
Final Exam, 2016, June 9

Instructions.

(1) On this page, please write only your name and id. number,
(2) do not use pencils
(3) you can use any theorem or exercise contained in the syllabus,
(4) Exercises 1, 2, 3 and 4 are mandatory,
(5) choose only one exercise between 5 and 6,
(6) choose only one exercise among 7, 8, 9 and 10.
(7) In exercises 2 and 4 no explanation or proof is needed,
(8) in all the exercises you can assume that all the axioms are satisfied
(9) in exercise 6, write sets, instead of diagrams. For example,

”A = {0, 1}, R = {(0, 0), (1, 1), (0, 1)}” instead of ” � ”.

Do ALL Exercises 1-4.

Exercise 1. Is it true that P(0) = 1?

Exercise 2. Find three infinite sets such that #A < #B < #C.

Exercise 3. and what about P(2) = 4?

Exercise 4. Find a maximal chain in (P(4),⊆).

Choose only one between Exercise 5 and 6.

Exercise 5. Show that there is no set y such that y+ = {1, 2}?

Exercise 6. Find an order relation (A,R) with two minimal elements m1 , m2.

Choose only one among Exercises 7, 8, 9, 10.

Exercise 7. LetM be the set of maximal chains of P(4). What is min{0 ≤ m | #M ≤ 10m}?

Exercise 8. In (A,R), if there are two minimal elements, there are two maximal chains. 1

Exercise 9. Given #A = n and #B = m, how many maximal chains does (F(A,B),⊆) have?

Exercise 10. Let (A,R) be such that #A = #ω. Prove that #R = #A. 2

Notations:

F(A,B): the class of all the functions from A to B.
(A,R) an ordered class.
P(A) : B ∈P(A)⇔ B ⊆ A and B is a set.

Date: 2016, June 13.
1Hint: Use the HausdörffMaximum Principle
2Hint: Use Bernstein’s Lemma



Solutions

Exercise 1 (28pts). Is it true that P(0) = 1?

Solution. It is true. P(0) =P(∅) = {∅} = {0} = 1. �

Exercise 2 (7pts). Find three infinite sets such that #A < #B < #C.

Solution. A := ω, B :=P(ω), C :=P(P(ω)). By the Power Set Axioms, B and C are sets. Since
A and B are sets, A <P(A) = B and B <P(B) = C. �

Exercise 3 (28pts). and what about P(2) = 4?

Solution. It is false. For instance 3 = {0, 1, 2} ∈ 4 but 3 <P(2) = {0, 1, {1}, 2}. �

Exercise 4 (22pts). Find a maximal chain in (P(4),⊆).

Solution. 5 = {0, 1, 2, 3, 4} is a maximal chain. �

Choose only one between Exercise 5 and 6 (6 points each exercise).

Exercise 5. Show that there is no set y such that y+ = {1, 2}?

Solution. Let y be a set such that y ∪ {y} = {1, 2}. Then y ∈ {1, 2}. Then y = 1 or y = 2. If y = 1,
then y+ = {0, 1} , {1, 2} because 1 , 2. If y = 2, then y+ = {0, 1, 2} , {1, 2} because both 1 and 2
are non-empty. �

Exercise 6. Find an order relation (A,R) with two minimal elements m1 , m2.

Solution. A = {0, 1} with R = {(0, 0), (1, 1)}. �

Choose only one among Exercises 7, 8, 9, 10 (9 points each exercise)

Exercise 7. LetM be the set of maximal chains of P(4). What is min{0 ≤ m | #M ≤ 10m}?

Solution. There are 24 maximal chains. Then m = 2. �

Exercise 8. In (A,R), if there are two minimal elements, there are two maximal chains.

Solution. Let m1 and m2 two minimal elements. We define

B1 := {x ∈ A | m1 ≤ x}, B2 := {x ∈ A | m2 ≤ x}.

In the order relation, (Bi,Ri) there is a maximal chain Ci, where Ri = R ∩ (Bi × Bi)). Clearly,
mi ∈ Ci. In fact, since Ci ⊆ Bi, for every element of c ∈ Bi there holds mi ≤ c. Then c ∈ Ci. We
claim that C1 and C2 are maximal chains in A. Let D be a chain such that Ci ⊆ D. If x ∈ D, then x
should be comparable to every element of Ci. Since mi ∈ Ci, x should be comparable to mi, that
is x ≤ mi or x ≥ mi. In the first case, we obtain x = mi ∈ Ci which implies x ∈ Bi; in the second
case, x ∈ Bi, by definition of Bi. Then D ⊆ Bi. Since Ci is a maximal chain in Bi, we obtain D = Bi.
Finally, we prove that C1 , C2. On the contrary, m1 and m2 would be comparable to each other.
Then m1 = m2 because they both are minimal elements, and we obtain a contradiction with the
assumption that m1 , m2. �

Exercise 9. Given #A = n and #B = m, how many maximal chains does (F(A,B),⊆) have?

Solution. Given two functions such that f ⊆ g, there holds f = g. Then maximal chains are
singletons. Then, there are mn maximal chains. �

Exercise 10. Let (A,R) be such that #A = #ω. Prove that #R = #A.

Solution. Since A ≈ idA ⊆ R, we have #A ≤ #R. Since

R ⊆ A × A ≈ ω × ω ≈ ω ≈ A

we have #R ≤ #A. By the Bernstein’s Lemma, A ≈ R. �


