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1 Asymptotically flat manifolds and their mass

During all the notes we deal with asymptotically flat oriented three-dimensional mani-
folds, thus let us start introducing this concept and some notation.

Definition 1.1. A Riemannian manifold (N, g) is said to be asymptotically flat of
order τ > 0 if there exists a decomposition N = N0 ∪ N∞ with N0 compact and a
diffeomorphism ψ : N∞ → Rn \Bρ0(0) for some ρ0 > 0, such that in the chart inducted
by ψ we have

gij = δij +O2

( 1
rτ

)
,

where r = ((x1)2+(x2)2+(x3)2)
1
2 . In particular we call N∞ the end of the asymptotically

flat manifold N .
Here we denote with Ok

(
1
rτ

)
a function on Rn whose jth derivative is O

(
1

rτ+j

)
for

j = 0, . . . , k.

Definition 1.2. Given (N, g) an asymptotically flat manifold, we define the mass of its
end as

m(g) = lim
r→∞

1
16π

ˆ
Sr

(div0 g − d tr0 g)(ν) dvolSr = lim
r→∞

1
16π

ˆ
Sr

(∂igij − ∂jgii)νj dvolSr ,

where the divergence and the trace are computed with respect to the Euclidean metric
(the subscript “0” stands for the Euclidean metric) and ν is the outer unit normal of the
sphere Sr.

Proposition 1.3. Given an asymptotically flat manifold (N, g) of order τ > n−2
2 , the

mass m(g) exists and doesn’t depend on the chart.

Definition 1.4. Given an asymptotically flat manifold (N, g) of order τ > n−2
2 , we say

that g ∈Mτ if the scalar curvature of g is integrable and gij − δij ∈ C1,α
−τ (N∞) for some

0 < α < 1.
We recall that the weighted Hölder space Ck,αβ (N∞) is the set of all Ck functions u

such that the norm

‖u‖
Ck,α
β

=
k∑
i=0

sup
N∞

{
r−β+i|∇iu|

}
+ sup
x,y∈N∞

{
min(r(x), r(y))−β+k+α |∇ku(x)−∇ku(y)|

|x− y|α

}

is finite.

Proposition 1.5. Given τ > n−2
2 , the mass functional is a continuous affine functional

on Mτ .
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2 The positive mass theorem

At this point we have all the definitions to state the positive mass theorem, which
substantially says that an asymptotically flat manifold with nonnegative scalar curvature
has nonnegative mass. The problem has been solved up to dimension 7 using an inductive
argument starting from dimension 3, which exploits the fact that minimal hypersurfaces
in low dimensions can’t have singularities. Recently a proof in arbitrary dimension has
been announced. However here we concentrate on the 3-dimensional case.

Theorem 2.1 (Positive mass). Let (N, g) be an asymptotically flat manifold of dimen-
sion 3 with g ∈Mτ , for τ > 1

2 , and with scalar curvature R ≥ 0. Then its mass m(g) is
nonnegative.

The hypothesis of g ∈Mτ for τ > n−2
2 is added in order to gain integrability of the

scalar curvature, existence and indipendence from the chart of the mass and continuity
of the mass functional.

The first step of the proof consists in reducing to the following simpler case, in which
we know a further term of the asymptotically flat metric.

Theorem 2.2 (Schoen, Yau). Let (N3, g) be an asymptotically flat manifold with scalar
curvature R ≥ 0 such that

gij =
(

1 + M

2r

)4
δij +O2

( 1
r2

)
=
(

1 + 2M
r

)
δij +O2

( 1
r2

)
in a chart on the end N∞. In this case we say that (N, g) is a good asymptotically flat
manifold.

Then the mass of g corresponds to M and it is nonnegative.

Therefore, the next sections are devoted to prove the reduction from Theorem 2.2
(Schoen, Yau) to Theorem 2.1 (Positive mass) and the Theorem 2.2 (Schoen, Yau) itself.
However, before that we compute asymptotic expansions of some quantities given by the
asymptotic flatness in the form of Theorem 2.2 (Schoen, Yau).

3 Easy expansions given by asymptotic flatness

We are now going to compute some quantities, or their expansions, concerning a good
asymptotically flat manifold (N3, g).

