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Abstract

Notes on the Thom homomorphism which I presented as a seminary for the
exam of Differential Topology. The course has been taken by professor Riccardo
Benedetti at the University of Pisa on the academic year 2015/2016.

These notes are mainly based on the chapter Cobordism of the book Differential
Topology, written by Morris W. Hirsch.
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Introduction

Let’s denote Nn the group of the n-dimensional compact manifolds with the operation of
disjoint union. The aim of this study is to find an isomorphism of Nn with a homotopy
group of a certain space which we will call Thom space.

Now consider the following situation. Take a couple (Y p+k, Bp) of manifolds and con-
sider a map f : Sn+k → Y transverse to B, then f−1(B) is a n-dimensional submanifold
of Sn+k. Thus we can define a function πn+k(Y ) → Nn such that [f : Sn+k → Y ] 7→
[f−1(B)], which is well defined because if f, g : Sn+k → Y are homotopic then f−1(B)
and g−1(B) are easily cobordant.

Therefore, the problem now lies in finding a suitable couple (Y,B) for which this map
turns out to be an isomorphism. A first try could be done setting (Y,B) = (Es,k, Gs,k)
with s > n+ k, where Gs,k is the Grassman manifold of the k-planes in Rs and Es,k is its
tautological bundle. Indeed, every compact manifold Xn can be embedded in Sn+k and
locally there exists a vector bundle f : U → Es,k where U is a tubular neighborhood of
X. Unfortunately, in general this can not be extended to a map f : Sn+k → Es,k.

Suppose for example to be in the case n = 0, k = 1 and s = 2, which are the minimum
numbers respecting the constraints. In this case Es,k = E2,1 is homeomorphic to a Möbius
strip. Assume to have taken X as the point (0,−1) in S1 and the tubular neighborhood
U as S1 \ {(0, 1)}. Furthermore suppose that f : U → E2,1 maps bijectively U to a fibre
of the vector bundle E2,1. Then it is easy to check that it’s not possible to extend f to
the point (0, 1).

At this stage, the idea of Thom is to add a point to the space Es,k in order to make
possible the extension, which for example becomes clear in the situation just presented.

However, before studying the Thom’s construction, we need to recall some technical
results, mostly concerning extensions of vector bundle maps and tubular neighborhoods.
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1 Preliminaries

As warned in the introduction, we denote Gs,k the Grassmannian of the k-planes in Rs

and Es,k its tautological bundle.

1.1 Whitney’s embedding theorem

Theorem 1.1 (Whitney’s embedding). Let Xn be a compact manifold, then there exists
an embedding of X in Rn+k for every k > n.

Theorem 1.2 (Whitney’s extension). Let f : Xn → Rn+k be an embedding from a
neighborhood of a closed set A ⊆ X with k > n. Then there exists an embedding g : X →
Rn+k which coincides with f on A.

Corollary 1.3 (Whitney’s embedding with boundary). If k > n + 1, any embedding
∂W n+1 ↪→ Sn+k extends to an embedding W n+1 ↪→ Dn+k+1.

Proof. It is easy to construct a function f : W n+1 → Dn+k+1 which is an embedding
from a collar of ∂W n+1 and coincides with the given embedding ∂W n+1 ↪→ Sn+k from the
boundary. Then Theorem 1.2 (Whitney’s extension) gives the sought embedding from
the whole W n+1.

1.2 Extension theorem for tubular neighborhoods

Theorem 1.4. Let A be a submanifold of a manifold X. Then every tubular neighborhood
of ∂A in ∂X is the intersection with ∂X of a tubular neighborhood for A in X.

Proof. Call V the tubular neighborhood of ∂A in ∂X, which we want to extend to a
tubular neighborhood U of A in X.

Take a collar of ∂X in X, which we can identify with CX = ∂X × [0, 1]. Then
CA = ∂A × [0, 1] = A ∩ ∂(X × [0, 1]) is a collar of ∂A in A. Now let’s take U ′ a
tubular neighborhood of A \ CA in X \ CX , which exists for general results on tubular
neighborhoods, and consider its intersection with ∂(X \ CX) = ∂X × {1}. This gives an
other tubular neighborhood V ′ of ∂A in ∂X.

