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The coupled non-linear Klein-Gordon equation

∂ttv1 −∆xv1 +m2
1v1 + ∂v1F (v) = 0

∂ttv2 −∆xv2 +m2
2v2 + ∂v2F (v) = 0

(CNLKG)

on F the following assumptions hold

1 F ∈ C 1(R2,R) and F (0) = 0;

2 |DF (u)| ≤ c(|u|p−1 + |u|q−1) with 2 < p ≤ q < 2∗;

3 F (u1, u2) = −β|u1u2|γ + G(u), β > 0, 2 < 2γ < p;

4 G ≥ 0, G(u1, u2) = G(|u1|, |u2|);

5 V (u) := m2
1u

2
1/2 +m2

2u
2
2/2 + F (u) ≥ 0;

6 G is well-behaved with respect to the symmetric
rearrangement�

RN

G(u∗1 , u
∗

2 ) ≤

�
RN

G(u1, u2).
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We are looking for standing-wave pairs solutions to (CNLKG).

vj (t, x) = uj(x)e
−iωj t , 1 ≤ j ≤ 2

In particular, a solution (u, ω) ∈ H1(RN ,R2)× R2

−∆u1 + (m2
1 − ω2

1)u1 + ∂v1F (u) = 0

−∆u2 + (m2
2 − ω2

2)u2 + ∂v2F (u) = 0

uj > 0
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Furthermore, (u, ω) has the following variational
characterisation

E (u, ω) = inf
Mc

E =: I (c)

for some c ∈ R2 with cj > 0.

E : H1(RN ,R2)× R
2 → R

(v , α) 7→
1

2

2
∑

j=1

‖Dvj‖
2 +m2

j ‖vj‖
2 +

�
RN

F (v)

Cj : H
1(RN ,R2)× R

2 → R

(v , α) 7→ αj‖vj‖
2, 1 ≤ j ≤ 2

Mc = {(v , α) |Cj(v , α) = cj}.
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Given
(φ, φt ) ∈ H1(RN ,C2)⊕ L2(RN ,C2) =: X

there exists T > 0 and a unique

v ∈ CtH
1
x (0,T ;RN) ∩ C 1

t L
2
x(0,T ;RN)

such that v solves (CNLKG) and

v(0) = φ, v ′(0) = φt .

In the scalar case the problem was addressed by J. Ginibre and
G. Velo (Math. Zeit., 1985).
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From the assumption

F (u1, u2) = F (|u1|, |u2|)

we have conserved quantities

E : X → R, (Energy)

(φ, φt) 7→
1

2

�
RN

|φt |
2 + |Dφ|2

+m2
1|φ1|

2 +m2
2|φ2|

2 + 2F (φ)

Cj : X → R, 1 ≤ j ≤ 2

(φ, φt ) 7→ −Im

�
RN

φj
tφj .

(Charges)

If (φ, φt ) = (u1, u2,−iω1u1,−iω2u2), then E and Cj

correspond to E (u, ω) and Cj(u, ω).
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Orbital Stability

A subset S ⊂ X is said stable if for every ε > 0 there exists
δ > 0 such that, if

dist(p, S) < δ

then the local solution v of (CNLKG) with initial datum p is
defined on [0,+∞) and

dist((v(t), v ′(t)), S) < ε, t ≥ 0.

An initial datum q ∈ X is said orbitally stable if there exists a
closed, finite-dimensional manifold S such that

1 S is positively invariant;

2 S is stable.
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We say that the standing-waves pair solution to (CNLKG)

(u1, u2,−iω1u1,−iω2u2)

is orbitally stable if

Γ(u, ω) =























(

λ1u1(·+ y), λ2u2(·+ y),

(−iλ1ω1u1(·+ y)),−iλ2ω2u2(·+ y))
)

(λ, y) ∈ S1 × S1 × RN .