First of all, the expansions of the metric inverse and the square root of the determi-
nant of the metric are very easy to obtain:

gkl =
(

1 + M

2r

)−4
δkl +O2

( 1
r2

)
, (3.1)

√
det(gij) =

(
1 + M

2r

)6
+O2

( 1
r2

)
. (3.2)

Then we compute the asymptotic expansion of the derivatives of the metric:

∂kgij = ∂k

(
1 + 2M

r

)
δij +O

( 1
r3

)
= −2Mxk

r3 δij +O
( 1
r3

)
, (3.3)
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from which follows directly that the mass coincides with the constant M in a good
asymptotically flat manifold, indeed:

m(g) = lim
r→∞

1
16π

ˆ
Sr

(∂igij − ∂jgii)νj dvolSr =

= lim
r→∞

1
16π

ˆ
Sr

2M
r3

(
−xiδij + xjδii

)
νj dvolSr = lim

r→∞
1

16π

ˆ
Sr

4Mxj

r3 νj dvolSr =

= M

4π lim
r→∞

ˆ
Sr

1
r2 dvolSr = M

4π lim
r→∞

1
r2 vol(Sr) = M .

4 Riduction to the theorem of Schoen and Yau

As already mentioned, in this section we show how Theorem 2.2 (Schoen, Yau) implies
Theorem 2.1 (Positive mass).

Fix a smooth function η : R→ R such that 0 ≤ η ≤ 1, η(t) = 1 for t ≤ 1 and η(t) = 0
for t ≥ 2. Then define ηρ : N → R by

ηρ(x) = η

(
r(x)
ρ

)
.

Now we can consider the flattened metric gρ given by

(gρ)ij = δij + ηρφij ,

where gij = δij + φij with φij ∈ C1,α
−τ (N∞).

The problem now is that gρ could have negative scalar curvature, thus we try to
conformally change the metric in order to restore the nonnegative scalar curvature. A
first attempt is to impose the scalar curvature to be ηρR solving the classical Yamabe
equation stated just below.

Lemma 4.1 (Yamabe equation). Given a Riemannian manifold (Mm, g) with scalar
curvature R and a positive function ϕ ∈ C∞(M), the conformally equivalent metric
ϕ

4
m−2 g on M has scalar curvature

R̃ = ϕ−
m+2
m−2

(
Rϕ− 4(m− 1)

m− 2 ∆ϕ
)

= ϕ−
m+2
m−2 �ϕ ,

where we have defined the operator � := R− 4(m−1)
m−2 ∆.

In particular, if M has dimension 3, this becomes R̃ = ϕ−5 (Rϕ− 8∆ϕ).

However it turns out to be convenient to solve the linear equation

�ρϕρ = ηρRϕρ

for ϕρ > 0 and change the metric by g̃ρ = ϕ4
ρgρ to obtain

R̃ρ = ϕ−5
ρ �ρϕρ = ϕ−4

ρ ηρR ≥ 0 .
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Calling ψρ = ϕρ − 1 and γρ = Rρ − ηρR, the equation becomes

(γρ − 8∆ρ)ψρ = −γρ .

We omit the proof of the existence of the solution ψρ of this equation such that ψρ → 0
in C2,α

−τ+ε and the fact that g̃ρ fulfills the hypothesis of Theorem 2.2 (Schoen, Yau). Then
we have that m(g̃ρ) ≥ 0 and now it sufficient to prove that g̃ρ → g in the topology of
Mτ−ε, from which indeed follows that m(g̃ρ)→ m(g) by Proposition 1.5.

We have that

g − g̃ρ = (g − gρ) +
(

1− ϕ
4

m−2
ρ

)
gρ = (1− ηρ)φ+

(
1− ϕ

4
m−2
ρ

)
gρ .

However the two terms of the sum go to zero in C1,α
−τ , since (1 − ηρ)φ is bounded and

goes to zero and ϕρ = 1 + ψρ → 1 in C1,α
−τ . Moreover

|R− R̃ρ| = |R− ϕ−4
ρ ηρR| ≤ 2(1− ηρ)|R|

and consequently Rρ → R in L1(N). We can thus conclude that g̃ρ → g in Mτ−ε as
expected.

5 Proof of the theorem by Schoen and Yau

In order to show this result, let us assume by contradiction that the total mass is negative,
then the proof of the theorem is based on four main steps:

1. Prove that we can assume that R > 0 outside a compact subset of N∞.

2. Find a suitable complete area minimizing surface Σ.

3. Show that the integral over Σ of its sectional curvature is positive.

4. Prove that such a surface can not exist.

We will often identify N∞ with R3 \ B̄ρ0(0).
Remark 5.1. In our proof we will assume that the manifold (N, g) is oriented. However
this is not a deep loss of generality, indeed we can assume orientability as long as we
consider the double covering and we solve the problem in a manifold with more than
one end (the proof is totally the same, working separately on each end, except for the
fact that we have to check that the part of the area minimizing surface not in the end
lies in a compact subset of the complementary).

5.1 Assuming strictly positive curvature

In this section we prove that:
Given a good oriented asymptotically flat Riemannian manifold (N3, g) with positive

scalar curvature and negative total mass, there exists a conformally equivalent metric g̃
on N such that (N, g̃) fulfills the same hypotheses and, moreover, it has strictly positive
scalar curvature outside a compact set.
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The main tool to achieve this result is that, under our hypotheses (in particular
because of the negative total mass), the Laplacian of 1

r is strictly negative outside a
compact set.

Therefore, first of all let us compute the asymptotic expansion of the Laplacian of 1
r

in the end N∞, using that for a function u on N∞ we have

∆u = 1√
det(gij)

∂k

(√
det(gij)gkl∂lu

)
.

By the computations in Section 3 (Easy expansions given by asymptotic flatness), in
particular using the Equations (3.1) and (3.2)

∆
(1
r

)
=
(

1 +O
(1
r

))
∂k

((
1 + M

2r

)2
δkl∂l

(1
r

))
+O

( 1
r5

)
=

=
3∑

k=1
∂k

((
1 + M

r

)
∂k

(1
r

))
+O

( 1
r5

)
=

=
3∑

k=1
M

[
∂k

(1
r

)]2
+
(

1 + M

r

)
∂k∂k

(1
r

)
+O

( 1
r5

)
=

=
3∑

k=1
M

(xk)2

r6 +
(

1 + M

r

)
∂k

(
−x

k

r3

)
+O

( 1
r5

)
=

= M

r4 −
(

1 + M

r

) 3∑
k=1

(
1
r3 −

3(xk)2

r5

)
+O

( 1
r5

)
= M

r4 +O
( 1
r5

)
.

Notice that we have obtained that ∂k∂k 1
r = 0, which actually follows from the fact that

1
r is the Green’s function of the Laplacian in R3.

Thus, there exists ρ > ρ0 such that ∆(1
r ) < 0 for r ≥ ρ, since M < 0 by hypothesis.

We will use this fact in order to construct a conformal deformation of the metric g with
strictly positive curvature for r > 2ρ.

Call t0 = −M
8ρ0

and define β ∈ C∞(R+) such that

β(t) =
{
t , for t < t0
3t0
2 , for t > 2t0

and β′(t) ≥ 0, β′′(t) ≤ 0 for all t ∈ R+. Now we can define ϕ : N → R by

ϕ =

1 + 3t0
2 , on N \N∞

1 + β
(
−M
4r

)
, on N∞

in order to have ∆ϕ ≤ 0 everywhere and ∆ϕ < 0 for r > 2ρ.
We would like to change conformally the metric g through ϕ, so that the hypotheses

of asymptotic flatness and negative total mass don’t change and the resulting scalar
curvature is positive everywhere and strictly positive for r sufficiently big.

Consequently, let us consider precisely g̃ = ϕ4g, then

g̃ij =
(

1− M

4r

)4 (
1 + M

2r

)4
δij +O2

( 1
r2

)
=
(

1 + M

4r

)4
δij +O2

( 1
r2

)
.
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However, by Lemma 4.1 (Yamabe equation), it is obvious to conclude that R̃ ≥ 0
everywhere and R̃ > 0 for r > 2ρ on N∞. Consequently we have proven what we wanted.

5.2 Existence of a minimizing surface

In this section we want to show the following result:
Let (N3, g) be a good oriented asymptotically flat Riemannian manifold with negative

total mass, positive scalar curvature and strictly positive scalar curvature outside a com-
pact set. Then there exists an oriented complete area minimizing surface Σ in N such
that Σ ∩N∞ is contained in Eh := {x = (x1, x2, x3) ∈ R3 : |x3| ≤ h} for some h > 0.

Given ρ > 2ρ0, let Cρ be the Euclidean circle of radius ρ centered at 0 in the x1x2-
plane.

Theorem 5.2. For every ρ > 2ρ0, there exists the surface Σρ of least g-area among
those having boundary Cρ, which is a smooth embedded oriented surface.

Moreover, there exists r0 > 0 depending only on (N, g) such that, for every point
x0 ∈ Σρ with Bg

r0(x0) ∩ Cρ = ∅, Bg
r0(x0) ∩ Σρ can be written as the graph of a C3

function fρ over the tangent plane to Σρ in x0. Furthermore, there exists a constant
which bounds all derivatives of fρ up to order three in Bg

r0(x0), always depending only
on (N, g).

Here Bg
r0(x0) stands for the geodesic ball with respect to the metric g on N , to dis-

tinguish it to the Euclidean balls in N∞.

First of all let us prove that there exists h > ρ0 such that Σρ ∩N∞ ⊆ Eh for every
ρ > 2ρ0. This will allow us to extract a converging subsequence of the surfaces Σρ to
the sought minimal surface Σ.

First of all, let us compute the Hessian of x3 on N∞, calling {∂i}i=1,2,3 the frame
induced by the standard coordinates x1, x2, x3 on N∞.

Hess(x3)(∂i, ∂j) = ∂i(∂j(x3))−∇∂i∂j(x3) = −Γ3
ij = −1

2g
3k (∂igjk + ∂jgik − ∂kgij)

and, exploiting the Equation (3.3), we obtain

Hess(x3)(∂i, ∂j) = Mxi

r3 δj3 + Mxj

r3 δi3 −
Mx3

r3 δij +O
( 1
r3

)
. (5.1)

Now fix ρ > 2ρ0 and let h̄ be the maximum for x3 on Σρ ∩ N∞, which occurs at a
point x̄ ∈ Σρ. As already mentioned, we want to prove that h̄ is bounded indipendently
from ρ. Notice that the tangent space to Σρ at x̄ is generated by ∂1, ∂2.

Take a local orthonormal frame {ei}i=1,2,3 around x̄ such that ei(x̄) = ∂i(x̄) for
i = 1, 2 and e3 = ν is a normal unit field for Σρ. Then the hessian of x3 in the induced
metric over Σρ is

HessΣρ(x3)(ei, ej) = ei(ej(x3))−∇Σρ
ei ej(x

3) =
= ei(ej(x3))−∇eiej(x3) + 〈∇eiej , ν〉ν(x3) =
= ei(ej(x3))−∇eiej(x3) + hijν(x3) ,
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where hij is the second fundamental form with respect to ν. Evaluating in x̄ we thus
obtain

HessΣρ(x3)(∂i, ∂j) = Hess(x3)(∂i, ∂j) + hijν(x3) .

Then, contracting with respect to the induced metric gΣρ on Σρ, we have

2∑
i,j=1

(gΣρ)ijHessΣρ(x3)(∂i, ∂j) =
2∑

i,j=1
gijHessΣρ(x3)(∂i, ∂j) =

=
2∑

i,j=1
gijHess(x3)(∂i, ∂j) +HΣρ

ν = −2Mh̄

r3 +O
( 1
r3

)
,

where we have used the Equation (5.1) and the fact that the mean curvature HΣρ
ν of Σρ

is zero by minimality.
Since M < 0, if h̄ is sufficiently large (indipendently from ρ), we see that in the point

x̄ ∈ Σρ it holds
2∑

i,j=1
(gΣρ)ijHessΣρ(x3)(∂i, ∂j) > 0 ,

which contradicts that x3 attains a maximum there, because in that case HessΣρ(x3)
would be negative semidefinite in x̄.

Which similar calculations we can also bound the minimum of x3 and thus we have
obtained the existence of h such that Σρ ∩N∞ ⊆ Eh for every ρ > 2ρ0.

At this point, we just have to pass to the limit in order to find our minimal surface
Σ. For ρ̃ > 2ρ0 define Aρ̃ = N \ N∞ ∪ {x ∈ N∞ : (x1)2 + (x2)2 ≤ ρ̃2}, then we have
obtained that Σρ ∩ Aρ̃ ⊆ (K ∪ Eh) ∩ Aρ̃, which is a compact subset of N and thus we
can apply Ascoli-Arzelà theorem in order to find a converging subsequence of the Σρ.

