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We consider the non-linear Schrodinger equation

(NLS) (2 + 8)¢ — g(¢) = 0
where
¢p: R xR} —-C, g:C—C
such that
g(zu) = zg(u)
for every pair (z, u) in C? such that |z| =1 (z € S1).
Let G: C — R be such that for every s > 0



The equation (NLS) is globally well-posed in H1(RN; C) if

4
lg(s)| < c(IslPt+[s|71), 2<p<qg<2+ =

That is, given ug in Hl(]RN;C), there exists only one solution
¢:[0,+00) x RY = C
to (NLS) such that
$(0,x) = uo(x), ¢(t,-) € H'(RY).
The notation
Ur(uo) = ¢(t,-), U H{(RY) — HY(RN)

is useful.



Conserved quantities

¢: [0, +00) x R" — C
be a solution to the (NLS). Then the energy

E(t) = /RN \VX4>(t,x)|2dx+/RN G(#(t, x))dx
and the charge

C(t) := Re /}RN (£, X)B(t, x)dx

are constant.



Solitary waves

A solitary wave is a solution ¢ to (NLS) such that
v (t,x) = ei(“’_|v|2)t+iv'xu(x —tv),

where
veRY, weR, ueHY(RY;R).

When v = 0, ¢ is also called standing-wave:
¢(t,x) = e'“tu(x).
A standing-wave is called Q-ball if u is positive and radially symmetric.

We use the notation H} | (R") for the Q-balls.



The variational setting

If uis a critical point of the functional
E: HYRVR) >R, E(u) = / IVul? +/
on the constraint
S(A) = {u e H{R;C) | uli}2 = A}
then there exists w (positive) in R such that
(E) Au—g(u) = wu.
Then, for every v in RV, we have solitary wave solutions

Pt x) 1= e tu(x), ¢y (t,x) = /(W IVAEVX) 5 )



Definition (Stable subsets of H1(RV; C))

A subset S C Hl(IRN;C) is stable if for € > 0, there exists 4 > 0 such
that, for every ® in HX(RN; C), there holds

dist(®, S) < 6 = dist(U(P),S) < e

for every t > 0.

dlSt(q), 5) = ‘{I’réfs Hq) e T”Hl(]RN;C)'



Orbital stability of standing waves

If ® € HY(RN;C), we define its orbit
Orb(®) := {Us(®) | t > 0} € HY(RY; Q).
If ¢(t,x) = e’“tu is a standing-wave,
Orb(u) = {e/“u | t > 0}.

So,
Orb(u) C {zu(- +y) ||zl =1,y € RN} = T(u)

A standing wave is orbitally stable if I'(u) is stable.



The example of Cazenave and Lions, CPM, 1982

The orbit of u is contained in
T1(u):={zu| z€ S'} CT(uv).
But I'y is not stable. Given w € RN non-zero
@, = X W/My(x), dist(®,,T1) = 0
and

supdist(Us(®n),T1) > [Ju(x — w) — u(x)|| 2.
t>0

Example due to Cazenave and Lions, CPM, 1982.



It can be shown the following

Lemma (T(v) is the smallest stable and invariant subset)

If M C HY(RN;C) is stable, u € M, and

Us(M) C M for every t > 0,

then T'(u) C M.

Proof: apply the example of Cazenave and Lions in every direction w.

Definition (V. Benci, C. Bonanno)

® is orbitally stable if there exists a sub-manifold M C H*(R";C) such
that

e M

and is stable, invariant and of finite dimension.




Hereafter, we will consider standing-waves
o(t, x) = e'“tu(t, x)
where u is a minimum of E over S(A).
Given A > 0, we define
)= {ue H'®RY,C) | |[u?, =7 E(u) = Sl?)f) E}.

It is called ground state.

If uisinT,, then T'(u) CT,.



The ground state is stable

Under the assumptions
dsp € (0, +00) such that G(sg) <0
and

4
lg(s)| < C(Is|P~ 1 +]s]971), 2<p<g<2+ =

there holds:

Theorem (Bellazzini, Benci et al., Adv. Nonlinear Stud., 2007)

For every A > 0 the ground state T, is non-empty and stable.

The non-linearity we have in mind is

g(s) = —als|P~2s+ b|s|97%s, a>0, b>0.



