SOLUTIONS OF EXERCISES OF WEEK ONE

Exercise 1. Let &7 be a non-empty collection of sets and X € <7 be a set. Show that
N C X CUuA.
For both inclusions, you can start with the usual first step “"Letx € ...”.
Proof. Let x be an element of N/. Then, for every Y € &, there holds x € Y. In
particular, x € X. Now, let x be an element of X. Since X € &/, there holds
xeXeod
which means x € U« O

Exercise 2. We checked that the set N3 := {1, 2,3} has exactly 24 choice functions.
How many choice functions does the set Ny := {1,2,3,4} have?

Proof. We have two choices for every pair, and there are (‘é) = 6 pairs. Then, we

have three choices for every triple, and (g) = 4 triples. Finally, four choices for Ny.
Then, there are

28 x 3* x 4 = 20736
choice functions. O

Exercise 3. An equivalence relation xRy on A is just a subset R C A x A such
that R is reflexive, symmetric and transitive. Let R be an equivalence relation on
Ni :={1,2,3,...,k}. Show that k is even if and only if #R is even.

Proof. We count R by dividing it into two subsets, the diagonal

D:={(xy) eR[x=y}
and its complement D°. Then #R = #D + #(D¢). Since R is reflexive, #D = k.
Since R is symmetric, #(D°) is an even number. Therefore, k is even if and only if
#R is even. g

Exercise 4. Is it true that 2Y% = % for every non-empty collection of sets %?

Proof. 1tis false. For instance consider & = {{0}, {1} }. Then
u% = {0,1}, 2% = {2,{0},{1},{0,1}} # .

It is not difficult to find a lot of examples where this equality fails, especially in
finite sets: in fact, if both 2 and U4 are finite, then

0% =", (1,2,4,...)
while #4 is completely arbitrary. O

Exercise 5. Find the generalized unions and intersections of the following collec-
tions

@ o = {x}
() = {[0,1+1/n) | n>1}

where [a, b) is the interval of real numbers ¢ such that a < ¢ < b and x is a set.
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Proof.
U# = x = N = {x}.
Ush =[0,2), Nah =[0,1].



SOLUTIONS OF EXERCISES OF WEEK TWO

Exercise 1. Let A := R — Z. Prove that A is dense in R.

Proof. Givena < binR, we consider two cases: 0 < b—a < 1. ThenZN (a,b) =D,
therefore x, := (a+b)/2 € Aand a < x4 < b. On the other case, we have
b—a>1,then

a<b—-1<b
and we choose x. = (2b — 1) /2. O
Exercise 2 (*). When we consider the usual sum and multiplication in the complex
field C, the Field Axioms are satisfied. Prove that the Positive Set Axiom are not

satisfied; in other words, prove that given a non-empty subset P C C, at least one
between P1) and P2) is false.

Proof. If P2) is true, then only one between i € P or —i € P (we ruled outi = 0) is
true. Ifi € P, then by P1), —i = i3 € P and we obtain a contradiction. If —i € P,
then, by P1),i = (—i)® € P and we obtain another contradiction. O

Exercise 3. Given a set X and A a non-empty subset. Prove that the following
xRy < (x,y € A)V (x,y € A°)

is an equivalence relation. What are the equivalence classes? In which cases is also

an order relation?

Proof. We show that R is symmetric, transitive and reflexive.

(R) xRx means that either x € A or x € A°. This is true for every x € X,
because X = AU A°

(S) if x,y € A, clearly y, x € A. The same applies to A€

(T) suppose xRy A yRz. Then xRz.

xRy = x,y € AVx,y € A°.
YyRz=y,z€e AVy,z e AS
We have to check four different cases: firstly, we notice that the two cases
(xvye A)AN(y,z€ A°), (y,z€ A)A(x,y € A°)

are not possible because both would imply y € A N A°. We discuss the
remaining cases

(x,ye A)AN(yz€ A)=>x,2€ A= xRz
(x,ye AYA(y,z € A°) = x,z € A= xRz.

So, R is an equivalence relation. Now we address the questions whether R is an
order relation. Since we already know that R is an order relation (so it is reflexive
and transitive) we suppose that R is antisymmetric

(A) xRYAYyRx = x =y.
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We wish to draw some conclusions about the sets A and A°. Given x,y € A, we
have
xRy = yRx
by (S)- By (A),
(xRy AyRx) => x =1y.
Therefore,
XLYEA=>x=y.
Which means that A is a singleton. Now, suppose that x,y € A€. Similarly, we can
show that x = y. The conclusion of this argument is: if R is an order relation, then
A and A€ are singletons. Therefore,

(@) Risan equivalence relation
(b) if R is also an order relation, then A and A€ are singletons. And #X = 2.

