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Abstract

We present a notion of connectedness for finite perimeter sets, first introduced
by Federer in the more general setting of currents. In particular we say that a
finite perimeter set E is decomposable if we can write E as union of in two non-
negligible, disjoint subsets E0, E1 such that the sum of the perimeters of E0, E1 is
equal to the perimeter of E. Conversely, we say that E is indecomposable if it is
not decomposable.

The main result we present states that every finite perimeter set can be written
as a disjoint countable union of indecomposable subsets. Finally we will see how
these indecomposable components are linked with the classical connected compo-
nents of an open set.

These notes have been written for the seminary of the exam Geometric measure
theory, taught by professor Giovanni Alberti at University of Pisa on the academic
year 2016/2017.
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Definition 1. A finite perimeter set E ⊆ Rn is said to be decomposable if there exist two
disjoint finite perimeter set E0 and E1 such that E = E0 ∪ E1 and Per(E) = Per(E0) +
Per(E1).

On the other hand, E is said to be indecomposable if it is not decomposable.

Remark 2. In general, given a finite perimeter set E and a partition {Ek}k∈N of E into
finite perimeter sets, it holds that Per(E) ≤

∑
k∈N Per(Ek). Indeed we have that

Per(E) = sup
ϕ∈C∞c (Rn) , ‖ϕ‖∞≤1

ˆ
E

divϕ(x) dx = sup
ϕ∈C∞c (Rn) , ‖ϕ‖∞≤1

∑
k∈N

ˆ
Ek

divϕ(x) dx ≤

≤
∑
k∈N

sup
ϕ∈C∞c (Rn) , ‖ϕ‖∞≤1

ˆ
Ek

divϕ(x) dx =
∑
k∈N

Per(Ek) .

The aim of these notes is to prove the following theorem about decomposing a finite
perimeter set into indecomposable parts.

Theorem 3. Given a finite perimeter set E ⊆ Rn with finite Lebesgue measure, there
exists a countable partition {Ek}k∈N of E into indecomposable finite perimeter sets such
that Per(E) =

∑
k∈N Per(Ek).

Remark 4. The theorem is still true without the assumption on the finiteness of the
Lebesgue measure of E. In that case, the same proof works with some adjustments, but
we are not interested in entering in those technical details.

From now on we denote with E a finite perimeter set in Rn with finite Lebesgue
measure. Moreover, given a partition {Ek}k∈N of E we will suppose that it is in descending
order of volume, i.e. |Ek| ≥ |Ek+1| for every k ∈ N.

Definition 5. We say that a countable (possibly finite) partition {Ek}k∈N of E ⊆ Rn is
good if Ek is a finite perimeter set for every k ∈ N and Per(E) =

∑
k∈N Per(Ek).

We start by proving some technical lemmas, which will give us also an idea of what a
good partition is.

Lemma 6. Let {Ek}k∈N be a partition of E, then {Ek}k≤N is good if and only if {Ek}k≤K∪
{E \ ∪k≤KEk} is a good partition of E for every K ∈ N.

Proof. Let us assume that {Ek}k∈N is a good partition of E and fix K ∈ N. It is sufficient
to prove the equality between the perimeters. Since one inequality is always true, we have
only to notice that

Per(E) =
∑
k∈N

Per(Ek) ≥
∑
k≤K

Per(Ek)+Per(∪k>KEk) =
∑
k≤K

Per(Ek)+Per(E \∪k≤KEk) .

Since the other inequality is always true we have proven the result.
Viceversa let us assume that {Ek}k≤K ∪ {E \ ∪k≤KEk} is a good partition of E for

every K ∈ N. Thus we have that

Per(E) = lim
k→∞

∑
k≤K

Per(Ek) + Per(∪k>KEk) ≥
∑
k∈N

Per(Ek) ,

which is the nontrivial inequality which concludes thee proof.
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Lemma 7. Given E,F finite perimeter sets it holds that

1. ∂∗(E ∪ F ) ⊆ ∂∗E ∪ ∂∗F ;

2. ∂∗(E ∩ F ) ⊆ ∂∗E ∪ ∂∗F .

Proof. It easier to prove the opposite containments switching to the complements. Let
x ∈ (∂∗E ∪ ∂∗F )c = (∂∗E)c ∩ (∂∗F )c, then the density of x with respect to E and F is 0
or 1. Let us divide in two cases:

• if Θ(E, x) = Θ(F, x) = 0, then easily Θ(E ∪ F, x) = 0;

• if Θ(E, x) = 1 or Θ(F, x) = 1, then Θ(E ∪ F, x) = 1.

In both cases we have proven that x ∈ ∂∗(E ∪ F ).
The proof of the point 2 proceeds in the same way, being careful to divide in the cases

in which Θ(E, x) = Θ(F, x) = 1 and Θ(E, x) = 0 or Θ(F, x) = 0.

