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We consider the non-linear Schrödinger equation

(NLS)
(

i∂t + ∆
)

φ − g (φ) = 0

where
φ : Rt × R

n
x → C, g : C → C

such that
g (zu) = zg (u)

for every pair (z , u) in C2 such that |z | = 1 (z ∈ S1).

Let G : C → R be such that for every s ≥ 0

G ′(s) = g (s), G (0) = 0.



The equation (NLS) is globally well-posed in H1(RN ;C) if

|g (s)| ≤ c(|s |p−1 + |s |q−1), 2 < p ≤ q < 2+
4

N
.

That is, given u0 in H1(RN ;C), there exists only one solution

φ : [0,+∞)× R
N
x → C

to (NLS) such that

φ(0, x) = u0(x), φ(t, ·) ∈ H1(RN ).

The notation

Ut (u0) = φ(t, ·), Ut : H1(RN ) → H1(RN )

is useful.



Conserved quantities

If
φ : [0,+∞)× R

n → C

be a solution to the (NLS). Then the energy

E(t) :=
∫

RN
|∇xφ(t, x)|2dx +

∫

RN
G (φ(t, x))dx

and the charge

C(t) := Re

∫

RN
φ(t, x)φ(t, x)dx

are constant.



Solitary waves

A solitary wave is a solution φ to (NLS) such that

φv (t, x) = e i (ω−|v |2)t+iv ·xu(x − tv),

where
v ∈ R

N , ω ∈ R, u ∈ H1(RN ;R).

When v = 0, φ is also called standing-wave:

φ(t, x) = e iωtu(x).

A standing-wave is called Q-ball if u is positive and radially symmetric.

We use the notation H1
r ,+(R

n) for the Q-balls.



The variational setting

If u is a critical point of the functional

E : H1(RN ;R) → R, E (u) :=
1

2

∫

RN
|∇u|2 +

∫

RN
F (u)

on the constraint

S(λ) = {u ∈ H1(RN ;C) | ‖u‖2L2 = λ}

then there exists ω (positive) in R such that

(E) ∆u− g (u) = ωu.

Then, for every v in RN , we have solitary wave solutions

φ(t, x) := e iωtu(x), φv (t, x) = e i ((ω−|v |2)t+v ·x)u(x − tv).



Definition (Stable subsets of H1(RN ;C))

A subset S ⊆ H1(RN ;C) is stable if for ε > 0, there exists δ > 0 such
that, for every Φ in H1(RN ;C), there holds

dist(Φ, S) < δ ⇒ dist(Ut(Φ), S) < ε

for every t ≥ 0.

dist(Φ, S) := inf
Ψ∈S

‖Φ − Ψ‖H1(RN ;C).



Orbital stability of standing waves

If Φ ∈ H1(RN ;C), we define its orbit

Orb(Φ) := {Ut (Φ) | t ≥ 0} ⊆ H1(RN ;C).

If φ(t, x) = e iωtu is a standing-wave,

Orb(u) = {e iωtu | t ≥ 0}.

So,

Orb(u) ⊆
{

zu(·+ y) | |z | = 1, y ∈ R
N} =: Γ(u)

A standing wave is orbitally stable if Γ(u) is stable.



The example of Cazenave and Lions, CPM, 1982

The orbit of u is contained in

Γ1(u) := {zu | z ∈ S1} ( Γ(u).

But Γ1 is not stable. Given w ∈ RN , non-zero

Φn := e ix ·w/nu(x), dist(Φn, Γ1) → 0

and
sup
t≥0

dist
(

Ut (Φn), Γ1

)

≥ ‖u(x − w )− u(x)‖L2 .

Example due to Cazenave and Lions, CPM, 1982.



It can be shown the following

Lemma (Γ(u) is the smallest stable and invariant subset)

If M ⊆ H1(RN ;C) is stable, u ∈ M, and

Ut(M) ⊆ M for every t ≥ 0,

then Γ(u) ⊆ M.

Proof: apply the example of Cazenave and Lions in every direction w .