Consequently, we only need to prove that we can find a tubular neighborhood of CA
in CX which coincides with V ∪ V ′ on the boundary. However, we now that V and V ′

are isotopic through a map H : V × [0, 1] → ∂X, which gives a tubular neighborhood
of ∂A at every time, then the map Ĥ : V × [0, 1] → CX such that Ĥ(x, t) = (H(x, t), t)
provides the sought tubular neighborhood U ′′ of CA in CX .

Finally, we only need to glue smoothly U ′ and U ′′ to obtain the tubular neighborhood
U which extends V .

1.3 Classification theorem for vector bundles

Lemma 1.5. Let ξ = (π,E,X) be a vector bundle of rank k over the n-manifold X and
let U be a neighborhood of a closed set A in X. Suppose to have F̃ : E|U → U × Rs a
vector bundle map injective in every fibre with s ≥ n+k. Then there exist a vector bundle
map F : E → X × Rs injective in every fibre which coincides with F̃ in a neighborhood
of A.
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Theorem 1.6. If s ≥ k+n, then every bundle ξ = (π,E,X) of rank k over an n-manifold
X has a classifying map fξ : X → Gs,k, i.e. f ∗ξ Es,k

∼= ξ. In fact any classifying map
∂X → Gs,k for ξ|∂X extends to a classifying map for ξ.

Proof. Let F : E → X × Rs a vector bundle map injective in every fibre given by
Lemma 1.5. Thus define fξ : X → Gs,k such that fξ(x) = πRs(F (ξx)), which is a k-plane
in Rs and hence it belongs to Gs,k. Then fξ turns out to be a classifying map for ξ.

Now, suppose to have already a classifying map fξ|∂X : ∂X → Gs,k for ξ|∂X . Then
take a collar CX = ∂X × [0, 1) for ∂X in X, so that E|CX is isomorphic to E|∂X × [0, 1).
Define

F̃ : E|CX ∼= E|∂X × [0, 1) → CX × Rs

(v, t) 7→ ((π(v), t), fξ|∂X (v))

At this point, always by Lemma 1.5, we can take F coinciding with F̃ on ∂X and do the
same construction for fξ as before. However, this time fξ extends fξ|∂X .

Corollary 1.7. If s ≥ k + n, given a vector bundle ξ = (π,E,X) of rank k over an
n-manifold X, there exists a vector bundle map f : E → Es,k such that f t Gs,k and
X = f−1(Gs,k). Furthermore, given a vector bundle map f |∂X : E|∂X → Es,k such that
f |∂X t Gs,k and ∂X = (f |∂X)−1(Gs,k), f can be found extending f |∂X .

Proof. It is sufficient to take f : E → Es,k such that f(v) = (fξ(x), πRs(F (v))) where
v ∈ ξx and fξ, F are the maps given in the proof of Theorem 1.6.

1.4 Homotopy with a vector bundle map

Theorem 1.8. Let X be a manifold, E a vector bundle over a manifold B and f : X → E
a map such that f and f |∂X are both transverse to B. Suppose that A = f−1(B) is compact
and to have U ⊆ X tubular neighborhood of A in X. Finally take D ⊆ U a disk subbundle.

Then there exists a homotopy Ft from f = F0 to F1 = φ : X → E such that

• φ|D is the restriction of a vector bundle map U → E over f : A→ B;

• Ft = f on A ∪ (X \ U);

• F−1
t (E \B) = X \ A.

Proof. Let φ : Ux → E be the component of dfx : Ux ⊆ TxU → Tf(x)E along Ef(x), for
every x ∈ A. By construction, φ is a vector bundle map and is homotopic to f as a map
from D to E through the homotopy

ft(x) =

{
1
t
f(tx) , 0 < t ≤ 1

φ(x) , t = 0
.

This can be extended to a homotopy Ft : X → E such that Ft ≡ ft on D and Ft ≡ f on
X \ U by homotopy extension theorem, which concludes the proof.
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2 The Thom space of a vector bundle

Let E
π−→ B be a vector bundle of rank k over the compact manifold B. Consider

E∗ = E ∪ {∞} the one-point compactification of E, which we also call the Thom space
of the vector bundle.