Lemma 8. If E,F are disjoint finite perimeter sets, the following are equivalent:

1. Per(E ∪ F ) = Per(E) + Per(F ), i.e. {E,F} is a good partition for E ∪ F ;

2. ∂∗(E ∪ F ) = ∂∗E t ∂∗F up to Hn−1-negligible sets;

3. ∂∗(E ∪ F ) = ∂∗E ∪ ∂∗F up to Hn−1-negligible sets;

4. ∂∗E and ∂∗F are disjoint up to Hn−1-negligible sets.

Proof. Thank to Lemma 7, it is always true that ∂∗(E ∪ F ) ⊆ ∂∗E ∪ ∂∗F . Let us now
proof the single implications.

1 ⇐⇒ 2 We know that Per(E ∪ F ) = Hn−1(∂∗(E ∪ F )) and Per(E) + Per(F ) =
Hn−1(∂∗E) +Hn−1(∂∗F ) and that ∂∗(E ∪ F ) ⊆ ∂∗E ∪ ∂∗F . Therefore, it is easy to
see that Per(E ∪ F ) = Per(E) + Per(F ) if and only if ∂∗(E ∪ F ) = ∂∗E t ∂∗F up
to Hn−1-negligible sets.

2 =⇒ 3 Trivial.

3 =⇒ 4 Given a finite perimeter set E, we know that ∂∗E coincides with the points
x such that Θn(E, x) = 1

2
up to a Hn−1-negligible set. Thus ∂∗E ∩ ∂∗F = {x ∈

Rn : Θn(E, x) = Θn(F, x) = 1
2
} up to Hn−1-negligible sets. However, if Θn(E, x) =

Θn(F, x) = 1
2
, then Θn(E ∪ F, x) = 1 since E and F are disjoint and consequently

x 6∈ ∂∗E.

Hence we have proven that, up to Hn−1-negligible sets, ∂∗E ∩ ∂∗F ⊆ (∂∗(E ∪ F ))c,
which implies that ∂∗E ∩ ∂∗F is Hn−1-negligible, together with hypothesis.

4 =⇒ 2 It is sufficient to prove that the set of x such that x ∈ ∂∗E \∂∗(E ∪F ) is Hn−1-
negligible. For Hn−1-almost every such x it holds that Θ(E, x) = 1

2
and Θ(E∪F, x)

and Θ(F, x) are 0 or 1 (since ∂∗E and ∂∗F are disjoint). However all the possible
cases are easily impossible.
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Proposition 9. Let F ⊆ E be a finite perimeter set and let {Ek}k∈N be a good partition
of E, then {Ek ∩ F}k∈N is a good partition of F .

Proof. First of all let us prove the result in the case of a partition with two sets E0 and
E1. Thanks to Lemma 7, we know that ∂∗E ⊆ ∂∗E0 ∪ ∂∗E1. Consequently we obtain
that

Per(E0) + Per(E1) = Per(E) = Hn−1(∂∗E) ≤
≤ Hn−1(∂∗E0) +Hn−1(∂∗E) = Per(E0) + Per(E1) .

Thus all the inequalities must be equalities and ∂∗E = ∂∗E0∪∂∗E1 up to aHn−1-negligible
set.

Again applying Lemma 7, we have that ∂∗F ⊆ ∂∗(F ∩ E0) ∪ ∂∗(F ∩ E1). We want
to prove that the converse is still true up to Hn−1-negligible sets, which is equivalent to
(∂∗F )c ⊆ (∂∗(F ∩ E0) ∪ ∂∗(F ∩ E1))

c up to Hn−1-negligible sets.
Let x 6∈ ∂∗F , then we prove what stated dividing into two cases:

• if Θn(F, x) = 0, then obviously Θn(F ∩ E0, x) = 0 and Θn(F ∩ E1, x) = 0, which
means that x 6∈ ∂∗(F ∩ E0) ∪ ∂∗(F ∩ E1);

• if Θn(F, x) = 1, then Θn(E, x) = 1 and consequently x 6∈ ∂∗E. Thus, up to a Hn−1-
negligible set, x 6∈ ∂∗E0 ∪ ∂∗E1. This implies that x 6∈ ∂∗(F ∩Ei) ⊆ ∂∗F ∪ ∂∗Ei for
i = 0, 1, exploiting again Lemma 7.

Hence we have obtained that ∂∗F = ∂∗(F ∩ E0) ∪ ∂∗(F ∩ E1), where the union is
disjoint up to Hn−1-negligible sets. This prove the lemma in the case of the two subsets,
indeed

Per(E) = Hn−1(∂∗F ) = Hn−1(∂∗(F ∩ E0)) +Hn−1(∂∗(F ∩ E1)) =

= Per(F ∩ E0) + Per(F ∩ E1) .

