Exam of the course "Dynamical Systems" - Scuola Normale Superiore

The Grobman-Hartman theorem in Banach spaces

Giada Franz

4 aprile 2017

Abstract

I will present a version of the Grobman-Hartman theorem in Banach spaces, generalizing the statement given during the course, which was substantially focused on \mathbb{R}^n .

First of all I will recall the main definitions and preliminary results about hyperbolic endomorphisms of a Banach space, then I will state the Grobman-Hartman theorem, showing the relation with the classical version seen in the course, and finally I will give a proof of this result.

Now let us go into the details of the presentation.

Definitions and preliminary results

Let $(E, \|\cdot\|)$ be a Banach space and $T : E \to E$ be a continuous linear map.

Definition. The spectrum of *T* is defined as

 $\text{Sp}(T) \coloneqq \{ \lambda \in \mathbb{C} : T_{\mathbb{C}} - \lambda \text{id}_{\mathbb{C}} \text{ is not an automorphism of } E_{\mathbb{C}} \},$

where $E_{\mathbb{C}}$, $T_{\mathbb{C}}$, id_C are the complexifications of E , T , id.

I take the complexifications since in this way the spectum turns out to be nonempty, besides being compact.

Definition. We say that $T: E \to E$ is hyperbolic if

$$
Sp(T) \cap \{|z| = 1\} = \emptyset.
$$

Notice that, if *T* is hyperbolic, since $\text{Sp}(T)$ is compact, there exist $0 < \kappa_s < 1 < \kappa_u$ such that $\text{Sp}(T) \cap \{\kappa_s \leq |z| \leq \kappa_u\} = \emptyset$. In this case, *T* is said to be (κ_s, κ_u) -hyperbolic.

We now quote some properties of hyperbolic maps, which are well-known in the finitedimensional case, but are far from being obvious in this general setting.

Proposition. Let $T: E \to E$ be a (κ_s, κ_u) -hyperbolic continuous linear map, then

- (i) there exist subspaces E_s and E_u of E such that $E = E_s \oplus E_u$, $T(E_s) \subseteq E_s$, $T(E_u) = E_u$ and $\text{Sp}(T|_{E_s}) = \text{Sp}(T) \cap \{|z| < 1\}, \ \text{Sp}(T|_{E_u}) = \text{Sp}(T) \cap \{|z| > 1\}.$
- *(ii)* there exists on *E* an adapted norm $\|\cdot\|_T$ for *T*, that is a norm equivalent to $\|\cdot\|$ such that $||x_s + x_u||_T = \max{||x_s||_T, ||x_u||_T}$ for all $x_s \in E_s$, $x_u \in E_u$ and $||T|_{E_s}||_T \le \kappa_s$, $||(T|_{E_u})^{-1}||_T \leq \kappa_u^{-1}.$

Statement of the Grobman-Hartman theorem

From now on, I suppose that *E* is a Banach space, $T: E \to E$ is a (κ_s, κ_u) -hyperbolic endomorphism of *E*, with $\kappa_s < 1 < \kappa_u$, and I assume that $\|\cdot\|$ is an adapted norm for *T*.

Theorem (Grobman-Hartman). *Suppose that T is also an automorphism of E. Let* $f : E \rightarrow$ *E be a map such that* $\Delta f := f - T$ *is bounded and Lipschitz with*

$$
\mathrm{Lip}(\Delta f) < \varepsilon_1 = \min(\|T^{-1}\|^{-1}, 1 - \kappa_s, 1 - \kappa_u^{-1}).
$$

Then there exists a unique homeomorphism $h = id_E + \Delta h$ *with* Δh *bounded such that*

$$
f = h \circ T \circ h^{-1}.
$$

Let us investigate the connection with the classical statement seen during the course. In that case, we have a smooth vector field X defined in a neighborhood U of 0 in \mathbb{R}^n , which has a hyperbolic equilibrium point in 0. Call X^{lin} the linear part of X and Φ_X^t , $\Phi_{X^{\text{lin}}}^t$ the flows of *X* and X^{lin} respectively. We know that $\Phi_{X^{\text{lin}}}^t$ coincides with the linear part of the flow Φ_X^t and consequently it holds

$$
\Phi_X^t(x) = \Phi_{X^{\text{lin}}}^t(x) + \mathcal{O}(|x^2|).
$$

Then there exists a smaller neighborhood $V \subseteq U$ of 0 such that $\Phi^t_X(x) - \Phi^t_{X^{\text{lin}}}(x)$ is Lipschitz in *V* with constant strictly less then ε_1 . Consequently, we can take $T = \Phi_{X^{\text{lin}}}^t$ and f a Lipschitz extension of Φ_X^t to all \mathbb{R}^n , with the same constant, and apply this version of the Grobman-Hartman theorem to obtain a homeomorphism $h: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$
\Phi_X^t = h \circ \Phi_{X^{\text{lin}}}^t \circ h^{-1}.
$$

Notice that during the course we said that there exists a local homeomorphism $\psi : W \to$ \mathbb{R}^n defined in a neighborhood *W* of 0, such that in *W* it holds

$$
\Phi^t_X\circ\psi=\psi\circ\Phi^t_{X^{\mathrm{lin}}}
$$

for every *t* in a neighborhood of zero small enough. However, with the version of the Grobman-Hartman theorem presented here, we can obtain the conjugacy only at fixed time.

Proof of the Grobman-Hartman theorem

In order to prove the Grobman-Hartman theorem, we show the following slightly more general result, which directly implies the theorem.

Theorem. Take *E*, *T* and ε_1 as in the Grobman-Hartman theorem. Take $f = T + \Delta f$ and $g = T + \Delta g$ *such that* Δf *and* Δg *are bounded and Lipschitz with* $\text{Lip}(\Delta f)$ *,* $\text{Lip}(\Delta g) < \varepsilon_1$ *. Then there exists a unique homeomorphism* $h = id_E + \Delta h$ *with* Δh *bounded such that*

$$
f \circ h = h \circ g.
$$

This theorem will be proven using a fixed point lemma in Banach spaces, which will produce the sought homeomorphism *h*.

Lemma. Let *E* be a Banach space, $T : E \to E$ a (κ_s, κ_u) -hyperbolic endomorphism and $f = T + \Delta f$ *such that* Δf *is Lipschitz with* $\text{Lip}(\Delta f) < \varepsilon_0 = \min(1 - \kappa_s, 1 - \kappa_u^{-1})$ *. Then f has a unique fixed point x in E and moreover it holds*

$$
||x|| < (\varepsilon_0 - \text{Lip}(\Delta f))^{-1} ||f(0)||.
$$

References

[1] J.-C. Yoccoz, *Introduction to hyperbolic dynamics*, Real and Complex Dynamical Systems, NATO ASI Series, **464** (1995), pp. 265-291.