization of ϕ(z) under certain condition on the operators
R and G, as we state in the following Lemma whose proof can be found in [14].

Lemma 3.2. The equations (2.16) and (2.15) have solutions respectively R and G
with disjoint spectra if and only if there exists the following factorization

ϕ(z) = (I − zR)W (I − z−1G), (3.1)

for some invertible W ∈ B.

Theorem 3.1. Assume that there exists R,G ∈ B with disjoint spectra which solve

(2.16) and (2.15) respectively, or equivalently that

ϕ(z) = (I − zR)W (I − z−1G),
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for some invertible W ∈ B. Moreover, assume that ΣR,ΣG ∈ t−1B for some t > 1.
Then ϕ(z) is invertible for z ∈ A(t−1, t), the operator

H0 =
∞∑
j=0

GjW−1Rj ,

belongs to B, and setting Hi = H0R
i for i > 0 and Hi = G−iH0 for i < 0, it follows

that

ψ(z) = ϕ(z)−1 =
∑
i∈Z

ziHi, z ∈ A(t−1, t),

with Hi ∈ B. Finally, if H0 is invertible, then G = H−1H
−1
0 and R = H−1

0 H1.

Proof. Since ΛG,ΛR ⊂ t−1B, then δ(zG), δ(zR) < 1 for z ∈ A(t−1, t), so that I− zG
and I − z−1R are invertible. Thus, from (3.1) we obtain

ψ(z) = (I − z−1G)−1W−1(I − zR)−1 =

∑
j≥0

z−jGj

W−1

∑
j≥0

zjRj

 .

This shows that ϕ(z) is invertible for any z ∈ A(t−1, t). In view of Lemma 3.1 we
can write ψ =

∑
i∈Z z

iHi. By equating the terms in the same power of z in these two
expressions of ψ(z), we �nd that the coe�cients Hj satisfy the following equations

H0 =
∑
j≥0

GjW−1Rj , Hi =

{
H0R

i i > 0,

G−iH0 i < 0.

It remains to prove that H
(n)
0 =

∑n
j=0G

jW−1Rj forms a Cauchy sequence, so

that there exists limn→∞H
(n)
0 = H0 ∈ B. In order to do this, for n > m we consider

H
(n)
0 −H(m)

0 =
n∑

j=m+1

GjW−1Rj = Gm+1

n−m−1∑
j=0

GjW−1Rj

Rm+1.

by taking the norm on both sides we get

‖H(n)
0 −H(m)

0 ‖ ≤ ‖Gm+1‖‖S‖‖Rm+1‖, S =
n−m−1∑
j=0

GjW−1Rj .

From Remark (2.3) for any ε > 0 such that λG := δ(G) + ε < 1 and λR :=
δ(R) + ε < 1, there exists N > 0 such that for k ≥ N we have

‖Gk‖ ≤ ‖Gr‖‖GN‖q ≤ ‖Gr‖λqG,
‖Rk‖ ≤ ‖Rr‖‖RN‖q ≤ ‖Rr‖λqR,
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where q and r are quotient and remainder of the division of k byN , that is k = Nq+r.
Thus,

‖H(n)
0 −H(m)

0 ‖ ≤ ‖Gr‖‖S‖‖Rr‖λqGλ
q
R,

and since λG, λR < 1, if ‖S‖ is bounded from above by a constant independent of n

and m, it follows that H
(n)
0 is a Cauchy sequence. In order to prove the boundedness

of ‖S‖, it is su�cient to consider the division of n−m+ 1 by N , that is n−m+ 1 =
q̂N + r̂, so that we have

S =

q̂−1∑
k=0

GkNTRkN +Gq̂NTr̂R
q̂N , T =

N−1∑
j=0

GjW−1Rj , Tr̂ =
r̂∑
j=0

GjW−1Rj .

From this we obtain the bound

‖S‖ ≤ η
q̂∑

k=0

λkGλ
k
R,

where η =
∑N−1

j=0 ‖Gj‖‖W−1‖‖Rj‖ is a constant independent of n and m. This
completes the proof.

3.3 Convergence of the Cyclic Reduction

Cyclic Reduction algorithm can be expressed in functional form by means of the
polynomials ϕ(h)(z), indeed let us consider the quantity ϕ(h+1)(z2), by using Cyclic
Reduction iteration formulas we can turn it into the following form

ϕ(h+1)(z2) = z−2A
(h+1)
−1 +A

(h+1)
0 − I + z2A

(h+1)
1

= z−2A
(h)
−1S

(h)A
(h)
−1 +A

(h)
0 +A

(h)
1 S(h)A

(h)
−1 +A

(h)
−1S

(h)A
(h)
1 − I

+ z2A
(h)
1 S(h)A

(h)
1

=
[
z−1A

(h)
−1 +A

(h)
0 − I + zA

(h)
1

]
S(h)

[
z−1A

(h+1)
−1 −A(h+1)

0 + I + zA
(h+1)
1

]
= −ϕ(h)(z)S(h)ϕ(h)(−z). (3.2)

Moreover, let us consider the sequence {ψ(h)(z)} recursively de�ned by{
ψ(0)(z) = ψ(z),

ψ(h+1)(z) = 1
2(ψ(h)(z) + ψ(h)(−z)),

we can observe that
ψ(h)(z) =

∑
j∈Z

zjHj2h .
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Indeed, the function ψ(h)(z) is de�ned on A(t−1, t), but we can prove that ana-
lyticity domain is much wider.

Theorem 3.2. The operator function ψ(h)(z) is analytic in the annulus A(t−2h , t2
h
).

Moreover, if H0 is invertible, then the sequence ϕ(h)(z) converges to H−1
0 uniformly

over all the compact sets K ⊂ A(t−2h , t2
h
) and there exists h0 > 0 such that ψ(h)(z)

is invertible for h ≥ h0.

Proof. From Lemma 3.1, we have that ‖Hj2h‖ ≤ M(s)(t−1 + ε)j2
h
for j > 0 and

‖Hj2h‖ ≤ M(s)(t − ε)j2h for j < 0. Since ε is arbitrary, it follows that ψ(h)(z) is

analytic in A(t−2h , t2
h
). Let K be a compact set in A(t−1, t), then

sup
z∈K
|ψ(h)(z)−H0| = sup

z∈K
|
∑
j 6=0

zj2
h
Hj2h |,

since z ∈ K ⊂ A(t−1, t), there exists δ > 0 such that t−1 + δ < |z| < t− δ so that

sup
z∈K
|ψ(h)(z)−H0| ≤

∑
j>0

(t− δ)j2h‖Hj2h‖+
∑
j<0

(t−1 − δ)j2h‖Hj2h‖.

By choosing ε < δ, using Lemma 3.1, we obtain that supz∈K |ψ(h)(z)−H0| con-
verges to 0, which means that the sequence ψ(h) uniformly converges to H0 over
K.

Notice that we can rewrite (3.2) as

ϕ(h+1)(z2) = −ϕ(h)(z)

(
ϕ(h)(z) + ϕ(h)(−z)

2

)−1

ϕ(h)(−z)

= −
(
ϕ(h)(z)−1

)−1
(
ϕ(h)(z) + ϕ(h)(−z)

2

)−1 (
ϕ(h)(−z)−1

)−1

= −

(
ϕ(h)(−z)−1ϕ

(h)(z) + ϕ(h)(−z)
2

ϕ(h)(z)−1

)−1

=

(
ϕ(h)(z)−1 + ϕ(h)(−z)−1

2

)−1

.

This equation is the basis to prove the following

Theorem 3.3. Let ϕ(z) be invertible for z ∈ A(t−1, t). If I − A(i)
0 is invertible for

i = 0, . . . , h − 1, then ϕ(i)(z) is well de�ned and invertible for z ∈ A(t−2i , t2
i
) and

i = 0, . . . , h. Moreover, if ψ(i) is invertible for z ∈ A(t−2i , t2
i
) and i = 0, . . . , h, then

ϕ(i)(z) exists for i = 0, . . . , h. In both cases it holds

ϕ(i)(z)−1 = ψ(i)(z), i = 0, . . . , h. (3.3)
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Proof. Since I − A(i)
0 is invertible for i = 0, . . . , h − 1, then ϕ(i)(z) is well de�ned

for i = 0, . . . , h in view of (3.2). Moreover, from the same equation we observe that
ϕ(i)(z2i) is invertible if and only if ϕ(z) is invertible, so that ϕ(i)(z) is invertible for
z ∈ A(t−2i , t2

i
).

Finally, by de�nition we have ψ(0)(z) = ϕ(z)−1 = ϕ(0)(z)−1, if we suppose that
(3.3) is true for a certain h > 0, then, using (3.2), by inductive hypothesis we have

ϕ(h+1)(z2) =

(
ψ(h)(z) + ψ(h)(−z)

2

)−1

= ψ(h+1)(z2)−1,

which completes the proof.

Now we are ready to prove the main convergence results of the Cyclic Reduction
iterations, which are stated in the following theorems.

Theorem 3.4. Let us assume that H0 is invertible and ϕ(z) is invertible for z ∈
A(t−1, t). If the Cyclic Reduction algorithm can be carried out without breakdown,

then A
(h)
i are Cauchy sequences for i = −1, 0, 1 and

lim
h→∞

A
(h)
−1 = lim

h→∞
A

(h)
1 = 0, lim

h→∞
A

(h)
0 = I +H−1

0 .

Moreover, for any 1 < s < t there exists γ > 0 such that

‖A(h)
−1‖ ≤ γs

−2h , ‖A(h)
1 ‖ ≤ γs

−2h , ‖A(h)
0 − I −H−1

0 ‖ ≤ γs
−2h+1

.

Proof. Equating the coe�cients of the same degree in z in equation

ψ(h)(z)
(
z−1A

(h)
−1 +A

(h)
0 − I + zA

(h)
1

)
= I,

yields 
H0A

(h)
−1 +H−2h(A

(h)
0 − I) +H−2h+1A

(h)
1 = 0,

H2hA
(h)
−1 +H0(A

(h)
0 − I) +H−2hA

(h)
1 = I,

H2h+1A
(h)
−1 +H2h(A

(h)
0 − I) +H0A

(h)
1 = 0,

whence, multiplying all the equations on the left by H−1
0 and adding the quantity

−H−1
0 H−2hH

−1
0 to each side of the �rst and the quantity −H−1

0 H2hH
−1
0 to each side

of the third equation, we obtain I H−1
0 H−2h H−1

0 H−2h+1

H−1
0 H2h I H−1

0 H−2h

H−1
0 H2h+1 H−1

0 H2h I


 A

(h)
−1

A
(h)
0 − I −H−1

0

A
(h)
1

 =

 H−1
0 H2hH

−1
0

0

H−1
0 H2hH

−1
0


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Since the inverse of the above matrix can be written as I 0 0
0 I 0
0 0 I

+
∑
i≥0

(−1)i

 0 H−1
0 H−2h H−1

0 H−2h+1

H−1
0 H2h 0 H−1

0 H−2h

H−1
0 H2h+1 H−1

0 H2h 0

i ,
it follows that A

(h)
−1

A
(h)
0 − I −H−1

0

A
(h)
1

 =

 −H−1
0 H−2hH

−1
0

H−1
0 H−2hH

−1
0 H2hH

−1
0 +H−1

0 H2hH
−1
0 H−2hH

−1
0

−H−1
0 H2hH

−1
0

 .
By taking the norm, we get

‖A(h)
−1‖ ≤ ‖H

−1
0 ‖2‖H−2h‖,

‖A(h)
0 − I −H−1

0 ‖ ≤ 2‖H−1
0 ‖3‖H−2h‖‖H2h‖,

‖A(h)
1 ‖ ≤ ‖H

−1
0 ‖2‖H2h‖,

this completes the proof in view of Lemma 3.1.

Concerning convergence to the operators G and R, we have the following result.

Theorem 3.5. Assume that the hypotheses of Theorem 3.4 hold and that there exists

R,G ∈ B with ΛR,ΛG ⊂ t−1B and t > 1, such that (3.1) holds. If the sequences

(I − Â(h))−1 and (I − Ã(h))−1 are uniformly bounded in norm, then

G = lim
h→∞

(I − Â(h))−1A−1, R = lim
h→∞

A1(I − Ã(h))−1.

Moreover, for any 1 < s < t there exists γ > 0 such that

‖G− (I − Â(h))−1A−1‖ ≤ γs−2h+1
, ‖R−A1(I − Ã(h))−1‖ ≤ γs−2h+1

.

Proof. Since G satis�es (2.8), then the following system of equations hold I −A0 −A1 0
−A−1 I −A0 −A1 0

0
. . .

. . .
. . .

. . .


 G
G2

...

 =

 A−1

0
...

 ,
by applying to it the even-odd permutation, eliminating the odd block components
by means of block Gaussian elimination and iterating the process in very similar way
as the �nite case, we obtain the new system I − Â(h) −A(h)

1 0

−A(h)
−1 I −A(h)

0 −A(h)
1 0

0
. . .

. . .
. . .

. . .


 G

G2h+1

...

 =

 A−1

0
...

 .
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Let us consider the �rst equation of the above system, that is

−A−1 + (I − Â(h))G = A
(h)
1 G2h+1,

by taking the norm, we get

‖G− (I − Â(h))−1A−1‖ ≤ ‖(I − Â(h))−1‖‖A(h)
1 G2h+1‖.

Since δ(G) < 1 and limh→∞‖A
(h)
1 ‖ = 0, then limh→∞‖A

(h)
1 G2h+1‖ = 0. More-

over, by hypothesis, we have that (I − Â(h))−1 is uniformly bounded so that the
sequence converges to G. The bound on the speed of convergence follows directly
from Theorem 3.4. A similar argument applies for R.

3.4 Cyclic Reduction in QT1

We are now able to consider the case we are interested, that is the one with the
operators Ai, with i = −1, 0, 1, Ã0 and Ã1 that all belong to the Banach algebra
QT1. Since it is an algebra, all the operators generated by Cyclic Reduction belong to

QT1. Moreover, the Toeplitz part of these matrices have associated symbols a
(h)
−1(z),

a
(h)
0 (z), a

(h)
1 (z), ã(h)(z) and â(h)(z) which satisfy the same recurrence equations as

their operator counterpart. More precisely we have the scalar functional relations

a
(h+1)
0 (z) = a

(h)
0 (z) + 2

a
(h)
1 (z)a

(h)
−1(z)

(1− a(h)
0 (z))

,

a
(h+1)
1 (z) =

a
(h)
1 (z)2

(1− a(h)
0 (z))

,

a
(h+1)
−1 (z) =

a
(h)
−1(z)2

(1− a(h)
0 (z))

,

ã(h+1)(z) = ã(h)(z) +
a

(h)
1 (z)a

(h)
−1(z)

(1− a(h)
0 (z))

,

where a
(0)
i (z) = ai(z), for i = −1, 0, 1 and ã(0)(z) = a0(z). Observe that since all the

quantities are scalar functions, they commute so that â(h)(z) coincides with ã(h)(z).

Moreover, it is easy to verify that ã(z) = 1
2

(
a

(h)
0 (z) + a

(0)
0 (z)

)
for any h ≥ 0.

From this functional point of view the Cyclic Reduction algorithm reduces to
the process known in literature as Grae�e iteration. About this, it is known (see
[8],[3],[18] for more details about the subject) that if, for a given z ∈ ∂B, the poly-
nomial

pz(x) := a1(z)x2 + (a0(z)− 1)x+ a−1(z)
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Chapter 3. Cyclic Reduction in a Banach Algebra

has one root g(z) inside the unit disk and one root r(z)−1 outside, then the sequences
a−1(z)(1 − ã(h)(z))−1 and a1(z)(1 − ã(h)(z))−1 tend to g(z) and r(z). Thus, for
what we have proved, the functions g(z) and r(z) correspond to the symbols of the
operators G and R which are the minimal nonnegative solutions of the quadratic
equations.

About the roots of the polynomial pz(x) we have the following

Theorem 3.6. Let ai(z) = ai,−1z
−1 + ai,0 + ai,1z, for i = −1, 1, and a0(z) =

a0,−1z
−1 + (a0,0 − 1) + a0,1z be such that the sum of all their coe�cients is equal to

zero, a0,0 − 1 < 0, and all their other coe�cients are nonnegative. If

1. a−1,0 > 0 or a1,0 > 0,

2. ai,j 6= 0 for at least a pair (i, j), with j 6= 0,

then for any z ∈ ∂B, the polynomial pz(x) has a root of modulus less than 1 and a

root of modulus larger than 1.

Proof. Without loss of generality we may assume that the coe�cients of ai(z) belong
to the interval [−1, 1]. If not, we may scale equations (2.8) and (2.9) by a suitable
constant and reduce it to this case.

As a �rst step we show that there are no roots of modulus 1. Assume by contradic-
tion that x is a root of modulus 1. Obviously, we have pz(x) = 0 and pz(x) + x = x.
Observe that, if z ∈ ∂B, the left hand-side of the previous equation is a convex
combination of the points in the discrete set

Cx,z :=
{
xizj i = 0, 1, 2 j = −1, 0, 1

}
⊂ ∂B.

If z 6= 1, condition 1. and the fact that 0 ≤ a0,0 < 1 ensure that the convex
combination involves at least two di�erent points of the unit circle, either x and 1 or x
and x2. Therefore, this convex combination pz(x)+x is equal to a point which belongs
to the interior of the unit disc. This contradicts the fact that |pz(x) + x| = |x| = 1.
This argument excludes roots on ∂B for z ∈ ∂B, z 6= 1.

We conclude by showing that there is exactly one root of modulus less than 1.
In order to prove this, we �rst show that |a0(z)| > |a−1(z) + a1(z)| holds for any
z ∈ ∂B, z 6= 1. Therefore, by applying the Rouché Theorem one �nds that the
functions f(x) = a0(z)x and pz(x) have the same number of zeros in the open unit
disc. To prove the inequality |a0(z)| > |a−1(z) + a1(z)| we observe that

|a0(z)| ≥ |a0,0 − 1| − |a0,−1z
−1| − |a0,1z|

= −(a0,0 − 1)− a0,−1 − a0,1

= a−1,−1 + a−1,0 + a−1,1 + a1,−1 + a1,0 + a1,1

≥ |a−1,−1z
−1 + a−1,0 + a−1,1z + a1,−1z

−1 + a1,0 + a1,1z|,

where at least one of the two above inequalities is strict because of condition 2.
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Under the hypotheses of Theorem 3.4, the operators G and R also belong to QT1,
that is G = T (g) + Eg and R = T (r) + Er, with g(z), r(z) ∈ W1 and Eg, Er ∈ E;
this doesn't always happen, as we can see in the following

Example 3.1. Let Z be the down-shift operator having ones in the lower diagonal
and zeros elsewhere, let e1 = [1, 0, 0, . . . ]T and de�ne A−1 = e1e

T
1 , A0 = 1

2Z, A1 =
1
2

(
I − e1e

T
1

)
. Observe that the matrix A−1 + A0 + A1 is stochastic, Ai ∈ QT1, for

i = −1, 0, 1 and that the quadratic equations have minimal nonnegative solutions

R =
1

2

[
0 0
1
(
I − 1

2Z
) ] , G = 1eT1 ,

on the other hand G and R do not belong to QT1 since their corrections to the
Toeplitz part are neither in F nor have a bounded 2-norm.

Now we present a necessary condition that has to be satis�ed in order to guarantee
that the operator G belongs to QT1.

Proposition 3.1. Under the assumptions of Theorem 3.4, let ϕ(z) = z−1A−1 +
(A0 − I) + zA1 with Ai ∈ QT1. Let ai(z) be the symbols associated with the blocks

Ai, let g(z) be the minimal nonnegative (coe�cient-wise) Laurent series such that

a−1(z) + a0(z)g(z) + a1(z)g(z)2 = g(z), g(z) =
∑
i∈Z

giz
i.

If the minimal nonnegative solution G of (2.8) belongs to QT1, then g(1) = 1.

Proof. Assume that G = T (g) + Eg ∈ QT1, where T (g) is the Toeplitz part and
Eg ∈ F. Since G veri�es (2.8), then the symbol of T (g) needs to be g(z).

Since we assumed that the process is positive recurrent, then G1 = 1 and we
have Eg1 ≥ 1 − T (g)1 ≥ ε1, with ε = 1 − g(1). If ε > 0 then every row of Eg has
sum of moduli at least ε, and therefore Eg /∈ F, which leads to a contradiction.

In the previous example, the operator G it is such that its symbol satis�es g(1) =
0, therefore, for the conditions we have presented, it can't belong to QT1.

3.4.1 Computation of π

We now discuss the practical computation of the invariant vector π, that repre-
sents the steady state vector of the process. As we have seen, we have

π0 = π0(B0 +B1G), π1 = π0B1A
−1
1 R, πn = πn−1R = π1R

n−1.

This reduces the problem of computing π to the computation of R and π0. Notice
that both π and π0 are in�nite vectors. In particular, π0 ∈ `1(N), so that, for any
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ε > 0, there exists an index after which all its entries are smaller than ε in magnitude,
we assume that ε has been �xed once and for all, and we are only interested in
computing the components of π of magnitude larger than ε.