Now let us prove be induction on the dimension of the partition that the result is true
for every finite partition {E0, . . . , EK}. Thanks to the inductive hypothesis we have that

Per(F ∩ E0) + . . .+ Per(F ∩ EK−1) + Per(F ∩ EK) =

= Per(F ∩ E0) + . . .+ Per(F ∩ (EK−1 ∪ EK)) = Per(F ) ,

which proves also the finite case.
Finally, let us generalize the result to a countable partition {Ek}k∈N. Thanks to the

finite case and the Lemma 6, for every K ∈ N it holds that

Per(F ) =
∑
k≤K

Per(F ∩ Ek) + Per(F ∩ (∪k>KEk))

and passing to the limit we obtain

Per(F ) ≥
∑
k∈N

Per(F ∩ Ek) .

Since the other inequality is always true we have concluded our proof.
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Corollary 10. Let {Ek}k∈N and {Fh}h∈N be good partitions of E, then {Ek ∩Fh}k,h∈N is
a good partition of E.

Proof. Thanks to Proposition 9 applied to {Ek}k∈N and Fh for every h ∈ N, we have that∑
h,k∈N

Per(Ek ∩ Eh) =
∑
h∈N

Per(Fh) = Per(E) ,

which proves what we need.

The following proposition is the key element of the proof of Theorem 3. The idea is
that in every good partition there exists an element which volume “large enough”.

Proposition 11. Let {Ek}k∈N be a good partition of E ⊆ Rn, then there exists a constant
C > 0 such that (

max
k∈N
|Ek|

) 1
n

≥ C
|E|

Per(E)
.

Proof. Call m = maxk∈N|Ek|, thanks to the isoperimetric inequality we have that

Per(E) =
∑
k∈N

Per(Ek) ≥ C
∑
k∈N

|Ek|
n−1
n = C

∑
k∈N

|Ek| · |Ek|−
1
n ≥ Cm−

1
n |E| ,

which implies the sought inequality.

Remark 12. Since we are assuming that the Ek are in descending order of volume, we
have that maxk∈N|Ek| = |E0|.

Proposition 13. Given E finite perimeter set, there exists E0 ⊆ E indecomposable finite

perimeter set such that Per(E) = Per(E0) + Per(E \ E0) and |E0|
1
n ≥ C |E|

Per(E)
> 0.

Proof. Let us define

m = inf

{
max
k∈N
|Ek| : {Ek}k∈N is a good partition of E

}
.

Notice that, thanks to Proposition 11, it holds that m
1
n ≥ C |E|

Per(E)
.

The idea is to prove that the infimum in the definition is a minimum, indeed this would
easily implies that the E0 of the partition which realizes the minimum is indecomposable.

Let {E(j)
k }k∈N be a sequence of good partitions such that |E(j)

0 | ↓ m. Thanks to
Corollary 10 we can assume that they are partitions more and more fine, i.e. for every
j ≥ 1 and k ∈ N there exists h ∈ N such that E

(j)
k ⊆ E

(j−1)
h . Indeed, given {Ek}k∈N and

{E ′k}k∈N good partitions of E, the lemma tells that {Ek ∩Eh}k,h∈N is a good partition as
well.

Moreover, up to subsequence, we can assume that E
(j)
k ⊇ E

(j+1)
k definitely in j for

every k ∈ N. To prove this fact, first of all let us notice that we have an inferior bound
for the volume of the kth element of a partition, indeed thanks to Proposition 11 it holds
that

|E(j)
k |

1
n ≥ C

|E| −
∑

h<k|E
(j)
h |

Per(E \ ∪h<kE
(j)
h )
≥ C
|E| −

∑
h<k|E

(j)
h |

Per(E)
. (0.1)
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Now, let us concentrate on the element E
(j)
0 of the partitions. Thanks to the estimate in

the Equation (0.1), the element of the first partition {E(0)
k }k∈N which contains E

(j)
0 for

a given j ∈ N must be one of the first K0, since it must have volume greater or equal
than C |E|

Per(E)
. Thus, for at least one between E

(0)
0 , . . . , E

(0)
K0

, there exist infinitely many

elements E
(j)
0 contained in it. We narrow to the partitions whose first element is one of

these. Finally it is easy to see that definitely the first elements of these partitions must
be contained one in the other (otherwise there would exist an element of volume at least
2m which contains their union, but definitely there isn’t any element so large).

The argument applies similarly to the other elements of the partitions and thus we
conclude by a diagonal argument.

At this point we can define

Ek = lim inf
j→∞

E
(j)
k =

∞⋃
j=0

∞⋂
i=j

E
(i)
k .

The same estimate of Equation (0.1) holds also for the Ek, namely

|Ek|
1
n ≥ C

|E| −
∑

h<k|Eh|
Per(E)

.