Indeed this can be done thanks to the Theorem 5.2, which gives us a converging
subsequence ρ(ρ̃)

i → +∞ such that {Σ
ρ

(ρ̃)
i

} converges in C2-topology. Then, by a diagonal
argument, we find ρi → +∞ so that {Σρi} converges uniformly in C2-topology on
compact subsets to an embedded C2 surface Σ.

Moreover Σ is a properly embedded oriented area minimizing surface on any compact
subset of N and obviously Σ ∩N∞ ⊆ Eh.

5.3 Properties of the integral of the scalar curvature over the area
minimizing surface

In this section we will investigate properties concerning the integral of the section cur-
vature of an area minimizing surface in an asymptotically flat manifold. In particular
we will show that:
Let (N, g) be a good oriented asymptotically flat manifold with positive scalar curvature

and strictly positive scalar curvature outside a compact set. Moreover let Σ ⊆ N be an
oriented complete area minimizing surface properly embedded such that Σ ∩ N∞ ⊆ Eh
for some h > ρ0. Then it holds that

ˆ
Σ
|K| dV < +∞ and

ˆ
Σ
K dV > 0 ,
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where K and dV are the sectional curvature and the volume form of Σ, respectively.
For ρ > ρ0, let us define Σ(ρ) := Σ ∩ [(N \ N∞) ∪ Bρ(0)], then Area(Σ(ρ)) ≤ C1ρ

2.
Indeed by minimality Area(Σ(ρ)) ≤ Area(∂Bρ(0)), from which follows the inequality
above by asymptotic flatness.

Lemma 5.3. In the given assumptions for the surface Σ we have that
ˆ

Σ

1
1 + ra

dV < +∞ , (5.2)

for every a > 2 real. In the case a = 2, we have instead that for every ρ0 < ρ1 < ρ2 it
holds ˆ

Σ(ρ2)\Σ(ρ1)

1
r2 dV ≤ 2C1

(
log

(
ρ2
ρ1

)
+ 1

)
. (5.3)

Proof. For every a > 2 we have that
ˆ

Σ

1
1 + ra

dV =
ˆ

Σ(ρ0)

1
1 + ra

+
ˆ ∞
ρ0

d
dt

(ˆ
Σ(t)

1
1 + ra

dV
)

dt ≤

≤ Area(Σ(ρ0)) +
ˆ ∞
ρ0

1
1 + ta

( d
dt Area(Σ(t))

)
dt =

= Area(Σ(ρ0)) +
[ 1

1 + ta
Area(Σ(t))

]∞
ρ0

+
ˆ ∞
ρ0

ata−1

(1 + ta)2 Area(Σ(t)) dt

≤ Area(Σ(ρ0)) +
ˆ ∞
ρ0

ata−1

(1 + ta)2 Area(Σ(t)) dt ≤

≤ C1

[
ρ2

0 + a

ˆ ∞
ρ0

ata+1

(1 + ta)2 dt
]
< +∞ .

On the other hand, with similar computations, when a = 2 we obtain
ˆ

Σ(ρ2)\Σ(ρ1)

1
r2 dV =

ˆ ρ2

ρ1

d
dt

(ˆ
Σ(t)

1
r2 dV

)
dt =

ˆ ρ2

ρ1

1
t2

( d
dt Area(Σ(t))

)
dt =

=
[ 1
t2

Area(Σ(t))
]ρ2

ρ1

+
ˆ ρ2

ρ1

2
t3

Area(Σ(t)) dt ≤

≤ 2C1 + 2C1

ˆ ρ2

ρ1

1
t

dt = 2C1 log
(
ρ2
ρ1

)
.

Take ν a unit normal field to Σ, which is globally defined since Σ is oriented.

Proposition 5.4. The second variation formula for a variation uν with u ∈ C∞c (Σ) is

V ′′(0) = −
ˆ

Σ
u[∆u+ |II|2u+ Ricc(ν, ν)u] dV ,

where V (t) is the volume of the variation and dV is the volume form on Σ with the
induced metric from (N, g).
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Since Σ is an area minimizing surface, it holds that
ˆ

Σ
[|II|2 + Ricc(ν, ν)]u2 dV ≤ −

ˆ
Σ
u∆udV =

ˆ
Σ
|∇u|2 dV

for every u ∈ C∞c (Σ). Then, by approximation, for every Lipschitz function u with
compact support in Σ we have that

ˆ
Σ

[|II|2 + Ricc(ν, ν)]u2 dV ≤
ˆ

Σ
|∇u|2 dV (5.4)

Now, for ρ > ρ0, define the function

ϕ =


1 , on Σ(ρ)
log
(
ρ2
r

)
log ρ , on Σ(ρ2) \ Σ(ρ)

0 , outside Σ(ρ2)

.