If the solutionsG andR are in QT1, the in�nite vectors πn can be easily computed.
The idea is to apply a power method on the operator M := B0 +B1G ∈ QT1 that is
we consider the following iteration of in�nite raw vectors{

x(0) = e1,

x(k+1) = x(k)M
‖x(k)M‖ k = 0, 1, 2, . . . .

The iterations stop when the norm of the di�erence of two consecutive vectors
become smaller than a �xed tolerance. The starting vector x(0) can also be set equal
to any other vector with norm equal to 1.

An alternative method. Using a suitable reblocking, one can interpret the matrix
M as numerically block tridiagonal and Toeplitz, with the only exception of the �rst
block row. More precisely, by choosing su�ciently large blocks M̂i, Mi, we can
rephrase the problem as follows:

π0M =
[
π

(0)
0 π

(1)
0 . . .

]
M̂0 M̂1

M−1 M0 M1

M−1 M0 M1

. . .
. . .

. . .

 =
[
π

(0)
0 π

(1)
0 . . .

]
= π.

The size m of the blocks Mi is chosen as m = max{bl, bu} where bl, bu are the
lower and upper bandwidth of M after the truncation with the relative threshold ε.
In particular, the matrix M represents the transition matrix of a QBD with �nite
dimensional blocks. Since the original process is positive recurrent, then the process
associated with the matrix M can be seen as a restricted version of the original one,
that is still positive recurrent. Therefore, solving the previous system consists in

computing the steady state vector of a QBD, for which π
(0)
0 (M̂0 + M̂1GM ) = π

(0)
0

and π
(k)
0 = π

(k−1)
0 RM , where RM and GM are the minimal nonnegative solutions of

the matrix equations:

R2
MM−1 +RMM0 +M1 = RM , M−1 +M0GM +M1G

2
M = GM .

Since the spectral radius of RM is smaller than 1, one can give explicit estimates

of the number of non negligible components π
(k)
0 with respect to ε. In our numerical

experiments we stop when ‖π(k)
0 ‖∞ < ε‖π(0)

0 ‖∞. Matrices RM and GM can be

computed by applying Cyclic Reduction and the �nite dimensional vector π
(0)
0 can

be computed by applying a standard method for approximating the Perron vector of
a nonnegative matrix. Once π0 is computed, the other entries can be recovered by
right multiplication by R.
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Compensation approach

In this chapter we consider our problem modeled as a continuous time Markov
process (double QBD process) on the pairs x = (m,n) ∈ S = Z2

+ with the transition
rates shown in Figure 1.1. We make the assumption that the Markov process is
irreducible and we impose the following equations about the transition rates in order
to avoid some pathological cases:

� Non-zero rate to the South: q−1−1 + q0−1 + q1−1 > 0.

� Non-zero rate to the West: q−1−1 + q−10 + q−11 > 0.

� Non-zero re�ecting rate for the horizontal axis: h−11 + h01 + h11 > 0.

� Non-zero re�ecting rate for the vertical axis: v11 + v10 + v1−1 > 0.

� Non-zero re�ecting rate out of the origin: r01 + r11 + r10 > 0.

The equilibrium equations for πm,n can be found by equating for each state the
rate into and the rate out of that state. These equations are formulated below, here
for the special cases 0 ≤ m,n ≤ 1,

qπ1,1 =
0∑

s=−1

0∑
t=−1

qstπ1−s,1−t +
0∑

s=−1

hs1πs+2,0 +
0∑

t=−1

v1tπ0,t+2 + r11π0,0,

hπ1,0 = q0−1π1,1 + q−1−1π2,1 + h−10π2,0 + v1−1π0,1 + r10π0,0,

vπ0,1 = q−10π1,1 + q−1−1π1,2 + v0−1π0,2 + h−11π1,0 + r01π0,0,

rπ0,0 = q−1−1π1,1 + h−10π1,0 + v0−1π0,1,
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and here for m,n ≥ 2

qπm,n =
1∑

s=−1

1∑
t=−1

qstπm−s,n−t, (4.1a)

qπ1,n =

0∑
s=−1

1∑
t=−1

qstπ1−s,n−t +

1∑
t=−1

v1tπ0,n−t, (4.1b)

vπ0,n =
1∑

t=−1

q−1tπ1,n−t +
1∑

t=−1

v0tπ0,n−t, (4.1c)

qπm,1 =
1∑

s=−1

0∑
t=−1

qstπm−s,1−t +
1∑

s=−1

hs1πm−s,0, (4.1d)

hπm,0 =

1∑
s=−1

qs−1πm−s,1 +

1∑
s=−1

hs0πm−s,0. (4.1e)

The compensation approach, introduced for the �rst time in [2] and [1], constructs
a formal solution of the equilibrium equations (4.1) by using linear combinations of
products αmβn satisfying equation (4.1a) in the interior of the state space. Inserting
αmβn into (4.1a) and then dividing both sides of that equation by the common factor
αm−1βn−1 leads to the following characterization.

Lemma 4.1. The product αmβn is a solution of (4.1a) if and only if α and β satisfy

αβq = α2q−11 +αq01 + q11 +βq10 +β2q1−1 +αβ2q0−1 +α2β2q−1−1 +α2βq−10 (4.2)

Any linear combination of products αmβn with α and β satisfying (4.2), is a
solution of (4.1a). Our purpose is to �nd a linear combination of such kind of
products also satisfying the other equations in (4.1).

In order to construct this linear combination we start from arbitrary α0 and β0

satisfying (4.2) (we will see later how to �nd α0 and β0) and we suppose that αm0 β
n
0

violates the vertical boundary conditions (4.1b) and (4.1c).
Now we try to �nd α, β and c1 with α and β satisfying (4.2) and such that

αm0 β
n
0 + c1α

mβn satis�es the vertical boundary conditions. Inserting this linear
combination into (4.1b) and (4.1c), in order to satisfy the equations we obtain, we
are forced to take

β = β0, α = α1,

where α1 is the other root of the quadratic equation (4.2) with β = β0 �xed. Moreover
dividing these equations by the common factor βn−1

0 leads to two linear equations for
c1, which have, in general, no solution. Therefore, we introduce an extra coe�cient
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by considering {
αm0 β

n
0 + c1α

m
1 β

n
0 for m > 0, n > 0,

e0β
n
0 for m = 0, n > 0.

Inserting this form into the vertical boundary conditions and then dividing by
the common factor βn−1

0 leads to two linear equations for c1 and e0, which can
readily be solved using Cramer's rule. The resulting expressions can be simpli�ed by
using (4.1). This procedure is generalized in the following lemma. The second part
formulates the analogue for the horizontal boundary.

Lemma 4.2. Let x1 and x2 be the roots of the quadratic equation (4.1) for �xed β
and let y1 and y2 be the roots of (4.1) for �xed α. Then

(i) the quantity

zmn =

{
xm1 β

n + cxm2 β
n for m > 0, n > 0,

eβn for m = 0, n > 0,

satis�es (4.1a), (4.1b) and (4.1c) with c and e given by

c = −
x−1

2

(
β2v1−1 + βv10 + v11

)
+ v01 + β2v0−1 − βv

x−1
1 (β2v1−1 + βv10 + v11) + v01 + β2v0−1 − βv

, (4.3)

e = −
(
β2q1−1 + βq10 + q11

) (
x−1

2 − x
−1
1

)
x−1

1 (β2v1−1 + βv10 + v11) + v01 + β2v0−1 − βv
, (4.4)

(ii) the quantity

wmn =

{
αmyn1 + dαmyn2 for m > 0, n > 0,

fαn for m > 0, n = 0,

satis�es (4.1a), (4.1d) and (4.1e) with d and f given by

d = −
y−1

2

(
α2h1−1 + αh10 + h11

)
+ h01 + α2h0−1 − αh

y−1
1 (α2h1−1 + αh10 + h11) + h01 + α2h0−1 − αh

, (4.5)

f = −
(
α2q1−1 + αq10 + q11

) (
y−1

2 − y
−1
1

)
y−1

1 (α2h1−1 + αh10 + h11) + h01 + α2h0−1 − αh
. (4.6)

Proof. Inserting this form into the vertical boundary conditions we obtain{
qxm1 β

n =
∑0

s=−1

∑1
t=−1 qst(x

1−s
1 βn−t + cx1−s

2 βn−t) +
∑1

t=−1 v1teβ
n−t,

qeβn =
∑1

t=−1 q−1t(x1β
n−t + cx2β

n−t) +
∑1

t=−1 v0teβ
n−t.
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This two equations can both be divided by the common factor βn−1, this leads
to the following linear system in the unknowns e and c{

qxm1 β =
∑0

s=−1

∑1
t=−1 qst(x

1−s
1 β1−t + cx1−s

2 β1−t) +
∑1

t=−1 v1teβ
1−t,

qeβ =
∑1

t=−1 q−1t(x1β
1−t + cx2β

1−t) +
∑1

t=−1 v0teβ
1−t.

Now, by applying Cramer's rule on both the unknowns, with some simple manipula-
tion, we obtain the formulas in (i). An analogue approach to the horizontal boundary
leads to the formulas in (ii).

We added c1α
m
1 β

n
0 to compensate for the error of αm0 β

n
0 on the vertical boundary

and by doing so introduced a new error on the horizontal boundary, since c1α
m
1 β

n
0

violates these boundary conditions. To compensate for this error we add c1d1α
m
1 β

n
1

where β1 is the other root of (4.2) with α = α1 and d1 descends from the previous
lemma. However, this term violates the vertical boundary conditions, so we have to
add again a term, and so on. Thus the compensation of αm0 β

n
0 on the vertical bound-

ary generates an in�nite sequence of compensation terms. An analogous sequence is
generated by starting the compensation of αm0 β

n
0 on the horizontal boundary. This

idea leads to the following bi-in�nite sum of product terms

H︷ ︸︸ ︷ H︷ ︸︸ ︷
· · ·+c−1d−1α

m
−1β

n
−1 + d−1c0α

m
0 β

n
−1 + c0d0α

m
0 β

n
0 + c1d0α

m
1 β

n
0 + c1d1α

m
1 β

n
1 + . . .

︸ ︷︷ ︸
V

︸ ︷︷ ︸
V

Each term in the sum satis�es (4.1a), each sum of two terms with the same β
factor satis�es the vertical boundary conditions (4.1b) and (4.1c), each sum of two
terms with the same α factor satis�es the horizontal boundary conditions (4.1d) and
(4.1e). Since the equilibrium equations are linear, we can conclude that the sum
below formally satis�es the equations (4.1).