This tell us that for every ε > 0 we can choose K ∈ N such that |E \ ∪h<kEh| < ε.
Otherwise definitely |Ek| would be estimate from below and E would not have finite
volume.

At this point, fix such K ∈ N such that |∪k>KEh| < m. First of all we prove that

{E0, . . . , EK , E \ (∪k≤KEk)}

is still a good partition of E. To this aim, it suffices to show that
∑K

k=0 Per(Ek)+Per(E \
(∪k≤KEk)) ≤ Per(E), but this is easily verified since

K∑
k=0

Per(Ek)+ Per(E \ (∪k≤KEk)) ≤

≤
K∑
k=0

lim inf
j→∞

Per(E
(j)
k ) + lim inf

j→∞
Per(E \ (∪k≤KE(j)

k )) ≤

≤ lim inf
j→∞

K∑
k=0

Per(E
(j)
k ) + Per(E \ (∪k≤KE

(j)
k )) = Per(E) .

Besides, we know that |E(j)
0 | ↓ m and thus |E0| = m. This conclude our proof, indeed

all the elements of this decomposition have volume less or equal than m, thus at least one
of them with volume m (among which there is at least E0) must be indecomposable.

Proof of Theorem 3. Let us define

m = inf{|F | : {Ek}k≤K ∪ {F} ∈ F} ,

where F is the set of good partitions {Ek}k≤K∪{F} of E such that Ek is indecomposable
for every k ≤ K.
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First of all let us prove that m is 0. Suppose by contradiction that it is not and
consider a good partition {Ek}k≤K ∪ {F} ∈ F such that |F | − m is sufficiently small.
Thanks to Proposition 13, there exists an indecomposable finite perimeter EK+1 ⊆ F such

that |EK+1|
1
n ≥ Cm

Per(E)
and {EK+1, F \ EK+1} is a good partition of F . Thus, choosing

properly |F |−m, {Ek}k≤K+1∪{F \EK+1} still belongs to F , but |F \EK+1| < m, which
give a contradiction.

Now let us consider a sequence Pj = {E(j)
k }k≤K ∪ {F (j)} ∈ F such that |F (j)| ↓ 0. By

Corollary 10, since the E
(j)
k are indecomposable, we can assume that Pj = {Ek}k≤j∪{F (j)}

with the Ek indecomposable sets in common to all the partitions Pj. Therefore, thanks to
Lemma 6, it turns out that {Ek}k∈N is a good partition of E itself up to a Hn−1-negligible
set, but this conclude our proof.

In conclusion, we want to give a glimpse into the connection between this notion of
components and the classical notion of connected components of an open set.

Proposition 14. Let A ⊆ Rn be an open connected set with finite perimeter and finite
Lebesgue measure. Then A is indecomposable.

Proof. Assume by contradiction that there exist a nontrivial good partition {E0, E1} of A.
Thanks to Lemma 8, it holds that ∂∗A = ∂∗E0t∂∗E1 and in particulare ∂∗E0 ⊆ ∂∗A ⊆ ∂A.
Consequently we have that

Hn−1(∂∗E0 ∩ A) ≤ Hn−1(∂A ∩ A) = 0 ,

since ∂A ∩ A = ∅. This tells that DχE0 = 0 on A. Hence χE0 is locally equivalent to
a constant in A and, by the connectedness of A, it is globally equivalent to a constant.
Therefore E0 = ∅ or E0 = A up toHn−1-negligible sets, which leads to a contradiction.

Lemma 15. Let A ∈ Rn be an open set with finite perimeter and finite Lebesgue mea-
sure such that ∂A = ∂∗A up to Hn−1-negligible sets. Then the decomposition of A in
indecomposable components coincides with its decomposition in connected components.

However, it is not true in general that the connected components of an open set
coincides with its indecomposable components. Let us see why throught the following
example.

Example. Let K ∈ R2 be a compact subset of ( 0, 1 ) × {0} with empty interior and
H1(K) > 0. Let us write ( 0, 1 )× {0} \K = ∪i∈I ( ai, bi ) and define Bi = B(ai+bi

2
, bi−ai

2
)

the ball with diameter ( ai, bi ). Then consider A := ( 0, 1 )× (−1, 1 ) \ ∪i∈IBi.
Since K has empty interior, the open set A has easily two connected components E0 =

A∩ ( 0, 1 )× ( 0, 1 ) and E1 = A∩ ( 0, 1 )× (−1, 0 ). Thus, thanks to Proposition 14, the
only two possibilities are that A is indecomposable or that {E0, E1} is the good partition
in indecomposable sets. However K ⊆ ∂∗E0 ∩ ∂∗E1 and consequently, by Lemma 8 and
the fact that H1(K) > 0, {E0, E1} is not a good partition for A, which therefore is
indecomposable.
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