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Abstract

We present two proofs of the Malgrange-Ehrenpreis theorem about the existance
of fundamental solutions of linear partial differential equations. These notes have
been written for the seminary of the exam “Analisi Superiore”, taught by professor
Luigi De Pascale at University of Pisa on the academic year 2015/2016.

Two proofs of the Malgrange Ehrenpreis theorem

The Malgrange-Ehrenpreis theorem states that every linear partial differential operator
with constant coefficients admits a fundamental solution.

Theorem 1 (Malgrange-Ehrenpreis). For every nonzero polynomial P ∈ C[x1, . . . , xn],
there exists G ∈ D′(Rn) such that P (D)G = δ.

We will present two different solutions of the theorem. The former is the original
proof by Malgrange and Ehrenpreis and uses the Hahn-Banach theorem to construct G
starting from defining it on a subset of D(Rn) in the most natural way. The latter, due
to Hörmander, gives a more explicit construction through the Fourier transform.

Proof. Let F : P (−D)D(Rn) → C be the functional defined by P (−D)ϕ 7→ ϕ(0), where
P (−D)D(Rn) = {P (−D)ϕ : ϕ ∈ D(Rn)} is the image of D(Rn) through P (−D). First
notice that the function F is well-defined. Indeed, if P (−D)ϕ = 0 than P (−iξ)ϕ̂ =
F(P (−D)ϕ) = 0 and consequently ϕ̂ = 0, which gives ϕ = 0.

Note that if G ∈ D′(Rn) is an extension of F it will be a fundamental solution, since
for every ϕ ∈ D(Rn) we will have

〈P (D)G,ϕ〉 = 〈G,P (−D)ϕ〉 = 〈F, P (−D)ϕ〉 = ϕ(0) .

Therefore, let’s show that F is linear and continuos with respect to the topology
induced by D(Rn), so that the Hahn-Banach theorem can give us the sought extension.

Lemma 2. Let F : Cn → C be an entire function, P : Cn → C a polynomial with degree
m and ρ : Cn → C a measurable positive function with compact support depending only
on |z1|, . . . , |zn|. Then, for every α ∈ Nn, there exists Cm,|α| such that

|F (0)||P (α)(0)| ·
ˆ
|zα|ρ(z) dz ≤ Cm,|α|

ˆ
|F (z)P (z)|ρ(z) dz .
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Proof. Let’s prove the lemma in the one-dimensional case, then the general one will follow
easily.

If q(z) = akz
k + . . .+ a1z + a0 is a polynomial and g(z) is an entire function, thanks

to the Cauchy’s integral formula applied to zkq̄(1/z)g(z), for every real number r > 0 we
have

rk|akg(0)| ≤ 1

2π

ˆ 2π

0

|g(reiθ)q(reiθ)| dθ .

Now, if P (z) =
∏m

j=1(z+ zj), applying the last formula with q(z) =
∏k

j=1(z+ zj) and
g(z) = F (z)

∏m
j=k+1(z + zj), we have

rk|F (0)
m∏

j=k+1

zj| ≤
1

2π

ˆ 2π

0

|F (reiθ)P (reiθ)| dθ .

Since this inequality holds for any product of m−k of the numbers zj and P (k)(0) is sum
of such terms, we obtain

rk|F (0)P (k)(0)| ≤ Cm,k

ˆ 2π

0

|F (eiθ)P (eiθ)| dθ .

Therefore, multiplying by rρ(r) and integrating with respect to r, we obtain the thesis

|F (0)P (k)(0)|
ˆ
|zk|ρ(z) dz ≤ Cm,k

ˆ
|F (z)P (z)|ρ(z) dz .

Setting ψ := P (D)ϕ, we have ψ̂(ξ) = P (iξ)ϕ̂(ξ). Our aim is to estimate ϕ(0) with
|ψ|Ck for some k ∈ N.

Fixed ξ ∈ Rn, we apply the Lemma 2 to the entire function F (z) = ϕ̂(ξ + z), the
polynomial P (i(ξ + z)) and the characteristic function of the set {|z| < 1} as ρ(z).
Choosing α such that P (α) is costant, we obtain

|ϕ̂(ξ)| ≤ Cn,P

ˆ
|ϕ̂(ξ + z)P (i(ξ + z))|ρ(z) dz = Cn,P

ˆ
|ψ̂(ξ + z)|ρ(z) dz ,

where Cn,P denote a generic constant depending on n and P . Hereafter we will continue
to use Cn,P , though its value will change.

If we integrate the last inequality with respect to ξ, we get

|ϕ(0)| ≤ 1

(2π)
n
2

ˆ
|ϕ̂(ξ)| dξ ≤ Cn,P

ˆ ˆ
|ψ̂(ξ + z)|ρ(z) dz dξ =

= Cn,P

ˆ
ρ(z)

ˆ
|ψ̂(ξ + z)| dξ dz = Cn,P |ψ̂|L1 .

Recalling that (iξ)αψ̂ = D̂αψ and taking |α| big enough, we have

|ψ̂|L1 =

ˆ
|ξ|<1

|ψ̂| dξ +

ˆ
|ξ|≥1
|ψ̂| dξ ≤ Cn|ψ̂|∞ +

ˆ
|x|≥1

|D̂αψ|
|ξα|

dξ ≤ Cn(|ψ̂|∞ + |D̂αψ|∞) ≤

≤ Cn(|ψ|L1 + |Dαψ|L1) ≤ Cn |sptψ| |ψ|C|α| .