For all m > 0 and n > 0, let us de�ne

xmn(α0, β0) =

∞∑
i=−∞

di(ciα
m
i + ci+1α

m
i+1)βni (pairs with same β factor) (4.7)

=
∞∑

i=−∞
ci+1(diβ

m
i + di+1β

m
i+1)αmi+1 (pairs with same α factor). (4.8)
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Moreover for the horizontal and vertical boundaries let us de�ne

x0n(α0, β0) =
∞∑

i=−∞
dieiβ

n
i for n > 0, (4.9)

xm0(α0, β0) =

∞∑
i=−∞

ci+1fi+1α
m
i+1 for m > 0. (4.10)

The coe�cients sequence is generated such that for αi and αi+1 are the roots
of (4.2) with �xed β = βi, βi and βi+1 are the roots of (4.2) with �xed α = αi+1

and the terms ci, di, ei, fi satisfy the following recursive formulas, obtained thanks
to Lemma 4.2, where we initially set c0 = 1 and d0 = 1

ci+1 = −
α−1
i+1

(
β2
i v1−1 + βiv10 + v11

)
+ v01 + β2

i v0−1 − βiv
α−1
i

(
β2
i v1−1 + βiv10 + v11

)
+ v01 + β2

i v0−1 − βiv
ci i ∈ Z, (4.11)

ei = −
(
β2
i q1−1 + βiq10 + q11

) (
α−1
i+1 − α

−1
i

)
α−1
i

(
β2
i v1−1 + βiv10 + v11

)
+ v01 + β2

i v0−1 − βiv
ci i ≥ 0, (4.12)

ei = −
(
β2
i q1−1 + βiq10 + q11

) (
α−1
i − α

−1
i+1

)
α−1
i+1

(
β2
i v1−1 + βiv10 + v11

)
+ v01 + β2

i v0−1 − βiv
ci+1 i < 0, (4.13)

di+1 = −
β−1
i+1

(
α2
i+1h−11 + αi+1h01 + h11

)
+ h10 + α2

i+1h−10 − αi+1h

β−1
i

(
α2
i+1h−11 + αi+1h01 + h11

)
+ h10 + α2

i+1h−10 − αi+1h
di i ∈ Z,

(4.14)

fi+1 = −
(
α2
i+1q−11 + αi+1q01 + q11

) (
β−1
i+1 − β

−1
i

)
β−1
i

(
α2
i+1h−11 + αi+1h01 + h11

)
+ h10 + α2

i+1h−10 − αi+1h
di i ≥ 0,

(4.15)

fi+1 = −
(
α2
i+1q−11 + αi+1q01 + q11

) (
β−1
i − β

−1
i+1

)
β−1
i+1

(
α2
i+1h−11 + αi+1h01 + h11

)
+ h10 + α2

i+1h−10 − αi+1v
di+1 i < 0.

(4.16)

Each solution xmn(α0, β0) has its own sequence {αi, βi} depending on the initial
values α0 and β0, and its associated sequence of coe�cients {ci, di, ei, fi}; For any pair
α0, β0 satisfying equation (4.2) the series xmn(α0, β0) formally satis�es the equations
(4.1).

4.1 Necessary Conditions for Convergence

Under certain conditions compensation fails. This happens if for some value of i
the equation (4.2) with �xed β = βi or �xed α = αi+1 reduces to a linear equation,
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so the necessary second root does not exist. If the second root is equal to the �rst
one, then it can be veri�ed (see [2]) that the compensation procedure constructs the
null solution. Furthermore, compensation fails if for some value of i the denominator
in the de�nition of the coe�cients vanishes.

Let us suppose in this section that for the initial α0 and β0, in at least one
direction compensation is always possible. We want to know under what conditions
the in�nite sum xmn(α0, β0) converges. To aid convergence of xmn(α0, β0) for �xed
m and n, we require that αi and βi tend to zero as |i| tends to in�nity. To aid
convergence of xmn(α0, β0) over all values m and n (necessary for normalization), we
require that |αi|, |βi| < 1 for all i.

Since αi and αi+1 are the roots of quadratic equation (4.2) with β = βi, we have

αiαi+1 =
β2
i q1−1 + βiq10 + q11

β2
i q−1−1 + βiq−10 + q−11

, αi + αi+1 =
−β2

i q0−1 + βiq − q01

β2
i q−1−1 + βiq−10 + q−11

,

in the same way, βi and βi+1 are the roots of quadratic equation (4.2) with α = αi,
we have

βiβi+1 =
α2
i+1q−11 + αi+1q01 + q11

α2
i+1q−1−1 + αi+1q0−1 + q1−1

, βi+βi+1 =
−α2

i+1q−10 + αi+1q − q10

α2
i+1q−1−1 + αi+1q0−1 + q1−1

.

From the equations above, we deduce that

q11 = q01 = q10 = 0 (4.17)

is a necessary condition for convergence to zero of αi and βi.
We suppose from now on that this condition is satis�ed and moreover, to exclude

pathological cases, that there is a rate component to the south west, that is

q−10 + q−1−1 + q0−1 > 0, (4.18)

with the assumption (4.17), the process can be expressed in a visual way in �gure
4.1.

By assumption (4.17), equation (4.2) simpli�es to

αβq = α2q−11 + β2q1−1 + αβ2q0−1 + α2β2q−1−1 + α2βq−10, (4.19)

about which we state the the following

Lemma 4.3. For each �xed α such that 0 < |α| < 1, equation (4.19) has exactly

one root with modulus smaller than |α| and one root of modulus larger than |α|. The
same holds with α and β interchanged.
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Figure 4.1: Transition rates of the random walk with condition (4.17).

Proof. Dividing (4.19) by α2 and applying the change of variable z = β
α , we obtain

f(z) + g(z) = 0, where

f(z) = z2
(
α2q−1− 1 + αq0−1 + q1−1

)
, g(z) = −z (q − αq−10) + q−11.

Then for all z such that |z| = 1, we have

|f(z)| ≤ q−1−1 + q0−1 + q1−1, |g(z)| ≥ q−1−1 + q0−1 + q1−1,

where, by all previous assumptions, at least one of the inequalities is strict. We
conclude by applying Rouché's theorem to f(z) and g(z) above ∂B.

Corollary 4.1. Let α0 and β0 be roots of equation (4.19) satisfying 1 > |α0| >
|β0| > 0. Then there exists a negative value of i for which |αi| ≥ 1 or |βi| ≥ 1 and

1 > |αi+1| > |βi+1| > · · · > |α0| > |β0| > |α1| > |β1| . . .

Moreover the sequences {αi} and {βi} tend to zero as i tend to +∞. A similar result

holds if 1 > |β0| > |α0| > 0.

Proof. The monotonicity follows directly from Lemma 4.3. To prove that there exists
a negative value of i for which |αi| ≥ 1 or |βi| ≥ 1, we also need information about
the β-roots of equation (4.19) for �xed α with |αi| = 1.

For �xed α with |αi| = 1 and α 6= 1,−1 it follows by applying Rouché's theorem,
with the same notation as in the proof of Lemma 4.3, that equation f(z) + g(z) = 0
has one root z with |z| < 1 and one root z with |z| > 1. The same result holds for
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α = −1 or α = 1 if at least one of the rates q−10 and q0−1 is positive. For α = 1 or
α = −1 and, if q−10 = q0−1 = 0, the equation f(z) + g(z) = 0 is solved by z = 1 and
z = q−11 (q−1−1 + q0−1 + q1−1)−1, respectively.

Hence, if q−11 < q−1−1+q0−1+q1−1 we can de�ne z(α) as the root of f(z)+g(z) =
0 for �xed α with |α| < 1, which satis�es z(α) < 1. Since z(α) is continuous, the
maximum of |z(α)| for |α| < 1 exists and is less than one.

So | βiαi
| = |z(αi)| ≤ max|αi|≤1|z(α)| < 1 as long as αi < 1. This proves that |αi|

and |βi| decrease exponentially fast to zero as i tends to in�nity, and that |αi| ≥ 1
or |βi| ≥ 1 for some negative value of i.

If q−11 ≥ q−1− 1 + q0−1 + q1−1, then from previous assumptions we obtain the
inequality q1−1 < q−1−1 + q−10 + q−11· Hence, we can repeat the arguments above
by considering the roots of equation (4.19) for �xed β instead of �xed α.

When the sequence of αi and βi is started with roots α0 and β0 of (4.19) such that
1 > |α0| > 0 and 1 > |β0| > 0, then by previous lemma, |α0| > |β0| or |α0| < |β0|.
Hence, by the corollary, |αi| and |βi| decrease to zero in at least one direction. In the
other direction |αi| and |βi| increase and eventually |αi| ≥ 1 and |βi| ≥ 1 for some i.
Therefore we can't meet the convergence requirement in that direction, unless ci or
di vanishes for some i before |αi| ≥ 1 or |βi| ≥ 1.

After renumbering the terms, this amounts to the requirement that the initial
product αm0 β

n
0 �ts the horizontal boundary conditions with α0 > |β0| or the vertical

boundary conditions with α0 < β0; in the �rst case we have d−1 = 0, in the second
case we have c1 = 0. Pairs α0, β0 satisfying these requirements will be called feasible

pairs.

De�nition 4.1. A pair α0, β0 is called feasible if:

� α0 and β0 are roots of (4.19) with 1 > |α0| > 0 and 1 > |β0| > 0,

� if |α0| > |β0|, then d−1 = 0,

� if |α0| < |β0|, then c1 = 0.

4.1.1 On the existence of feasible pairs

Now we ask under what conditions the existence of feasible pairs is ensured, how
many they are and whether they are real or complex. In this section we give the
answer to all these questions, but we don't prove the results we give, all the proofs
can be found in [2].

Moreover all the results concern the feasible pairs with respect to the horizontal
boundary, that is we only consider roots α0, β0 of (4.19) with 1 > |α0| > |β0| > 0 and
d−1 = 0. Feasibility with respect to the vertical boundary can be treated similarly.
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The �rst result we give is about the maximum number of feasible pairs related
to the boundary rates.

Theorem 4.1. There exists at most two feasible pairs with respect to horizontal

boundary, these pairs are always real. In particular we distinguish the following

cases:

1. if h11 > 0, then there are at most two pairs. If there are exactly two pairs, then

at least one of the α0 and one of the β0 must be positive;

2. if h11 = 0 and h01 + h10 > 0, then there is at most one pair. These roots are

positive;

3. if h11 = h01 = h10 = 0, then there are no pairs.

Let us observe that, for �xed α, equation (4.19) is solved by

y±(α) = α
q − αq−10 ±

√
(q − αq−10)2 − 4 (α2q−1−1 + αq0−1 + q1−1) q−11

2 (α2q−1−1 + αq0−1 + q1−1)
, (4.20)

in a very similar way we can consider x±(β), the root of (4.19) for �xed β. Consider
the following function in the variable α

f(α) :=
α2h−11 + αh01 + h11

y+(α)
+ α2h−10 + h10,

the following theorem gives a condition for the existence of feasible pairs which
involves the function f(α).