Definition (V. Benci, C. Bonanno)

Φ is orbitally stable if there exists a sub-manifold M ⊆ H1(RN ;C) such
that

Φ ∈ M

and is stable, invariant and of finite dimension.



Hereafter, we will consider standing-waves

φ(t, x) = e iωtu(t, x)

where u is a minimum of E over S(λ).

Given λ > 0, we define

Γλ := {u ∈ H1(RN ;C) | ‖u‖2L2 = λ,E (u) = inf
S(λ)

E}.

It is called ground state.

If u is in Γλ, then Γ(u) ⊆ Γλ.



The ground state is stable

Under the assumptions

∃s0 ∈ (0,+∞) such that G (s0) < 0

and

|g (s)| ≤ C (|s |p−1 + |s |q−1), 2 < p ≤ q < 2+
4

N

there holds:

Theorem (Bellazzini, Benci et al., Adv. Nonlinear Stud., 2007)

For every λ > 0 the ground state Γλ is non-empty and stable.

The non-linearity we have in mind is

g (s) = −a|s |p−2s + b|s |q−2s, a > 0, b ≥ 0.



The proof of the stability of Γλ relies (in big part) on the following

Lemma (Concentrated-compactness of minimizing sequences)

If (un) ⊂ H1(RN ;R) is a sequence such that

‖un‖
2
L2 → λ, E (un) → I (λ)

then, there exists a sequence (yn) ⊆ RN and u such that

un(·+ yn) → u in H1(RN ;R)

and

E (u) = I (λ).

In general, minimizing sequences are not compact:

un(x) := u(x + ne1), e1 = (1, 0 . . . , 0).



Properties of E

(1) For every λ > 0, E is bounded from below. We define

I (λ) := inf
S(λ)

E .

(2) I (λ) < 0

(3) given a weakly converging sequence un ⇀ u in H1, there holds

lim
n→+∞

(

E (un)− E (un − u)− E (u)
)

= 0

(4) given 0 < µ < λ, there holds

I (λ) < I (µ) + I (λ − µ).



The proof uses the ideas of the Concentration-Compactness Lemma
(P. L. Lions, AIHPAN, 1984). Here we use a version of V. Benci and
D. Fortunato for sequences in H1 (Benci, Fortunato, Chaos Solitons
Fractals, 2014).

Given a bounded sequence (un) ⊆ H1, we have three cases:
Concentration, Dichotomy, Vanishing.

(C) ∃(yn) ⊆ R
N and u ∈ H1 such that un(·+ yn) → u in H1

(D) ∃(yn) ⊆ R
N and u ∈ H1 such that un(·+ yn) ⇀ u in H1

and
0 < ‖u‖H1 < lim

n→+∞
‖un‖H1

(V) ∀(yn) ⊆ R
N : un(·+ yn) ⇀ 0 in H1.



The Vanishing case is ruled out

Let Qi be an enumeration of all the cubes in RN with length 1 and
vertices with integral coordinates.

If (un) is a vanishing sequence, then

(1) sup
1≤i

‖un‖
2
L2(Qi )

→ 0.

It follows from the Rellich-Kondrachov Theorem.

Lemma (Lemma I.1 of P. L. Lions (AIHPAN, 1984))

If (1) holds, then
lim

n→+∞
‖un‖Lα = 0

for every 2 < α <
2n
n−2 .

Then, if (un) vanishes, I (λ) ≥ 0, contradicting (2).



If (un) falls into the (D) case,

wn := un(·+ yn) ⇀ u

we can prove that ‖u‖2
L2

= λ, otherwise, by (3) and

I (λ) + o(1) = E (un(·+ yn))

= E (un(·+ yn)− u) + E (u) + o(1)

≥ I (λ − µ) + I (µ) + o(1)

we obtain a contradiction with (4).

Then
‖un‖L2 → ‖u‖L2

implying wn → u in L2.



Strong convergence in L2 ⇒ strong convergence in H1.