Proposition 2.1. With the above notations, the space E∗ \B is contractible.

Proof. The homotopy h : (E∗ \B)× I → E∗ \B such that

h(x, t) =

{
1+t
1−t x , if 0 ≤ t < 1, x 6=∞
∞ , if t = 1 or x =∞

gives a contraction of E∗ \B to ∞.

Lemma 2.2. Let A be a closed submanifold of a manifold X. Then two maps f, g : X →
E∗ \B which agree on A are homotopic relatively to A.

Proof. Let c : (X \A)× [0, 1]→ E∗ \B be a homotopy from f to g, which exists because
E∗ \ B is contractible, and let λ : X → R be a map such that λ|A = 0 and λ > 0
otherwise. Then consider h : X × [0,∞]→ E∗ \B defined by

h(x, t) =

{
c(x, λ(x)t) , if 0 ≤ t <∞
g(x) , if t =∞

.

Finally, eventually rescaling [0,∞] to [0, 1], h turns out to be a homotopy from f to g
relatively to A.

We say that a map f : X → E∗ is in standard form if there is a submanifold A ⊆ X
and a tubular neighborhood U ⊆ X of A such that U = f−1(E), A = f−1(B) and f |U is
a vector bundle map over f |A. In particular, this immediately implies that f(X \U) =∞
and f t B if the codimension of A in X is equal to the rank of E over B (which will be
our case). This is because the tangent of E could be broken in a part tangent to B and
in one tangent to the fibres and the image of the tangent through f surely take the part
tangent to the fibres, since f induces isomorphisms in the fibres.

Lemma 2.3. Let X, B be compact manifolds without boundary, then every map f : X →
E∗ is homotopic to a map in standard form.

Proof. By the transversality theorem, we can assume that f t B. Then A := f−1(B) is
a submanifold of X and we can take U one of its tubular neighborhoods on X.

Because of Theorem 1.8, we can also assume that f agrees on a disk subbundle
D ⊆ U with a vector bundle map φ : U → E. Extend φ to a map from X to E∗ setting
φ(X \ U) =∞, obtaining a map in standard form. Then f and φ agree on ∂D and map
X \ Int D into E∗ \B, therefore they are homotopic by Lemma 2.2.

Proposition 2.4. Given a structure of CW-complex on B, E∗ has a (k − 1)-connected
CW-complex structure having one (m + k)-cell for each m-cell of B and one additional
0-cell, corresponding to the point ∞.
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Proof. We denote {Dnλ
σλ−→ B}λ∈Λ the set of the cells forming the CW-complex structure

over B. Now, let’s construct the CW-complex structure over E∗, i.e. we have to provide

a set {Dnµ
σµ−→ E∗}µ∈I such that

1. {σµ(Int Dnµ)}µ∈I is a partition on E∗;

2. σµ|Int Dnµ is a homeomorphism for every µ ∈ I;

3. σµ(∂Dnµ) is contained in the union of a finite number of elements of the partition,
each having cell dimension less than nµ, for every µ ∈ I.

For every λ ∈ Λ, the cell cλ = σλ(Int Dnλ) is homeomorphic to Dnλ , hence it is con-
tractible. Therefore π−1(cλ) is homeomorphic to cλ × Rk. This gives an idea of how to
construct the cells partition in E∗.

Indeed, for every λ ∈ Λ, define σ̃λ : Dnλ × Dk → E∗ such that σ̃λ|Int Dnλ×Int Dk ≡
σλ × ϕ : Int Dnλ × Int Dk → cλ × Rk ∼= π−1(cλ), where ϕ : Int Dk → Rk is a chosen
homeomorphism. Then define σ̃λ on ∂Dnλ × Int Dk by continuity and on Dnλ × ∂Dk

going to ∞.

Therefore {Dnλ × Dk σ̃λ−→ E∗}λ∈Λ ∪ {D0 → {∞}} forms a CW-structure over E∗,
composed by a (m+ k)-cell for each m-cell of B and one additional 0-cell corresponding
to the point ∞.