Theorem 4.2. If h11+h01+h10 > 0, then the maximum number of feasible pairs with

respect to the horizontal boundary is obtained if and only if the following condition

is satis�ed:

q−1−1 + q0−1 + q1−1 > q−11 ⇒ h < f ′(1). (4.21)

In particular we distinguish the following cases:

1. if h11 > 0, then there are two pairs. One α0 is the solution of the equation

hα = f(α) (4.22)

in the interval (0, 1), the other α0 is its solution in (−1, 0);

2. if h11 = 0 and h01 + h10 > 0, then there is one pair and its α0 is the solution

of (4.22) in (0, 1).
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4.2 Convergence Theorem

As we have seen in the previous section, there are at most two feasible pairs with
respect to the horizontal boundary, we denote them by

(α+, y−(α+)) , (α−, y−(α−)) ,

where α+ is the solution of (4.22) in (0, 1) and α− is its solution in (−1, 0). In the
same way the feasible pairs on the vertical boundary are denoted by

(β+, x−(β+)) , (β−, x−(β−)) ,

where β+ is the solution of the β-equivalent of (4.22) in (0, 1) and α− is its solution
in (−1, 0). For α0 = α+ and β0 = y−(α+) we abbreviate the notation xmn(α0, β0)
to xmn(α+), similar abbreviations are used for the other feasible pairs.

The formal solutions xmn(α0, β0) with feasible initial pairs simplify with respect
to the forms in (4.7) and (4.8). If we take α0 = α+ and β0 = y−(α+), then d−1 = 0
and so di = fi = 0 for all i < 0. Then for m,n > 0 the series xmn(α+) simpli�es to

xmn(α+) =
∞∑
i=0

di(ciα
m
i + ci+1α

m
i+1)βni

= d0c0β
n
0α

m
0 +

∞∑
i=0

ci+1(diβ
n
i + di+1β

n
i+1)αmi+1,

while the boundary series become

x0n(α+) =

∞∑
i=0

dieiβ
n
i , xm0(α+) = c0f

n
0 α

m
0 +

∞∑
i=0

ci+1fi+1α
m
i+1;

when the sequences {αi} and {βi} are initialized with α0 = α− and β0 = y−(α−),
the solution xmn(α−) simpli�es accordingly.

If we take α0 = x−(β+) and β0 = β+, then c1 = 0 and so ci = ei = 0 for all
i > 0. Then for m,n > 0 the series xmn(β+) simpli�es to

xmn(β+) = d0c0β
n
0α

m
0 +

−1∑
i=−∞

di(ciα
m
i + ci+1α

m
i+1)βni

=
−1∑

i=−∞
ci+1(diβ

n
i + di+1β

n
i+1)αmi+1,

while the boundary series become

x0n(β+) = d0e0β
n
0 +

−1∑
i=−∞

dieiβ
n
i , xm0(β+) =

−1∑
i=−∞

ci+1fi+1α
m
i+1;
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when the sequences {αi} and {βi} are initialized with α0 = x−(β−) and β0 = β−,
the solution xmn(β−) simpli�es accordingly.

Theorem 4.3. Let us assume that (4.17), (4.18), (4.21) hold, as well as the con-

ditions we presented at the beginning of the chapter in order to avoid pathological

cases. Then there exists an integer N ∈ Z+ such that for n + m > N the solutions

for di�erent feasible pairs are linearly independent and the invariant measure can be

written as

πm,n =
∑

(α0,β0)

c(α0, β0)xmn(α0, β0), (4.23)

where (α0, β0) runs through the set of at most four feasible pairs (two with respect to

the horizontal boundary and two with respect to vertical boundary), c(α0, β0) is an

appropriately chosen coe�cient and xmn(α0, β0) is obtained as explained above.

The complete proof of the previous theorem can be found in [2] as well as the
following results concerning the explicit calculation of the integer N ∈ Z+ that
appears in Theorem 4.3.

Lemma 4.4. Consider the feasible initial pair given by α0 = α+ and β0 = y−(α+),
then we have the following convergence results:

lim
i→∞

βi
αi

=
1

A+
, lim

i→∞

αi+1

βi
= A−, lim

i→∞

ci+1

ci
= −γ, lim

i→∞

di+1

di
= −η,

where

A± :=
q ±

√
q2 − 4q1−1q−11

2q−11

γ :=


A+A

−1
− if v11 > 0,(

A−1
− v10 + v01

) (
A−1

+ v10 + v01

)−1
if v11 = 0, v10 + v01 > 0,(

A−1
− v1−1 − v

) (
A−1

+ v1−1 − v
)−1

if v11 = v10 = v01 = 0,

η :=


A+A

−1
− if h11 > 0,

(A+h01 + h10) (A−h01 + v10)−1 if h11 = 0, h01 + h10 > 0,

(A+h−11 − h) (A−h−11 − h)−1 if h11 = h01 = h10 = 0.

Theorem 4.4. The integer N ∈ Z+ that appears in Theorem 4.3 is the smallest

such that

|γη|
(
A−
A+

)N+1

< 1.

Let us observe that if h01 + h11 + h10 > 0 and v01 + v11 + v10 > 0, then we have
1 ≤ γ, η ≤ A+

A−
, so N ≤ 2. In particular if h11, v11 > 0, then N = 2. However in the

general case N can be arbitrarily large as it is we can see in the following
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Example 4.1. Consider the process illustrated in Figure 4.2, with 0 < δ < 1. For this
example it can be readily veri�ed that

A± =
3

4
± 1

4

√
1 + 8δ, η = 1, γ =

1 +
√

1 + 8δ

1−
√

1 + 8δ
.

0 1 2 3 4
0

1

2

3

4

r11r01

r10

δ 1− δ

1− δ

2

δ 1− δ

2

Figure 4.2: An example for which N can be arbitrarily large.

Hence, the integer N is the smallest for which
√

1 + 8δ + 1√
1 + 8δ − 1

[
3−
√

1 + 8δ

3 +
√

1 + 8δ

]N+1

< 1,

from this inequality it follows that limδ→0N =∞.

In order to simplify the notation, we will make the following assumption:

� the sum in equation (4.23) runs through a single pair (α0, β0) obtained from
the horizontal boundary;

� the relative coe�cient c(α0, β0) can be set equal to 1;

� equation (4.23) is valid for n+m > 0, that is N = 0.

With these assumptions, we can rewrite the expressions of πm,n as

πm,n =

∞∑
i=0

di(ciα
m
i + ci+1α

m
i+1)βni = d0c0β

n
0α

m
0 +

∞∑
i=1

ci(di−1β
n
i−1 + diβ

n
i )αmi ,

π0,n =

∞∑
i=0

dieiβ
n
i , πm,0 =

∞∑
i=0

cifiα
m
i ; (4.24)
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4.3 Boundary value problem

The boundary value problem is an analytic method which is used in literature to
approach some two-dimensional random walks restricted to the �rst quadrant. The
�rst step to describe is to de�ne the bivariate probability generating function

Π(x, y) =
∞∑
m=0

∞∑
n=0

πm,nx
myn,

with |x| < 1 and |y| < 1.
The probability generating function of the position of a homogeneous nearest

neighbour random walk satis�es a functional equation of the form

Q(x, y)Π(x, y) +H(x, y)Π(x, 0) + V (x, y)Π(0, y) +R(x, y)Π(0, 0) = 0,

with Q(x, y), H(x, y), V (x, y) and R(x, y) known bivariate polynomials in x and y,
depending only on the parameters of the random walk. In particular,

Q(x, y) = xy

[
1∑

s=−1

1∑
t=−1

xsytqst − q

]
,

H(x, y) = xy

[
1∑

s=−1

1∑
t=−1

xsyt(qst − hst)− (q − h)

]
,

V (x, y) = xy

[
1∑

s=−1

1∑
t=−1

xsyt(qst − vst)− (q − v)

]
,

R(x, y) = xy

[
1∑

s=−1

1∑
t=−1

xsyt(qst + hst + vst − rst)− (q + h+ v − r)

]
.

Let us observe that these polynomials are closely related to the equilibrium equa-
tions for πm,n, indeed setting Q

(
α−1, β−1

)
= 0 reduces to exactly equation (4.19),

furthermore, H
(
α−1, β−1

)
= 0 reduces to exactly the balance equations for the hor-

izontal boundary, and similarly V
(
α−1, β−1

)
= 0 reduces to exactly the balance

equations for the vertical boundary.
In the following we relate the ideas and results from the compensation approach to

the matrix geometric approach by utilizing the tools of the boundary value method.
Furthermore we achieve to connect the three approaches and gain valuable insight on
the analytic and probabilistic interpretation of the terms appearing in the invariant
measure. First and foremost, we show that the sequences {αi} and {βi} are connected
with the eigenvalues and left eigenvectors of matrix R.
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To do this, let us consider the operator Uα = (uin)i,n=0,1,2,... whose rows are
de�ned by ui = [ui0, ui1, ui2, . . . ], with ui0 = cifi, i ≥ 0, u0n = d0c0β

n
0 , with n ≥ 1

and uin = ci(di−1β
n
i−1 + diβ

n
i ), with i, n ≥ 1.

We can write the elements of the invariant vector πm,n for m ≥ 1 and n ≥ 0 in
function of the elements of Uα in the following way

πm,n =

∞∑
i=0

αmi uin. (4.25)

Let us consider

Vα =


1 1 1 1 . . .
α0 α1 α2 α3 . . .
α2

0 α2
1 α2

2 α2
3 . . .

α3
0 α3

1 α3
2 α3

3 . . .
...

...
...

...
. . .

 , Dα =


α0

α1

α2

α3

. . .

 ,

the operator Vα is the Vandermonde operator associated to the sequence {αi}, Dα

is the diagonal operator with the sequence {αi} on the diagonal. The relation (4.25)
can be written in a operator form as

VαDαUα =


π

(L)
1

π
(L)
2

π
(L)
3
...

 ,

where for each m �xed we have π
(L)
m = [πm,0 πm,1 πm,2 . . . ].

Now we multiply this equation on the right by the operator R(L), which is the
minimal solution of

A
(L)
1 +R(L)A

(L)
0 +

(
R(L)

)2
A

(L)
−1 = 0,

and that satisfy π
(L)
m R(L) = π

(L)
m+1, we get

VαDαUαR
(L) =


π

(L)
1

π
(L)
2

π
(L)
3
...

R(L) =


π

(L)
2

π
(L)
3

π
(L)
4
...