Because of the asymptotic flatness of N , there exists a constant C2 such that |∇r|2 ≤ C2.
Thus, taking u = ϕ in the Equation (5.4), we have

ˆ
Σ

[|II|2 + Ricc(ν, ν)]ϕ2 dV ≤
ˆ

Σ
|∇ϕ|2 dV ≤ 2

(log ρ)2

ˆ
Σ(ρ2)\Σ(ρ)

|∇r|2

r2 dV ≤

≤ 2C2
(log ρ)2

ˆ
Σ(ρ2)\Σ(ρ)

1
r2 dV .

Therefore, thanks to the Equation (5.3), we conclude that
ˆ

Σ
[|II|2 + Ricc(ν, ν)]ϕ2 dV ≤ 4C1C2

log ρ

(
1 + 1

log ρ

)
. (5.5)

In particular this implies that
ˆ

Σ(ρ)

|II|2 dV ≤ 4C1C2
log ρ

(
1 + 1

log ρ

)
+
ˆ

Σ
|Ricc(ν, ν)|dV .

Thus, letting ρ→ +∞ and using that Ricc(ν, ν) = O
(

1
r3

)
thanks to asymptotic flatness,

by the Lemma 5.3 it holds
ˆ

Σ
|II|2 dV ≤

ˆ
Σ
|Ricc(ν, ν)|dV < +∞ . (5.6)

Take, as in the previous section, a local orthonormal frame {ei}i=1,2,3 such that
e3 = ν is a normal unit field to Σ. Call hij = −〈∇eiν, ej〉 the components of the second
fundamental form II, then by definition we have |II|2 =

∑2
i,j=1 h

2
ij .

By minimality of Σ, it holds that 0 = tr(II) = h11 + h22 and consequently the Gauss
curvature equation tells that

K = K12 + h11h22 − h2
12 = K12 − h2

11 − h2
12 = K12 −

1
2 |II|

2 . (5.7)
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Thus, combining this with the Equation (5.6), we have the first part of the proposition
ˆ

Σ
|K|dV < +∞ ,

since K12 = O
(

1
r3

)
, because N is asymptotically flat.

Even the second sought inequality is an easy consequence of what we have already
done. Indeed, plugging the Equation (5.7) in the Equation (5.5), we have that

ˆ
Σ

(
K12 + Ricc(ν, ν)−K + 1

2 |II|
2
)
ϕ2 dV ≤ 4C1C2

log ρ

(
1 + 1

log ρ

)

=⇒
ˆ

Σ

(
R

2 −K + 1
2 |II|

2
)
ϕ2 dV ≤ 4C1C2

log ρ

(
1 + 1

log ρ

)
,

then, letting ρ→ +∞, we obtain
ˆ

Σ

(
R

2 −K + 1
2 |II|

2
)

dV ≤ 0 .

Since R ≥ 0 and R > 0 outside a compact set, it is now obvious to conclude
ˆ

Σ
K dV > 0 .

5.4 Conclusion of the proof proving that we have a contradiction

In this last section we want to come to a contradiction proving that at the same time
the integral of the section curvature over Σ must be nonpositive, that is:
Let (N, g) be a good oriented asymptotically flat manifold and Σ ⊆ N be an oriented

complete area minimizing surface properly embedded such that Σ ∩ N∞ ⊆ Eh for some
h > ρ0. Suppose that ˆ

Σ
K dV > 0 ,

then this surface cannot exists, indeed it holds at the same time that
ˆ

Σ
K dV ≤ 0 .

Notice that we don’t require the positivity of the scalar curvature and the negativity
of the total mass of N .

Theorem 5.5 (Huber). Let (S, ḡ) be a complete Riemannian surface and assume that
the Gaussian curvature K of S is integrable. Then

(i)
´
SK dVḡ ≤ 2πχ(S), where χ is the Euler characteristic (Cohn-Vossen’s inequality);

(ii) (S, ḡ) is conformally equivalent to a compact Riemann surface with at most finitely
many points removed.
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Corollary 5.6. Under our hypotheses on (N, g) and Σ area minimizing surface in N ,
Σ is conformally equivalent to C. In particular let us call F : C → Σ the conformal
diffeomorphism.