3 The Thom homomorphism

For our aims, we are in particular interested in the Thom space over the tautologi-
cal bundle of the Grassmannian Gs,k, this is because of the reasons anticipated in the
introduction, where we do the one-point compactification to solve the problem of non-
extension. Therefore, we are now going to construct our homomorphism from πn+k(E

∗
s,k)

to Nn.
Take α ∈ πn+k(E

∗
s,k) represented by a function f : Sn+k → E∗s,k, which we can assume

transverse to Gs,k up to homotopy. Then we define τ(α) = [f−1(Gs,k)] ∈ Nn, which is a
well-defined class of cobordism.

First of all we have to check that τ is addictive. Take α = [f ], β = [g] ∈ πn+k(E
∗
s,k),

where we can suppose that f maps the lower hemisphere to∞, whereas g maps the upper
hemisphere to ∞. Indeed we can suppose f and g in standard form for Lemma 2.3 and
then reduce to the sought case using that Sn+k minus a point is contractible. Thus α+β
is the class of the map Sn+k → E∗s,k which coincides with f in the upper hemisphere and
with g in the lower one. Therefore we obtain easily that τ is an homomorphism, indeed
we have

τ(α + β) = [f−1(Gs,k) t g−1(Gs,k)] = [f−1(Gs,k)] + [g−1(Gs,k)] = τ(α) + τ(β) .

The theorem we want now to prove states that, for k and s sufficiently big, τ is an
isomorphism, which will solve our problem.

Theorem 3.1 (Thom). The Thom homomorphism τ : πn+k(E
∗
s,k)→ Nn is

1. surjective if k > n and s ≥ k + n;
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2. injective if k > n+ 1 and s ≥ k + n+ 1.

Proof. Let’s prove the two points separately.

1. Let [Xn] ∈ Nn, then we can suppose Xn ⊆ Sn+k because of Theorem 1.1 (Whitney’s
embedding), since k > n. Furthermore, consider U a tubular neighborhood of X in
Sn+k.

Thus, by Corollary 1.7 using s ≥ k + n, there exists a vector bundle map f : U →
Es,k, which we can extend to a map f : Sn+k → E∗s,k mapping Sn+k \ U to ∞. The
application f is transverse to X and f−1(Gs,k) = X, consequently τ([f ]) = [X],
which proves the surjectivity.

2. Take f : Sn+k → E∗s,k such that τ([f ]) = 0, then we want to prove that [f ] = 0, i.e.
f is homotopic to a constant.

First of all we can assume that f is in standard form by Lemma 2.3 and we denote
Xn = f−1(Gs,k) and U the tubular neighborhood of X such that U = f−1(Es,k).
Then [Xn] = 0 and consequently there exists W n+1 compact manifold with bound-
ary X. Because of Corollary 1.3 (Whitney’s embedding with boundary), the em-
bedding of X in Sn+k can be extended to an embedding of W in Dn+k+1, since
k > n+ 1.

Now call V the tubular neighborhood of W obtained extending U by Theorem 1.4,
then we can extend the bundle map f : U → E∗s,k to a bundle map h : V → E∗s,k
applying Corollary 1.7, using at this point that s ≥ k + n+ 1. Finally let’s extend
h to all Dn+k+1 by putting h(Dn+k+1 \ V ) = ∞. This leads to a homotopy of
f = h|Sn+k with the constant map h|{0}, therefore [f ] = 0 as expected.

Example. Let’s now do some examples of Thom spaces over Grassmannians and of what
Theorem 3.1 (Thom) consequently tells us.

• If k = 1, Gs,1 is diffeomorphic to Ps−1(R), while E∗s,1 is diffeomorphic to Ps(R).
Indeed

ϕ : Ps(R) \ {[0, . . . , 0, 1]} → Ps−1(R)× Rs

[x0, . . . , xs−1, xs] → ([x0, . . . , xs−1], (xsx0, . . . , xsxs−1))

is a diffeomorphism between Ps(R) \ {[0, . . . , 0, 1]} and Es,1 ⊆ Ps−1(R)×Rs, which
leads to a diffeomorphism between Ps(R) and E∗s,1.

Unfortunately, the only case in which Theorem 3.1 (Thom) tells us something is
when n = 0, from which we obtain that τ : Z/2Z ∼= π1(E∗s,1)→ N0 is surjective.