 = VαD
2
αUα. (4.26)

From this equation we would like to conclude that UαR
(L) = DαUα, but VαDα

is not invertible (as operator from `1 to itself or from `∞ to itself). However in the
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following proposition, in which we rework a result of [12], we prove this property,
which states that the {αi} are the eigenvalues of R(L) and the rows of Uα are the
eigenvectors, with some additional hypothesis.

Proposition 4.1. Let us suppose that the following limitation hold

‖ui
(
αiI −R(L)

)
‖∞ <

1

|αi|
, (4.27)

then the terms {αi} with i ≥ 0 constitute the di�erent eigenvalues of the operator

R(L). For an eigenvalue αi, the corresponding left eigenvector of the operator R(L)

is ui, with i ≥ 0.

Proof. If we consider in equation 4.26 the m-th rows, we obtain

∞∑
i=0

αmi ui

(
αiI −R(L)

)
= 0, (4.28)

for m > 0. Dividing each term of this series by αm0 , we get

−u0

(
α0I −R(L)

)
=
∞∑
i=1

(
αi
α0

)m
ui

(
αiI −R(L)

)
.

Thus, by taking the norms, we obtain

0 ≤ ‖u0

(
α0I −R(L)

)
‖∞ ≤ inf

m>0

∞∑
i=1

∣∣∣∣αiα0

∣∣∣∣m ‖ui (αiI −R(L)
)
‖∞

= lim
m→∞

∞∑
i=1

∣∣∣∣αiα0

∣∣∣∣m ‖ui (αiI −R(L)
)
‖∞

=

∞∑
i=1

lim
m→∞

∣∣∣∣αiα0

∣∣∣∣m ‖ui (αiI −R(L)
)
‖∞ = 0,

where the fact that the in�mum is equal to the limit is allowed by the monotone
convergence of the sequence {αi}. Moreover the exchange of the series and the limit
is justi�ed from hypotheses 4.27, indeed from this it follows that

∞∑
i=1

∣∣∣∣αiα0

∣∣∣∣m ‖ui (αiI −R(L)
)
‖∞ ≤

1

α0

∞∑
i=1

∣∣∣∣αiα0

∣∣∣∣m−1

≤ 1

α0

∞∑
i=1

∣∣∣∣αiα0

∣∣∣∣ ,
and we can apply the Lebesgue Theorem.

Therefore we conclude that u0

(
α0I −R(L)

)
= 0 and, recursively, that

ui

(
αiI −R(L)

)
= 0,

for i ≥ 0, which implies the statement of the proposition.
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In a very similar way as before, let us consider the operator Uβ = (ũim)i,m=0,1,2,...

whose rows are de�ned by ũi = [ũi0 ũi1 ũi2 . . . ], with ũi0 = diei, i ≥ 0 and ũim =
di(ci−1α

m
i−1 + ciα

m
i ), with m ≥ 1 and i ≥ 0.

We can write the elements of the invariant vector πm,n for m ≥ 0 and n ≥ 1 in
function of the elements of Uβ in the following way

πm,n =
∞∑
i=0

βni ũim. (4.29)

As we did before, we consider

Vβ =


1 1 1 1 . . .
β0 β1 β2 β3 . . .
β2

0 β2
1 β2

2 β2
3 . . .

β3
0 β3

1 β3
2 β3

3 . . .
...

...
...

...
. . .

 , Dβ =


β0

β1

β2

β3

. . .

 ,

The relation (4.29) can be written in a operator form as

VβDβUβ =


π

(A)
1

π
(A)
2

π
(A)
3
...

 ,

where for each n �xed we have π
(A)
n = [π0,n π1,n π2,n . . . ].

Now we multiply this equation on the right by the operator R(A), which is the
minimal solution of

A
(A)
1 +R(A)A

(A)
0 +

(
R(A)

)2
A

(A)
−1 = 0,

and that satisfy π
(A)
n R(A) = π

(A)
n+1, we get

VβDβUβR
(A) =


π

(A)
1

π
(A)
2

π
(A)
3
...

R(A) =


π

(A)
2

π
(A)
3

π
(A)
4
...

 = VβD
2
βUβ. (4.30)

Again we can't directly conclude that UβR
(A) = DβS because VβDβ has not an

inverse, but we can obtain the following Proposition that is analogous to 4.1.
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Proposition 4.2. Let us suppose that the following limitation hold

‖ũi
(
βiI −R(A)

)
‖∞ <

1

|βi|
, (4.31)

then the terms {βi} with i ≥ 0 constitute the di�erent eigenvalues of the operator

R(A). For an eigenvalue βi, the corresponding left eigenvector of the operator R(A)

is ũi, with i ≥ 0.

We formulate below a proposition that describes the form of the resolvent opera-
tor, which will appear naturally when calculating the bivariate probability generating
function.

Corollary 4.2. The resolvent operator of the matrix R(L) can be computed in terms

of the eigenvalues {αi} and the corresponding eigenvectors {ui} as follows:

π
(A)
1 (αI −R(L))−1 =

∞∑
i=0

αi
α− αi

ui. (4.32)

Proof. First, note that

Π(x, y) =
∞∑
m=0

xmπ(L)
m

[
1 y y2 . . .

]T
= [Π:,0(x) Π:,1(x) Π:,2(x) . . . ]

[
1 y y2 . . .

]T
,

where Π:,n(x) =
∑∞

m=0 x
mπm,n for m ≥ 0. On the one hand, from the de�nition of

Π:,n(x) and from equation (4.24), we have, for m > 0,

[Π:,0(x) Π:,1(x) Π:,2(x) . . . ] =

[ ∞∑
m=0

xmπm,0

∞∑
m=0

xmπm,1

∞∑
m=0

xmπm,2 . . .

]

= π
(L)
0 +

∞∑
m=1

xm
∞∑
i=0

αmi ui

= π
(L)
0

∞∑
i=0

αi
x−1 − αi

ui.

On the other hand, from equation (2.2), we obtain, for m > 0,

[Π:,0(x) Π:,1(x) Π:,2(x) . . . ] =
∞∑
m=0

xmπ(L)
m

= π
(L)
0 +

∞∑
m=1

xmπ
(L)
1

(
R(L)

)m−1

= π
(L)
0

(
x−1I −R(L)

)−1
.
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Setting x = α−1 in the last two equations and equating them we obtain exactly
equation (4.32).

Again an analogous Corollary can be obtain for the operator R(A) and the se-
quence {βi}.

Corollary 4.3. The resolvent operator of the matrix R(A) can be computed in terms

of the eigenvalues {βi} and the corresponding eigenvectors {ũi} as follows:

π
(A)
1 (βI −R(A))−1 =

∞∑
i=0

βi
β − βi

ũi. (4.33)

4.4 Calculation of the invariant measure

In this section, we turn our focus to the calculation of all the coe�cients that are
involved into the representation of π, beginning from the sequences {αi} and {βi}.
To this purpose, we �rst compute the bivariate probability generating function in
terms of the resolvent of the operator R(L).

Π(x, y) =
∞∑
m=0

xmπ(L)
m

[
1 y y2 . . .

]T
=

(
π0 +

∞∑
m=1

xmπ
(L)
1

(
R(L)

)m−1
)[

1 y y2 . . .
]T

=

(
π

(L)
0 + π

(L)
1

(
x−1I −R(L)

)−1
)[

1 y y2 . . .
]T
.

Substituting the above result in the functional equation of the boundary value
method, yields after some straightforward manipulations

π
(L)
1

(
x−1I −R(L)

)−1 (
Q(x, y)

[
1 y y2 . . .

]T
+H(x, y) [1 0 0 . . . ]T

)
= −π(L)

0

(
(Q(x, y) + V (x, y))

[
1 y y2 . . .

]T
+ (H(x, y) +R(x, y)) [1 0 0 . . . ]T

)
.

Using the result of Corollary (4.2) in the above expression immediately yields

∞∑
i=0

αi
x−1 − αi

ui

(
Q(x, y)

[
1 y y2 . . .

]T
+H(x, y) [1 0 0 . . . ]T

)
= −π(L)

0

(
(Q(x, y) + V (x, y))

[
1 y y2 . . .

]T
+ (H(x, y) +R(x, y)) [1 0 0 . . . ]T

)
.
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Equivalently, by de�ning ej to be an in�nite-dimension column vector with a 1
in the j-th position and 0 elsewhere, the above equation reduces to

∞∑
i=0

αi
x−1 − αi

ui

Q(x, y)
∞∑
j=1

yj−1ej +H(x, y)e1


= −π(L)

0

(Q(x, y) + V (x, y))
∞∑
j=1

yj−1ej + (H(x, y) +R(x, y)) e1

 .

After straightforward calculations, the above can be equivalently written as

∞∑
i=0

αi
x−1 − αi

∞∑
j=1

(
Q(x, y)yj−1uij−1 +H(x, y)ui01(j = 1)

)
= −

∞∑
j=1

(
(Q(x, y) + V (x, y)) yj−1π0,j−1 + (H(x, y) +R(x, y))π0,01(j = 1)

)
.

(4.34)

For the recursive calculation of the sequences {αi} and {βi}, the main idea lies
on de�ning the zero couples (x, y), such that |x|, |y| < 1, such that Q(x, y) = 0. To
this purpose, we multiply (4.34) by x−1 − α0 and then we take the limit as x goes
to α−1

0 , this leads to

∞∑
j=1

(
Q(α−1

0 , y)yj−1uij−1 +H(α−1
0 , y)ui01(j = 1)

)
= 0.

Restricting the investigation on the set of y-roots that satisfy Q(α−1
0 , y) = 0, the

above equation yields that H(α−1
0 , y) = 0, since p00 6= 0. Thus, choosing the α0 such

that Q(α−1
0 , y) = 0 and H(α−1

0 , y) = 0 reveals the starting solution for the iterative
calculation of the sequences {αi} and {βi}.

The existence of the solution α0 inside the unit disk is equivalent to the existence
of feasible solution for the compensation approach and it is ensured by theorem 4.2.

As we have already noticed equation (4.19) can be written as Q(α−1, β−1) = 0,
because of this the bivariate polynomial Q(x, y) can be factorized by means of (4.20)
as

Q(x, y) = f(x)(y − y+(x))(y − y−(x)) = g(y)(x− x+(y))(x− x−(y)),

for some polynomial f and g of one variable. This yields

y+(α−1
i ) = β−1

i , y−(α−1
i ) = β−1

i−1, x+(β−1
i ) = α−1

i−1, x−(β−1
i ) = α−1

i .
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The above equations produce explicitly the sequence {αi} and {βi} with �for-
ward� operators y+ and x+ and �backward� operators y− and x− constructed as the
solutions of the equation Q(x, y) = 0 with respect to y and x as shown in Figure 4.3.

Figure 4.3: The recursive structure of the product-form terms.