Therefore we have obtained ϕ(0) ≤ Cn,P |sptψ| |ψ|C|α| , which shows the continuity of the
function ψ 7→ ϕ(0).

Finally the linearity of F is immediate and this completes the solution.
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We would like to set G := F−1
(
(2π)−

n
2P (iξ)−1

)
, which would be a fundamental

solution for P (D) if (2π)−
n
2P (iξ)−1 belonged to S ′(Rn). Unfortunately this is not true

in general, thus the following proof solves this problem using a sort of partition of unity
called the “Hörmander staircase”.

Proof. First of all, we introduce the Hörmander staircase and we prove its existence in
the following proposition. We denote Pm the principal part of P , where m = degP .

Proposition 3. Let η ∈ Rn such that Pm(η) 6= 0. Then there exist characteristic func-
tions χk on Rn for k = 0, . . . ,m such that:

1. χk(ξ + λη) = χk(ξ) for all ξ ∈ Rn, λ ∈ R and k = 0, . . . ,m;

2.
∑m

k=0 χk ≡ 1;

3. there exists C > 0 such that if χk(ξ) 6= 0 then |P (iξ + kη)| > C for all ξ ∈ Rn and
k = 0, . . . ,m.

Proof. Fixed ξ ∈ Rn, we consider the polynomial z 7→ P (iξ + kη) = Pm(η)
∏m

j=1(z − zj).
The function ω : ξ 7→ [z1, . . . , zm], which takes values on the topological quotient space
X = Cm/ ∼ of Cm by permutations of the coordinates, is continuos by well-known results.

For k = 0, . . . ,m, we define Ak = {[z1, . . . , zm] ∈ X : |Re zj−k| < 1
2
∀j = 1, . . . ,m}

and consequently we set χk as the characteristic function of ω−1(Ak)∩
⋂k−1
l=0 ω

−1(X \Al).
Since the sets Ak are closed and cover X, the functions χk are measurable and∑m
k=0 χk ≡ 1. Furthermore ω(ξ + λη) = [z1 − iλ, . . . , zm − iλ], thus ξ + λη ∈ ω−1(Bk) if

and only if ξ ∈ ω−1(Bk), which provides the first requirement.
Finally, if ξ ∈ ω−1(Bk), then

|P (iξ + kη)| = |Pm(η)|
m∏
j=1

|k − zj| ≥ |Pm(η)|
m∏
j=1

|k − Re zj| >
|Pm(η)|

2m
,

which concludes the proof of the proposition.

At this point, we can construct our fundamental solution as

G :=
1

(2π)
n
2

m∑
k=0

ekx·ηF−1
(

χk(ξ)

P (iξ + kη)

)
,

which is a well-defined distribution because χk(ξ)P (iξ+kη)−1 ∈ L∞(Rn), since is bounded
by 1/C thanks to property 3 of Proposition 3, thus we can do the inverse Fourier trans-
form. Moreover there is no problem to multiply by the C∞(Rn)-function ekx·η.

Let’s now prove that G is actually a fundamental solution for P (D). We have that

P (D)G =
1

(2π)
n
2

m∑
k=0

P (D)

(
ekx·ηF−1

(
χk(ξ)

P (iξ + kη)

))
=

=
1

(2π)
n
2

m∑
k=0

ekx·ηP (D + kη)F−1
(

χk(ξ)

P (iξ + kη)

)
=

=
1

(2π)
n
2

m∑
k=0

ekx·ηF−1
(
P (iξ + kη)

χk(ξ)

P (iξ + kη)

)
=

1

(2π)
n
2

m∑
k=0

ekx·ηχ̌k(ξ) =

=
1

(2π)
n
2

m∑
k=0

χ̌k(ξ) =
1

(2π)
n
2

F−1
(

m∑
k=0

χk(ξ)

)
=

1

(2π)
n
2

1̌ = δ ,
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where we have used the following lemmas to justify the first equality in the last line.

Lemma 4. Let u ∈ L∞(Rn) such that there exists η ∈ Rn for which u(ξ+λη) = u(ξ) for
every ξ ∈ Rn and λ ∈ R. Then ∂u

∂η
= 0 as distribution.

Proof. Given ϕ ∈ D(Rn), we have

〈∂u
∂η
, ϕ〉 = −〈u, ∂ϕ

∂η
〉 = −

ˆ
u(x)

∂ϕ

∂η
(x) dx = −

ˆ
u(x) lim

h→0

ϕ(x+ hη)− ϕ(x)

h
dx =

= − lim
h→0

1

h

[ˆ
u(x)ϕ(x+ hη) dx−

ˆ
u(x)ϕ(x) dx

]
=

= − lim
h→0

1

h

[ˆ
u(x− hη)ϕ(x) dx−

ˆ
u(x)ϕ(x) dx

]
= 0 .

Lemma 5. Let T ∈ D′(Rn) with ∂T
∂η

= 0 and let f ∈ C∞(R), then f(η · x)Ť = f(0)Ť .

Proof. Without loss of generality, we can suppose f(0) = 0, then there exists g ∈ C∞(R)
such that f(y) = yg(y). Therefore, given ϕ ∈ D(Rn), we have

〈f(η · x)Ť , ϕ〉 = 〈T,F( f(η · x)ϕ(x) )〉 = 〈T,F( (η · x)g(η · x)ϕ(x) )〉 =

= 〈T,−i ∂
∂η
F( g(η · x)ϕ(x) )〉 = 〈∂T

∂η
, iF( g(η · x)ϕ(x) )〉 = 0 .
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