• If k = s, the Grassmannian Gs,s consists in one point, thus Es,s ∼= Rs and conse-
quently E∗s,s

∼= Ss. As in the previous case, this gives us information only on the
surjectivity of τ : Z ∼= πs(E

∗
s,s)→ N0.

• If s = 3 and k = 2, we can identify every plane in R2 with its normal vector, thus
G3,2 is diffeomorphic to P2(R), indeed the antipodal of a vector corresponds to the
same plane. It’s now easy to see that E3,2 is diffeomorphic to the tangent bundle
of P2(R).
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This is the first case in which the full hypothesis of Theorem 3.1 (Thom) are fulfilled,
thus we obtain that N0 is isomorphic to the second homotopy group of the one-point
compactification of TP2(R).

4 Homotopy groups of the Thom space

Hence, we have proved that the Thom homomorphism τ : πn+k(E
∗
s,k)→ Nn is an isomor-

phism if k > n+ 1 and s ≥ k + n+ 1.
This drives the study of the cobordism groups to the analysis of the homotopy groups

of the Thom space over Grassmannians, which is become an algebraic topology problem.
First of all, let’s observe that E∗s,k admits a structure of finite dimensional CW-complex

because of Proposition 2.4. Indeed its base space Gs,k can be triangulated being a smooth
manifold, hence admits a structure of simplicial complex and consequently of finite di-
mensional CW-complex.

However let’s present an explicit structure of CW-complex over Gs,k given by the
Schubert cells.

Definition 4.1. Let’s consider the canonical basis e1, . . . , es of Rs. Then for every j =
(j1, . . . , jk) such that 1 ≤ j1 < j2 < . . . < jk ≤ s define

Cj := {W ∈ Gs,k : dim(W ∩ span〈e1, . . . , ejl〉 ) = l for every l = 1, . . . , k} ,

which are called the Schubert cells of the Grassmannian Gs,k.

It can be proven the following result, which gives us a CW-complex structure over
Gs,k composed by a finite number of cells of dimension less or equal then k(s− k).

Proposition 4.2. The Schubert cells Cj, as j = (j1, . . . , jk) varies over the ones for
which 1 ≤ j1 < j2 < . . . < jk ≤ s, form a disjoint partition of Gs,k which constitutes
a CW-complex structure. In particular Cj is a cell of the CW-complex of dimension

dim(Cj) =
∑k

l=1 jk − l.

What just observed, together with Proposition 2.4, says that E∗s,k has a structure of
finite (k− 1)-connected CW-complex. This will give has information about its homotopy
groups thanks to the following theorem.

Theorem 4.3 (Serre). Let X be a finite (k−1)-connected CW-complex with k ≥ 2. Then
the Hurewicz homomorphism πi(X)→ Hi(X,Z) such that [f : Si → X] 7→ f∗(hi), where
hi is the canonical generator of Hi(S

i), has both kernel and cokernel finite abelian groups
for i < 2k − 1.

Corollary 4.4. The group πn+k(E
∗
s,k), with k > n + 1 and s ≥ k + n + 1, is finitely

generated.

Proof. It follows from the previous theorem, since the m-element of the complex defining
the homology of E∗s,k is generated by the m-cells of the CW-complex structure over E∗s,k
and consequently is finite generated.
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5 Final results

From the Corollary 4.4, we obtain directly the following property of the n-th group of
cobordism Nn.

Proposition 5.1. The group of cobordism of the n-dimensional manifolds Nn is finitely
generated. This means that there is a finite set of n-manifolds such that every compact n-
manifolds is cobordant to the disjoint union of a finite number of copies of these manifolds.

In particular, since Nn is a Z/2Z vector space, Nn is finite, thus there is m ∈ N such
that Nn

∼= (Z/2Z)m.

More in general, the direct sum N∗ of the groups Nn has been completely character-
ized. However, we just quote without proof the principal result in the following theorem.

Theorem 5.2 (Thom). The graded algebra N∗ =
∑

n≥0 Nn, where the product is given
by the Cartesian product of manifolds and the grading by the dimension, corresponds to
the polynomial algebra over Z/2Z generated by an element xn ∈ Nn for every n 6= 2k − 1
positive integer. Furthermore, if n is even, it is possible to choose xn = [Pn(R)].
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