∫

RN
G (wn) →

∫

RN
G (u), ‖∇wn‖

2
L2 ≥ ‖∇u‖2L2 .

Since u ∈ S(λ),

I (λ) + o(1) = E (wn) ≥ E (u) = I (λ).

Then
‖∇wn‖L2 → ‖∇u‖L2 ⇒ ∇wn → ∇u in L2.

Then wn → u in H1, implying

‖u‖H1 = lim
n→+∞

‖wn‖H1 = lim
n→+∞

‖un‖H1

and contradicting (D).



The strict sub-additivity property of I

For every ϑ > 1 there holds

I (ϑλ) < ϑI (λ).

Given u in S(λ), be such that

E (u) ≤ I (λ) + ε.

We set
uϑ(x) = u(ϑ−1/nx), uϑ ∈ S(ϑλ).

there holds

I (ϑλ) ≤ E (uϑ) = ϑ
(

ϑ−2/n‖∇u‖L2/2+
∫

RN
F (u)

)

< ϑE (u) ≤ ϑI (λ) + ϑε.



Let 0 < µ < λ

I (λ) = I

(

µ ·
λ

µ

)

<
λ

µ
· I (µ)

I (λ) = I

(

(λ − µ) ·
λ

λ − µ

)

<
λ

λ − µ
· I (λ − µ).

Then,

µ

λ
· I (λ) < I (µ),

λ − µ

λ
· I (λ) < I (λ − µ).

Taking the sum, we obtain

I (λ) < I (µ) + I (λ − µ).

This is the argument of Benci, Ghimenti et al., 2007.



This proof goes back to the paper of Cazenave and Lions (1982) where

g (s) = −a|s |p−2s, a > 0

It applies to a lot problems of stability:

(1) non-linear Schrödinger equation, (Benci, Ghimenti et al., 2007)

(2) non-linear Klein-Gordon equation (Benci, Bonanno et al., 2010)

(3) systems NLS-KdV (Albert, Bhattarai, 2013)

(4) systems of NLS (Wang, Nguyen, 2011)

(5) systems of NLKG (G., 2012).



The ground state Γλ is stable



Let (Φn) ⊆ H1(RN ;C) and ε0 > 0 such that

dist(Φn, Γλ) → 0, dist(Utn (Φn), Γλ) ≥ ε0.

Then
E (Φn) → I (λ), C (Φ) → λ.

We define
Ψn := Utn (Φn).

E and C are conserved quantities

E (Ψn) = E (Φn), C (Ψn) = C (Φn).

We want to obtain a contradiction and prove that

dist(Ψn, Γλ) → 0.



We define
un := |Ψn|.

E (un) ≤ E (Ψn), C (un) = C (Ψn).

The energy inequality follows from the inequality

∫

RN
|∇Ψ|2 ≥

∫

RN
|∇|Ψ||2

for Ψ ∈ H1(RN ;C).

It is called ”Convex Inequality for Gradients” (Lieb and Loss).



Since E (un) → I (λ) and C (un) → λ

un(·+ yn) → u

for some sequence (yn) ⊆ RN and u in Γλ.

So,

‖un(·+ yn)− u‖H1(RN ;C) = ‖un − u(· − yn)‖H1(RN ;C) → 0

and
dist(|Ψn|, Γλ) → 0.

Now, we have to show that

dist(Ψn, Γλ) → 0.



We can suppose that

Ψn(·+ yn) ⇀ Ψ and |Ψ| = u.

I (λ) + o(1) = E (Ψn) =
1

2

∫

RN
|∇Ψn|

2 +
∫

RN
G (Ψn)

≥
1

2

∫

RN
|∇Ψ|2 +

∫

RN
G (Ψ)

≥
1

2

∫

RN
|∇|Ψ||2 +

∫

RN
G (|Ψ|) = I (λ).

This implies
lim

n→+∞
‖∇Ψn‖

2
L2 → ‖∇Ψ‖L2

which means
Ψn(·+ yn) → Ψ in H1(RN ;C)

and Ψ is in Γλ.