is stable. Given c ∈ R2, we define

Γc :=
⋃

E(u,ω)=I (c)
(u,ω)∈Mc

Γ(u, ω)

called ground state (V. Benci, J. Bellazzini et al., Adv.
Nonlinear Stud., 2010).
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J. Shatah 1983 (Comm., Math, Physics, 1983)
NLKG, least energy solutions; orbital stability in H1

r (R
N),

N ≥ 3 with F (u) = −|u|p−1u and p < 1 + 4/N . Stable for
ω ∈ (ω∗, 1);

J. Bellazzini, V. Benci, C. Bonanno, M. Micheletti
(Adv. Nonlinear Stud., 2010)
NLKG, E (u, ω) = infMc

E ; stability of the ground state and
Γ(u, ω) (under a non-degeneracy assumption); scalar case and
N ≥ 3;

J. Zhang, Z. Gan, B. Guo 2010
(Acta Math. Appl. Sin. Engl. Ser., 2010)
CNLKG; analogous results to the Shatah’s work,
F (u1, u2) = −|u1|p+1|u2|q+1, ω1 = ω2 ∈ (ω∗, 1).
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Theorem

1 For every c such that cj > 0 the ground state is stable;

2 for every (u, ω) such that E (u, ω) = I (c) and there exists
r0 > 0 such that

Γ(v , α) 6= Γ(u, ω) ⇒ B(Γ(u, ω), r0) ∩ Γ(v , α) = ∅

Γ(u, ω) is stable (i.e. the corresponding standing-wave is
orbitally stable).
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The proof is carried out by contradiction: let (Φn) ⊂ X δ > 0
and (tn) ⊂ R be such that

dist(Φn, Γc) → 0, dist((vn(tn), v
′

n(tn)), Γc) ≥ δ.

We know that

E((vn(tn), v
′

n(tn)) → I (c), Cj ((vn(tn), v
′

n(tn)) → cj .

Theorem

Let (Ψn) ⊂ X be a sequence such that

E(Ψn) → I (c), Cj (Ψn) → cj .

Then
dist(Ψn, Γc) → 0.

See also J. Bellazzini, V. Benci et al.
(Adv. Nonlinear Stud., 2010).
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Theorem

Given a minimising sequence (un, ωn) of E on Mc , then

unk = u(·+ yk ) + o(1) in H1(RN ,R2), ωnk → ω

for some (u, ω) such that E (u, ω) = I (c) and (yk ) ⊂ RN .
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In turn, the preceding Theorem follows from:

1 the Lemma I.1 of P.L. Lions (Ann. Inst. H. Poincaré
Anal. Non Linéaire 1, 1984, no. 2). The term

−β|u1u2|
γ

rules out the vanishing case;

2 given c , c ′, there exists ε > 0 and d = d(σ, τ) ∈ (0, 1)
given non-negative radially symmetric

(

(u, ω), (u′, ω′)) ∈ Mc ×Mc′

with compact and disjoint support

E (u, ω) ≤ I (c) + ε, E (u′, ω′) ≤ I (c ′) + ε.

‖D(u + u′)∗‖2 ≤ c(‖Du‖2 + ‖Du′‖2)

3 E (un − u, ω) = E (un, ω)− E (u, ω) + o(1) if un ⇀ u.
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The stability of Γ(u, ω)

X

Γ(u, ω) Γ(w , β)

Γ(v , α)

Φn

Φ2

Φ1

E ≥ I (c) + δ0

Φ3



Orbitally stability
for the CNLKG

Definitions and
hypotheses

Statement of the
main results

Sketch of the
proof

The non-degeneracy condition

It is interesting to know whether the non-degeneracy condition
can be dropped from our assumption.

1 it is possible to drop the non-degeneracy requirement to
obtain the orbital stability of Γ(u, ω);

2 or, are there solutions to a NLKG which connect points
arbitrarily close to Γ(u, ω) to points close to Γ(v , α)?
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