The building of the vector π is completed by calculating the other coe�cients
involved with equations (4.11)-(4.15).
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Numerical Results

In this chapter we compare the algorithms obtained from the two approaches
presented in the thesis. The examples that we consider are taken from [12] and [16],
all the codes are written in Matlab as well as the scripts of all the experiments, only
the quadratic equations system is solved symbolically with the software Sage.

5.1 Join the Shortest Queue

Consider a system with two identical servers. Jobs arrive according to a Poisson
stream with rate 2ρ where 0 < ρ < 1. On arrival a job joins the shortest queue, in
the case of a tie it chooses either queue with probability 1

2 . The jobs require expo-
nentially distributed service times with unit mean, the service times are supposed to
be independent. This model is known as the symmetric shortest queue model.

Such a queueing system is modelled as a Markov process with states (w1, w2) ∈
Z2

+, where wi is the number of customers at queue i, including a customer possibly
in service. By de�ning m = min(w1, w2) and n = w2−w1 , one transforms the state
space from a homogeneous random walk in the quadrant to a homogeneous random
walk in the half-plane, where the two quadrants are symmetrical. The transition
rate diagram of the Markov process for n,m ≥ 0 is shown in Figure 5.1.

The boundary value problem polynomials in this speci�c case become

Q(x, y) = y2 + 2ρx2 + x− xy(2 + 2ρ),

H(x, y) = ρxy2 − 2ρx2 − x+ xy(1 + ρ),

V (x, y) = −y2 + xy,

we can �nd that the solution of the systems{
Q(x, y) = 0,

H(x, y) = 0,

{
Q(x, y) = 0,

V (x, y) = 0,
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Figure 5.1: Transition rates for the JSQ model.

are (
− 1

2ρ
, 0

)
, (0, 0) ,

(
1

ρ2
,

1

ρ

)
, (1, 1) ,

(
− 1

2ρ
,−ρ+ 1

ρ

)
,

(0, 0) ,

(
− 1

2ρ
, 0

)
, (1, 1) ,

so we get only the following feasible pair

(α0, β0) =

(
ρ2,

ρ2

ρ+ 2

)
,

and it is related to the horizontal boundary.
Moreover, it can be easily veri�ed that

A± = ρ+ 1±
√
ρ2 + 1, η =

A+

A−
, γ =

2ρA−1
− − (2ρ+ 1)

2ρA−1
+ − (2ρ+ 1)

=
1−A−
1−A+

,

so the integer N , which appears in Theorem 4.4, is the smallest integer such that

|γη|
(
A−
A+

)N+1

=

∣∣∣∣1−A−1−A+

∣∣∣∣ (A−A+

)N
=

∣∣∣∣∣ρ−
√
ρ2 + 1

ρ+
√
ρ2 + 1

∣∣∣∣∣
(
A−
A+

)N
< 1,

it is evident that in this case N = 0.
From these considerations, we obtain that the compensation approach can be

applied, in particular equation (4.23) reduces to just one series and produces the
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Figure 5.2: The sequences {αi} and {βi} in the complex plane. The real axis is in
logarithmic scale.

invariant vector component πm,n for m,n > 0, the remaining component π0,0 is
obtained using (4.1).

In Figure 5.2 we can see, in red, the �rst 10 elements of the sequence {αi} and,
in blue, the �rst 10 elements of the sequence {βi}, let us observe as they converge
exponentially fast to 0. The circles are obtained by multiplying the �rst 10 rows of
the eigenvectors operators Uβ and Uα built with the compensation approach by the
operators R(L) and R(A) obtained with the Cyclic Reduction in the QT1 arithmetic,
and then dividing the �rst components of these vectors by the �rst components of
the selected rows of Uβ and Uα.

5.1.1 Relative error

The absolute error is de�ned by means of the quantities

‖πQ‖∞ or ‖πP − π‖∞,

depending on which model we are using (Markov process or Markov chain, respec-
tively). It is not a good measure of how much precisely we are calculating π, because,
since the invariant vector is stochastic, then it has a decay to 0, so its components be-
come very small in magnitude; the absolute error may report an error which appears
small in general but actually is as small as the value we are calculating.
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Because of this, it is more convenient to introduce the relative error which is
de�ned as

‖(πQ)� π‖∞ or ‖(πP − π)� π‖∞,
where � is the operation of componentwise division.

Figure 5.3: Relative errors of the two methods for ρ = 1
4 . The vertical axis is in

logarithmic scale.

Our goal is to compare the relative errors produced by Cyclic Reduction and
compensation approach. In the �rst experiment we �x ρ = 1

4 in the JSQ, we calculate
a truncation of the invariant vector with both the methods, and �nally we plot the
vectors |(πQ) � π| and |(πP − π) � π|, in this context the absolute value is meant
component-wise. As we can see in Figure 5.3, the error of the compensation approach
is in general smaller than the error of the Cyclic Reduction, in particular in this case,
some components of the error vector are not calculated because of the truncations
in the QT1 arithmetic. Moreover for both the methods we can observe an increase
of the relative error where the components of π become smaller.

In Figure 5.4 we can observe the three-dimensional plots of the relative error of
both methods for πm,n with m,n ≤ 10, we limit to this square because it turns out
to be the smallest square with all components smaller than the machine precision
outside of it. As we can see the relative error for these components of π is almost
equal to the machine precision in the case of the compensation approach, while in
the case of the Cyclic Reduction in certain components it is not calculated because
of truncation problem and when it is calculated it reaches the maximum value of
10−2 which is still acceptable.
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(a) Relative error of the compensation approach.

(b) Relative error of the Cyclic Reduction algorithm.

Figure 5.4: The relative errors for the JSQ example with ρ = 1
4 for πm,n with

m,n ≤ 10. Both the graphics are in logarithmic scale on the vertical axes.

71



Chapter 5. Numerical Results

From these remarks it is evident that the compensation approach achieves better
results than the Cyclic Reduction algorithm from the point of view of the relative
error. This is due to the fact that in the compensation approach the vector π is
calculated by truncating a series for each component. The larger is the number of
terms we use in the truncation, the smaller the errors (relative and absolute). In
Figure 5.5 we can see the three dimensional plots of the relative error produced with
the compensation approach in which each series is truncated after 80 terms.

(a) Nt = 20. (b) Nt = 40.

(c) Nt = 60. (d) Nt = 80.

Figure 5.5: The relative errors of the compensation approach for the JSQ example
with ρ = 1

4 for πm,n with m,n ≤ Nt for successive values of Nt. All the graphics are
in logarithmic scale on the vertical axes.

5.1.2 Behaviour on null recurrent state

In this section we study what are the e�ects of changing the value of the parameter
ρ on the behaviour of both the approaches, in particular we are interested in the case
ρ = 1 which produces a null recurrent process.

Before doing this, we �rst observe that in the cases ρ ≥ 1
2 , the Cyclic Reduction

algorithm has a problem related to the size of the correction part of the operator

A
(h)
0 . Indeed, as the iterations go on, this size becomes so large that exceeds the

available memory.
We can overcome this problem by modeling the JSQ with the anti-lexicographic

order instead of the lexicographic that is the one considered until now.
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Remark 5.1. Changing the model according to the way we order the states (lexico-
graphic or anti-lexicographic) is equivalent to consider ΣPΣT instead of the transi-
tion operator P , where Σ is the permutation operator that swaps the two factors of
a Kronecker product, that is

Σ (A⊗B) ΣT = B ⊗A,

for each couple of operators A and B. It is also equivalent to just simply consider
the random walk in the quarter plane with the axes swapped.

It's interesting to note that, with this trick, the Cyclic Reduction manages to
compute R(L) even when ρ ≥ 1 that represent the null recurrent and transient states
of the JSQ. The problem we have in these cases appears in the computation of π,
indeed the operator on which we apply the power methods to compute π0 has the
�rst two larger eigenvalues very close to each other, so the iterations are very slow
and we are forced to arrest them with lower precision.

Figure 5.6: Absolute errors of the two methods in function of the parameter ρ. Both
the axis are in logarithmic scale.

As we can see in Figure 5.6, both the algorithms increase their absolute errors in
correspondence of the case ρ = 1 but this is due to di�erent reasons.

As we said, the Cyclic Reduction computes without any problem the solution
of the quadratic operator equations, but when ρ ≥ 1 the power method we use to
compute π0 is very slow. Therefore, in order to make it �nish, we have to increase
its stopping threshold and this induces an increasing of the absolute error.
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On the other hand the compensation approach always computes the same trun-
cated series which simply become meaningless in the cases ρ ≥ 1.

5.2 Two-demand Model

Double queue arises when customers arriving at the system simultaneously place
two demands on two di�erent servers working independently. The customer arrivals
form a Poisson process with rate 1, and the service times of the two servers are
independent and exponential with rates a and b, respectively. Let X1(t) and X2(t)
represent the number of customers waiting or in service at time t in queues 1 and
2, respectively. We consider the two-dimensional Markov chain (X1(t), X2(t)) with
state space Z2

+, viewed as a QBD process, whose transition are shown in Figure 5.7.

0 1 2 3 4
0

1

2

3

4

1

b

a

b

a

1

Figure 5.7: Transition rates for the two-demand model.

As we can see from Figure 5.7, this problem has a strongly symmetric structure,
it is easy to note that changing the order adopted for the model is equivalent to
swapping the parameters a and b, moreover it is evident that in the case a = b the
model is invariant for re�ection on the bisector.

This symmetry has consequences also from the experimental point of view. In-
deed it turns out that when b > a the Cyclic Reduction applied to the model with the
lexicographic order has problems related to the available memory that are analogous
to the ones of the JSQ for ρ = 1

2 . The same kind of problems are found in the case
a > b with the anti-lexicographic order.
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Because of these observations we �x b ≤ a and we work only with the model with
the lexicographic order.

As pointed out in [16], the Markov chain related to this example is positive
recurrent when a > 1 and b > 1. In the following experiment we consider B0 +B1G
that is the operator on which we apply the power method, and we calculate the
eigenvalues λi of its truncation. In Table 5.1 we can see how the ratio ω = λ1

λ2
between the two largest eigenvalues, which measures the power method's convergence
speed, changes in relation with the value of the parameters a and b. The variable κ
represent the lowest integer such that |ω|κ is lower than the machine precision. As
we expected, it seems that the closer we get to the null recurrent and transient states
a, b ≤ 1, the more iterations of the power method are needed.

a b ω κ

10 10 0.5105 55
10 5 0.6718 93
5 5 0.6057 74
5 2 0.9017 357
5 1 0.9703 1222
2 1 0.9581 861
2 0.5 0.9597 896

0.5 0.5 0.9514 740

Table 5.1: The module of the ratio between the two largest eigenvalues of the power
method operator related to the value of the parameters a and b.