Orbital stability of Γ(u)



A characterization of the ground state

Lemma (G., 2012)

Let Φ ∈ H1(RN ;C) be such that |Φ| is continuous and positive. If

∫

RN
|∇Φ|2 =

∫

RN
|∇|Φ||2

then there exists c ∈ C such that

Φ(x) = c |Φ(x)|, |c | = 1.

A version of this lemma due to Lieb and Loss requires Re(Ψ) > 0.



We consider the following equivalence relation in Γλ

Φ1 ∼ Φ2 ⇔ ∃(y , z) ∈ R
N × S1

such that
Φ1 = εΦ2(·+ y).

The equivalence class is
Γ(Φ).

For every Φ,
Φ = c |Φ| = u

Then Φ and u have the same equivalence classes

Byeon, Jeanjean and Mariş • Calc. Var., 2009

In every class there is exactly one Q-ball.

Let P be the quotient set.



There could be a sequence (Φn) such that

dist(Φn, Γ(u)) → 0

but
dist(Φn, Γ(v)) → 0

with u, v ∈ H1
r ,+ and u 6= v .

This does not happen if
Γ(u) = Γλ.

That is, if there is only one pair (u,ω) ∈ H1
r ,+ × R satisfying

∆ − g (u)− ωu = 0, u ∈ Γλ.



We wish to answer to the following questions:

(1) ω is prescribed: how may solutions?

(1b) what if the L2 norm is also prescribed to λ > 0?

(2) λ is prescribed: how many pairs (u,ω) ∈ H1
r ,+ × (0,+∞)?

The answers can change if H1 is replaced by

(V) lim
|x |→+∞

u(x) = 0.



If g is a pure-power

g (s) = −|s |p−2s, 2 < p <
2n

n− 2
(2 < p if n = 1, 2).

Kwong, Man Kam • Arch. Ration. Mech. Anal., 1989

There is only one u0 in H1
loc ∩ V such that

∆u0 − u0 + |u0|
p−2u0 = 0.

Since at least one solution H1
r ,+ exists, u0 is in H1

r ,+.



Pure-power non-linearities enjoy special rescalings.

Given ω > 0, if u solves

∆u − ωu+ |u|p−2u = 0

then

u(x) = ω1/(p−1)u0(ω
1/2x), ‖u‖2L2 = ω

2
p−1−

n
2 ‖u0‖

2
L2 .

So, the solution is unique for every ω.

If ‖u‖2
L2

is prescribed to be λ, there is only the pair

(

ω1/(p−1)u0(ω
1/2x),ω

)

where

ω = (λ‖u0‖
−2
L2

)α, α :=
2(p− 1)

4− n(p− 1)
.



Serrin and Tang (IUMJ, 2000) generalized Kwong’s result.

However, they require
2G (s) + ωs2

to have a unique zero.

Berestycki and Lions • Arch. Ration. Mech. Anal., 1983 • n = 1

If the first positive zero of 2G + ωs2 is simple, then the solution to

u′′ − g (u)− ωu = 0

is unique.



If the H1 is replaced by (V), the uniqueness fails:

Del Pino, Guerra, Davila • Proc. Lond. Math. Soc., 2013 • n = 3

For every 1 < p < 3, there exists (a, q) such that

∆u − u + up + auq = 0

has at least three solutions in H1
loc ∩ V .



We have partial answers to (1) and (1b).

Lemma (Georgiev and G., n ≥ 3, H1
r ,+ solutions)

Suppose that g is C1 and g (0) = 0, g ′(0) ≥ 0. Then

1 for every ω > 0, given two solutions u1 6= u2 to

∆u − ωu− g (u) = 0,

either u1 < u2 or u2 < u1

2 if ‖u1‖L2 = ‖u2‖L2 , then u1 = u2.

In fact, two of the solutions of Del Pino are vanishing, but not H1.



If g is a pure powers, the result of Kwong implies

#P = 1 ⇒ Γλ = Γ(u).

If P is finite, then standing-waves are orbitally stable.

So far, we do know of an example of non-linearity g and λ where

• P is not finite

• P is finite and #P 6= 1.