O

Exercise 4. Let % be a non-empty collection of sets. Prove or find a counterexam-
ple to each of the following statements:

(i) & is a finite set implies U is a finite set
(if) UZ is a finite set implies 4 is a finite set.

Proof.

(i) It is not true: consider, for instance, & = {N}. The collection is finite, but
U% = N which is the set of natural numbers, not finite
(ii) itis true: in fact, we have
B C2Y%,
Given A € %, there holds A C U%. Then A € LB ; since U4 is finite, its
Power Set is finite, so 4 is finite (thanks to Hyeong-Jun for suggesting this
solution).

O



EXERCISES OF WEEK THREE

Exercise 1 (ex. 16, page 16 of [1]). Prove that Z is countable.

Exercise 2. Write explicitly a Choice Function for the set of natural numbers N (do
not use the Choice Axiom!).

Exercise 3. Prove that R ~ R — {0}.

Exercise 4. Given two natural numbers k,k > 1, use the induction principle to
show that

(i) thereexists f: N, = Ny INNJeh <k
(ii) there exists g: N — Ny SURJ < k < h.

Exercise 5. Let A and B be two subsets of R. Then
ANBCANB, AUB=AUB.
Exercise 6. Let E be a closed set bounded from below. Then
inf(E) € E.

Exercise 7. Let E be a closed set such that

inf(EN[a,+)) =a
for every a real number. Then E = R.
Exercise 8. Prove that if A is an open and closed set, then A is either @ or R (use

Exercise 5).

REFERENCES
1. P. M. Fitzpatrick and H. L. Royden, Real analysis, fourth ed., Pearson, 2010.
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SOUTIONS OF EXERCISES OF WEEK FOUR

Exercise 1. Write explicitly a Choice Function for Z. Write explicitly a Choice
Function for the set of natural numbers N which is not ¢(A) = min(A) (and do
not use the Choice Axiom!).

Proof. For Z, we define

__ Jmin(ANN) fANN#Q
o(4) = {—mjn(—AﬂN) if ANN = Q.

For N, we define

min(4) if A # {1,2
p(a) = (A HAFAL2)
2 if A={1,2}.
O
Exercise 2. Prove that [0,1] = [0,1).
Proof. We define
x if x # 1 foreveryn e N
g(x) = { 1 if f 711 i
m 1 x —_— E.
O

Exercise 3. Prove that a non-empty compact set E is is closed and bounded.

Proof. We prove that E is bounded. We consider the open cover
ECU%, % :={(—nn)|n>1}.

Since E is compact, there exists a finite sub-cover %’ C % . Since %' is finite, there
exists ng such that
EC %I = (—no,no).

We prove that E is closed. On the contrary, let xg be a point in E — E. Since xg ¢ E,

e {(ramRos ) 1n2)

is an open cover. Since E is compact, there exists a finite sub-cover ¥’ C ¥. Then,
there exists n1 such that

1 1
EC (xo—n—l,xo-l-n—l)

Exercise 4. Let % be a finite o-algebra. Show that #4 is even.

Proof. Since 4 is a o-algebra, whenever E € %, the complement also belongs to
%. Since E # E¢, then #4 is even. O

Exercise 5 (Ex. 36, page 20 of [1]). Let ] be the collection of the bounded intervals
[4,b) with a < b. Show that Z(]) = #(Q}), the Borel’s collection.
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Proof. The o-algebra generated by a collection is obtained as the generalized inter-
section of

B (A) = NFy.
Then, we have to prove that
NFq = NF, It
Actually, we will prove that
Fa = Fj.

Firstly, we show that #o C &]. Let # a o-algebra which contains (). We prove
that # D J. Let [4,b) be in |. Then

[a,b) = n (a—1/n,b).
n=1
Since (a —1/n,b) € Q C A, [a, D) is countable union of sets in . Then [a,b) € B.

Now, let £ be a o-algebra which contains J]. We prove that () C . Let O be an
open set. Then, there exists a countable collection of open intervals I, such that

o= n
n=1

We prove that I, € J. In fact, if I, is a bounded interval, we have I, = (4,b) and

[oe]

(a,b) = | Ja+1/k,b)
k=1
while a similar expression holds for unbounded intervals. Since [a + 1/k,b) is in
J € %, (a,b) € #. Then, O is countable union of sets of #. Then O € #. O
REFERENCES

1. P. M. Fitzpatrick and H. L. Royden, Real analysis, fourth ed., Pearson, 2010.