The proof of the stability of 'y relies (in big part) on the following

Lemma (Concentrated-compactness of minimizing sequences)

If (up) € HY(RV;R) is a sequence such that

lunllZ2 = A, E(ua) = 1(A)
then, there exists a sequence (y,) € RN and u such that
un(-+ yn) = uin HY(RV; R)

and

In general, minimizing sequences are not compact:

un(x) :=u(x+ney), e =(1,0...,0).



Properties of E

(1) For every A > 0, E is bounded from below. We define

I(A) := SI?/{) E.

(2) I(A) <0
(3) given a weakly converging sequence u, — u in H1, there holds

lim (E(un) — E(up—u) —E(u)) =0

n—+o0

(4) given 0 < u < A, there holds

T(A) < I(p) + 1A —p).



The proof uses the ideas of the Concentration-Compactness Lemma
(P. L. Lions, AIHPAN, 1984). Here we use a version of V. Benci and
D. Fortunato for sequences in H1 (Benci, Fortunato, Chaos Solitons
Fractals, 2014).

Given a bounded sequence (up) C H, we have three cases:
Concentration, Dichotomy, Vanishing.
(©)  I(yn) € RN and u € H* such that up(- +yn) — uin H*

(D) 3(yn) € RN and u € H* such that up(- + yn) — uin H!

0 < [lulin < tim,_ el



The Vanishing case is ruled out

Let Q; be an enumeration of all the cubes in RN with length 1 and
vertices with integral coordinates.

If (up) is a vanishing sequence, then

1 sup ||u 2 5y — 0.
(1) sup g,

It follows from the Rellich-Kondrachov Theorem.

Lemma (Lemma I.1 of P. L. Lions (AIHPAN, 1984))

If (1) holds, then

JtimJanlie =0

for every 2 < a0 < %

Then, if (up) vanishes, /(1) > 0, contradicting (2).



If (up) falls into the (D) case,
Wp:=up(-+yn) = u
we can prove that Hu||%2 = A, otherwise, by (3) and
I(A) +o(1) = E(un(-+yn))

— E(un( +ym) — 1) + E(u) + o(1)
> 1A —p)+1(u) + o(1)

we obtain a contradiction with (4).

Then
[unll 2 = [Jull 2

implying wp, — u in L2.



Strong convergence in L2 = strong convergence in H1.
2 2
[ 6w = [ G, IV wallZe > |Vl

Since u € S(A),

Then
|V wall2 = |Vull2 = Vwy — Vuin L2,

Then w, — uin HY, implying

lullps = tim_lwnllps = tim ]

and contradicting (D).



The strict sub-additivity property of /

For every ¢ > 1 there holds
1(8A) < 81(A).
Given u in S(A), be such that

E(u) < I(A) +e.

We set
ug(x) = u(®@Y"x), ug e S(OA).

there holds
1(80) < E(ug) = (872" Vu] 2/2 + /}RN F(u))
< 8E(u) < 8I(A) + Oe.



letO<pu<A

10 =1 (n5) <5 10)

Then,
‘l/l _—
Lo — (A —u).
By <, 2100 <ia-w)
Taking the sum, we obtain

T(A) < () + 1A —p).

This is the argument of Benci, Ghimenti et al., 2007.



This proof goes back to the paper of Cazenave and Lions (1982) where
g(s) = —als|P2s, a>0
It applies to a lot problems of stability:

(1) non-linear Schrédinger equation, (Benci, Ghimenti et al., 2007)
(2) non-linear Klein-Gordon equation (Benci, Bonanno et al., 2010)
(3) systems NLS-KdV (Albert, Bhattarai, 2013)

(4) systems of NLS (Wang, Nguyen, 2011)

(5)

5) systems of NLKG (G., 2012).



The ground state I') is stable



Let (®,) € HY(RM;C) and g > 0 such that
dist(®,,,Ty) — 0, dist(Us, (Pn), Ty) > eo.

Then
E(®,) — I(A), C(P) — A.

We define
Y, := U, (D).

E and C are conserved quantities
E(Yn) = E(®n), C(¥n) = C(Pp).
We want to obtain a contradiction and prove that

dist(¥,,Ty) — 0.



We define
up = |¥nl.

E(un) < E(¥5), C(un) = C(¥n).

The energy inequality follows from the inequality

P4 G I
RN RN

for ¥ € HY(RN; C).