5.3 Failures of the compensation approach

As we have seen in previous sections, the compensation approach produces more
accurate results than the QT1 arithmetic Cyclic Reduction algorithm. Its weakness
is that we can't apply it to every random walk. Indeed, as in the case of the two
demand model, the conditions (4.17) are not satis�ed and the convergence of the
compensation approach series is not ensured.

Furthermore this is not the only case in which the compensation fails, indeed let
us consider the process whose transitions are shown in Figure 5.8.
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Figure 5.8: Transition rates of a random walk for which the compensation fails.

The boundary value problem polynomials in this speci�c case become

Q(x, y) = 2y2 + x2 + x− 4xy,

H(x, y) = x2y − x2 − x+ xy,

V (x, y) =
1

2
y2x− 2y2 +

3

2
xy,

it's easy to verify that

(α0, β0) =

(
1

2
,
1

3

)
is a feasible pair related to the horizontal boundary.

Although this process satis�es conditions (4.17), the compensation approach
stops at the �rst iteration since the denominator in the computation of c1 in for-
mula (4.11) becomes

β2
0

α0
+

1

2
+ β2

0 −
5

2
β0 = 0.

On the other side the Cyclic Reduction algorithm has not this kind of limitation
in its application and it succeeds in calculating the invariant vector of probability of
the process in Figure 5.8. The relative error is similar to the one of the JSQ example
as we can see in Figure 5.9.
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Figure 5.9: Three dimensional plot of the relative error of the Cyclic Reduction. The
vertical axes is in logarithmic scale.

5.4 Conclusions

From the comparison between the two approaches, it turns out that the applica-
bility of the compensation approach is more restricted than the operator approach.
Indeed, in addition to the restriction on the transitions expressed in (4.17), we have
seen other examples for which the compensation approach, for di�erent reasons, fails
while the operator approach has not any problem.

On the other hand the compensation approach shows a better performance in
terms of accuracy. In fact it provides approximation with very small relative error,
whereas the operator approach in the current implementation does not maintain a
uniform bound to the relative error, even though the absolute error in the approxi-
mation is quite small.

Another di�erence concerns the behaviour on null recurrent states. In these
cases the compensation approach computes the series in the same way as in the
positive recurrent cases, but these series simply become meaningless, indeed the
absolute error is signi�cant. In these cases the absolute error is signi�cant also for
the operator approach but this happens because the two largest eigenvalues of the
operator B0 + B1G are very close to each other and so the power method becomes
very slow. Despite of this, the operators R and G are computed with large precision
even in the null recurrent cases with the Cyclic Reduction algorithm.
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Now we report the code of the Matlab function for the compensation approach.
For what concernes the operator approach, in [7] we can �nd a complete Matlab
toolbox for the QT1 arithmetic as well as the implementation of the Cyclic Reduction
algorithm.

1 function [alpha ,beta ,c,d,e,f,Pi]= compensation(q,h,v,r,N,a0,bm1)

2 sq = sum(sum(q));

3 sh = sum(sum(h));

4 sr = sum(sum(r));

5 sv = sum(sum(v));

6 beta = zeros(N,1);

7 c = zeros(N,1);

8 d = zeros(N,1);

9 e = zeros(N,1);

10 f = zeros(N,1);

11 alpha = zeros(N,1);

12 alpha (1) = a0;

13 c(1) = 1;

14 d(1) = 1;

15

16

17 for k=1:N

18 den = q(3 ,1)/( alpha(k)^2)+q(2 ,1)/ alpha(k)+q(1,1);

19 deltax = (q(1,2)-sq/alpha(k))^2 -4*q(1,3)* den;

20 beta(k) = (2*q(1 ,3))/(sq/alpha(k)-q(1,2)+ sqrt(deltax ));

21 deltay = (q(2,1)-sq/beta(k))^2 -4*q(3 ,1)*(q(1 ,3)/( beta(k)^2)

22 + q(1,2)/ beta(k)+q(1 ,1));

23 alpha(k+1) = 2*q(3 ,1)/(sq/beta(k)-q(2 ,1)+ sqrt(deltay ));

24

25 num = (beta(k)^2*v(3,1)+ beta(k)*v(3,2)+v(3 ,3))/ alpha(k+1)

26 + v(2,3)+ beta(k)^2*v(2,1)-beta(k)*sv;

27 den = (beta(k)^2*v(3,1)+ beta(k)*v(3,2)+v(3 ,3))/ alpha(k)

28 + v(2,3)+ beta(k)^2*v(2,1)-beta(k)*sv;

29 c(k+1) = -num*c(k)/den;

30

31 num = (beta(k)^2*q(3,1) + beta(k)*q(3,2)

32 + q(3 ,3))*(1/ alpha(k+1)-1/ alpha(k));

33 e(k) = -num*c(k)/den;

i
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34

35 if k>1

36

37 num = (alpha(k)^2*h(1,3)+ alpha(k)*h(2,3)+h(3 ,3))/ beta(k)

38 + h(3,2)+ alpha(k)^2*h(1,2)- alpha(k)*sh;

39 den = (alpha(k)^2*h(1,3)+ alpha(k)*h(2,3)+h(3 ,3))/ beta(k-1)

40 + h(3,2)+ alpha(k)^2*h(1,2)- alpha(k)*sh;

41 d(k) = -num*d(k-1)/ den;

42

43 num = (alpha(k)^2*q(1,3) + alpha(k)*q(2,3)

44 + q(3 ,3))*(1/ beta(k)-1/beta(k -1));

45 f(k) = -num*d(k-1)/ den;

46 end

47 end

48

49 num = (alpha (1)^2*q(1,3)+ alpha (1)*q(2,3)+q(3 ,3))*(1/bm1 -1/ beta (1));

50 den = (alpha (1)^2*h(1,3) + alpha (1)*h(2,3)+h(3 ,3))/ beta (1)

51 + h(3,2)+ alpha (1)^2*h(1,2)- alpha (1)*sh;

52 f(1) = -num/den;

53

54

55 Pi = zeros(N);

56

57 for mm=2:N

58 for nn=2:N

59 for i=1:N

60 Pi(mm,nn) = Pi(mm ,nn) + d(i)*(c(i)* alpha(i)^(mm -1)

61 + c(i+1)* alpha(i+1)^(mm -1))* beta(i)^(nn -1);

62 end

63 end

64 end

65

66 for nn=2:N

67 for i=1:N

68 Pi(nn ,1) = Pi(nn ,1) + c(i)*f(i)* alpha(i)^(nn -1);

69 Pi(1,nn) = Pi(1,nn) + d(i)*e(i)*beta(i)^(nn -1);

70 end

71 end

72

73

74 Pi(1,1) = (q(1,1)*Pi(2 ,2)+h(1,2)*Pi(2,1)+v(2 ,1)*Pi(1 ,2))/sr;

75 Pi = Pi/sum(sum(Pi));

ii



Bibliography

[1] I. J.-B. F. Adan, J. Wessels, and W. H. M. Zijm. A compensation approach for
two-dimensional Markov processes. Adv. in Appl. Probab., 25(4):783�817, 1993.

[2] Ivo Jean-Baptiste François Adan. A compensation approach for queueing prob-

lems. Technische Universiteit Eindhoven, Eindhoven, 1991. Dissertation, Tech-
nische Universiteit Eindhoven, Eindhoven, 1991, With a Dutch summary.

[3] D. A. Bini, L. Gemignani, and B. Meini. Computations with in�nite Toeplitz
matrices and polynomials. Linear Algebra Appl., 343/344:21�61, 2002. Special
issue on structured and in�nite systems of linear equations.

[4] D. A. Bini, G. Latouche, and B. Meini. Numerical methods for structured Markov

chains. Numerical Mathematics and Scienti�c Computation. Oxford University
Press, New York, 2005. Oxford Science Publications.

[5] DA Bini, S Massei, B Meini, and L Robol. On quadratic matrix equations with
in�nite size coe�cients encountered in qbd stochastic processes. Numerical

Linear Algebra with Applications, 2017.

[6] Dario Bini, Stefano Massei, and Beatrice Meini. Semi-in�nite quasi-toeplitz
matrices with applications to qbd stochastic processes. Mathematics of Compu-

tation, 2018.

[7] Dario A Bini, Stefano Massei, and Leonardo Robol. Quasi-toeplitz matrix arith-
metic: a matlab toolbox. arXiv preprint arXiv:1801.08158, 2018.

[8] Dario A. Bini and Beatrice Meini. The cyclic reduction algorithm: from Poisson
equation to stochastic processes and beyond. In memoriam of Gene H. Golub.
Numer. Algorithms, 51(1):23�60, 2009.

[9] Albrecht Böttcher and Sergei M. Grudsky. Spectral properties of banded Toeplitz
matrices. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2005.

iii



Bibliography

[10] Haim Brezis. Functional analysis, Sobolev spaces and partial di�erential equa-

tions. Universitext. Springer, New York, 2011.

[11] Guy Fayolle, Roudolf Iasnogorodski, and Vadim Malyshev. Random walks in

the quarter plane, volume 40 of Probability Theory and Stochastic Modelling.
Springer, Cham, second edition, 2017. Algebraic methods, boundary value prob-
lems, applications to queueing systems and analytic combinatorics.

[12] Stella Kapodistria and Zbigniew Palmowski. Matrix geometric approach for
random walks: Stability condition and equilibrium distribution. Stoch. Models,
33(4):572�597, 2017.

[13] G. Latouche and V. Ramaswami. Introduction to matrix analytic methods in

stochastic modeling. ASA-SIAM Series on Statistics and Applied Probability. So-
ciety for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Amer-
ican Statistical Association, Alexandria, VA, 1999.

[14] A. S. Markus. Introduction to the spectral theory of polynomial operator pencils,
volume 71 of Translations of Mathematical Monographs. American Mathemat-
ical Society, Providence, RI, 1988. Translated from the Russian by H. H. Mc-
Faden, Translation edited by Ben Silver, With an appendix by M. V. Keldysh.

[15] Masakiyo Miyazawa. Light tail asymptotics in multidimensional re�ecting pro-
cesses for queueing networks. TOP, 19(2):233�299, 2011.

[16] Allan J. Motyer and Peter G. Taylor. Decay rates for quasi-birth-and-death
processes with countably many phases and tridiagonal block generators. Adv.

in Appl. Probab., 38(2):522�544, 2006.

[17] J. R. Norris. Markov chains, volume 2 of Cambridge Series in Statistical

and Probabilistic Mathematics. Cambridge University Press, Cambridge, 1998.
Reprint of 1997 original.

[18] Alexandre Ostrowski. Recherches sur la méthode de Grae�e et les zéros des
polynomes et des séries de Laurent. Acta Math., 72:99�155, 1940.

iv