Now, let us quote a theorem due to Finn and Huber, which is a generalization of the
Gauss-Bonnet theorem for the noncompact case.

Theorem 5.7 (Finn, Huber). Let Dρ and Cρ the disk and the circle of radius ρ in C,
respectively. Moreover denote Ai = Area(F (Di)) and Li = Length(F (Ci)) for i ∈ N.
Then it holds that ˆ

Σ
K dV = 2π − lim

i→∞

L2
i

2Ai
.

Thus, in order to prove that
´

ΣK dV ≤ 0, it is sufficient to see that

lim
i→∞

L2
i

4πAi
≥ 1 .

We will show this inequality using the asymptotic flatness in order to relate lengths and
areas with Euclidean lengths and then dealing with the Euclidean quantity thanks to
classical estimates.

We call L̃i the Euclidean length of F (Ci). Then, by asymptotic flatness of N , we
have

L̃2
i ≤ (1 + o(1))L2

i ,

since F (Ci) eventually lies outside every compact set of N . Thus the part concerning
the length is easily connected with the Euclidean counterpart and we can focus on the
estimates of the areas.

Theorem 5.8. Let S be a minimal Riemannian surface on R3 and C be a rectifiable
Jordan curve on S of length L which encloses a simply-connected domain D of area A,
then A ≤ L2

4π .

Denote Σi and Σ̃i respectively the immersed disk and the generic oriented surface
of least Euclidean area with boundary F (Ci) and Ã the Euclidean area. Then, by the
theorem stated just above, it holds that

Ã(Σ̃i) ≤ Ã(Σi) ≤
L̃2
i

4π .

Now, let us state one last theorem about minimal surfaces we take for granted.

Theorem 5.9. Let S be a compact Riemannian minimal surface in Rn, then it lies in
the convex hull of its boundary.

Thanks to this, since F (Ci) ⊆ Eh, we have that Σ̃i ⊆ Eh too. Moreover there exists
x0 ∈ Σ̃i ∩ {(0, 0, x3) : x3 ∈ R}, because Σ̃i does not retract onto its boundary, and
consequently Ã(Σ̃i ∩ Br(x0)) ≥ πr2. Since F (Ci) lies outside every compact set for i
sufficiently large, we can find a sequence ρi →∞ such that Σ̃i ∩Bρi(0) does not contain
boundary terms of Σi; then we have

Ã(Σ̃i ∩Bρi(0)) ≥ (1 + o(1))πρ2
i ,
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where in fact we have used that Σ̃i ⊆ Eh.
We now want to compare the area of Σ̃i with its Euclidean area, thus we slightly

modify it near the origin since the metric g is not defined in Bρ0(0), while Σ̃i could have
a piece there.

Take ρ0 ≤ ρ̄ ≤ ρ0 + 1 such that Σ̃i is transverse to ∂Bρ̄(0). Then there exists a
domain Ωi ⊆ ∂Bρ̄(0) so that ∂Ωi = Σ̃i ∩ ∂Bρ̄(0). Thus we define the surface

Σ̂i = (Σ̃i \Bρ̄(0)) ∪ Ωi ,

which is entirely contained in N∞.
Noticing that Ã(Σ̃i)→ +∞, we conclude that

Ã(Σ̃i) ≤ Ã(Σ̂i) ≤ (1 + o(1))Ã(Σ̃i) ≤ (1 + o(1)) L̃
2
i

4π

At this point we can estimate the g-area of Σ̂i. First of all, by asymptotic flatness,
it is possible to choose ρi (eventually taking ρi smaller) such that

A(Σ̂i ∩Bρi(0)) ≤
√
Ã(Σ̂i)

and A(Σ̂i ∩Bρi(0))→ +∞. Moreover, again for the asymptotic flatness, we have that

A(Σ̂i \Bρi(0)) ≤ (1 + o(1))Ã(Σ̂i) .

Therefore, combining the found inequalities, we obtain that

Ai ≤ A(Σ̂i) ≤ (1 + o(1))Ã(Σ̂i) ≤ (1 + o(1)) L̃
2
i

4π ≤ (1 + o(1))L
2
i

4π ,

which leads to the conclusion letting i→ +∞.
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