It is called " Convex Inequality for Gradients” (Lieb and Loss).



Since E(up) — I(A) and C(up) — A
un(-+yn) = u
for some sequence (y,) € RN and v in T).
So,
|un(-+ yn) — “HHl(]R’V;C) = |lup —u(- — yn)”Hl(]R’V;C) =0

and
dist(|¥n|,Ty) — 0.

Now, we have to show that

diSt(‘IJn, I"A) — 0.



We can suppose that

Yo(-+yn) =¥ and |¥|=u.

IA) + o(1) = E(¥n) = %/RN |V‘I’n|2+/RN G(¥,

> [ veRs [
2
5 [ IVIIR+ [ 60 =

im IV¥all?2 = IV¥ ]2

This implies

which means
¥o(-+yn) = ¥ in HY(RN; C)

and Yisin T).

(A).

)



Orbital stability of I'(u)



A characterization of the ground state

Lemma (G., 2012)

Let ® € HY(RN;C) be such that |®| is continuous and positive. If

Lo Vo= [ 1vio|?
RN RN

then there exists ¢ € C such that

O(x) = c|®(x)], |c| =1.

A version of this lemma due to Lieb and Loss requires Re(¥) > 0.



We consider the following equivalence relation in T’}
&) ~ Dy < Iy, z) e RN x St
such that
Q1 = edy(- +y).

The equivalence class is
I'(®).

For every @,
P =c|P =u

Then ® and u have the same equivalence classes

Byeon, Jeanjean and Maris e Calc. Var., 2009

In every class there is exactly one Q-ball.

Let P be the quotient set.



There could be a sequence (®p,) such that
dist(®,, T'(uv)) — 0

but
dist(®p,T(v)) — 0
with u, v € H,1’+ and u # v.

This does not happen if
F(u) = F/\.

That is, if there is only one pair (u,w) € H,I’+ x R satisfying

A—g(u)—wu=0, wuverT,.



We wish to answer to the following questions:

(1) w is prescribed: how may solutions?
(1b) what if the L? norm is also prescribed to A > 07

(2) A is prescribed: how many pairs (u,w) € H} . x (0, +00)?

The answers can change if H is replaced by

(V) lim u(x) =0.

[x|—=+o0



If g is a pure-power

2n
g(s) = —|s|P~3s, 2<p<—(2<p|fn—1 2).

Kwong, Man Kam e Arch. Ration. Mech. Anal., 1989

There is only one ug in H/{x N V such that

Aug — ug + |uo|p_2uo =0.

Since at least one solution H,lyJr exists, up is in H,llJr



Pure-power non-linearities enjoy special rescalings.

Given w > 0, if u solves
Au—wu+|uP2u=0
then
u(x) = @M P g (@20, ulZ = wr T uoll.

So, the solution is unique for every w.

If Hu||%2 is prescribed to be A, there is only the pair
(wl/(pfl)uo(wl/zx),w)

where
2(p—1)

w = (A||U0|\Zz2)“v Q= 4—n(p—1)



Serrin and Tang (IUMJ, 2000) generalized Kwong's result.

However, they require
2G(s) + ws?

to have a unique zero.

Berestycki and Lions e Arch. Ration. Mech. Anal., 1983 e n =1

If the first positive zero of 2G + ws? is simple, then the solution to
/! —
u"—g(u) —wu=0

is unique.




If the H! is replaced by (V), the uniqueness fails:

Del Pino, Guerra, Davila e Proc. Lond. Math. Soc., 2013 e n = 3

For every 1 < p < 3, there exists (a, q) such that
Au—u-+uP+au9=0

has at least three solutions in H,loc N V.




We have partial answers to (1) and (1b).

Lemma (Georgiev and G., n > 3, H} | solutions)

Suppose that g is C1 and g(0) = 0,g’(0) > 0. Then

@ for every w > 0, given two solutions u; # up to
Au—wu—g(u) =0,

either uy < up or up < uy

@ if ||u1]l;2 = ||uzll 2, then up = up.

In fact, two of the solutions of Del Pino are vanishing, but not HL.



If g is a pure powers, the result of Kwong implies
#P=1=T, =T(u).
If P is finite, then standing-waves are orbitally stable.
So far, we do know of an example of non-linearity g and A where

e P is not finite
e P is finite and #P # 1.



