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When we search standing-wave solutions
o(t,x) = e“tu(x), weR, ueH(R"R)
to the non-linear Schrodinger equation
9t + Axdp — g(¢p) =0, (t,x) € [0,400) xR", ¢p € C

we need to solve the equation Au(x) — g(u(x)) — wu(x) = 0.

A pair (u, w) can be obtained as a critical point to
E: HY(R™,C) - R
E(v):= %./]R" |Vv(x)\2dx+/]Rn G(v(x))dx, G =g
on the constraint S(A) = {v € H1(R";C) | HVH%2 = A}

Gy:={ve H(R™C)|veS), E(v)= Si?Af) E}.



Stable subsets of H!(IR"; C)

Given v € Hl(lR”;C) and t > 0, we define
Ue(v)(x) := ¢(t,x), Up: HY — H!
where ¢ solves the initial value problem

969 (£,%) + Ba(t,x) — g(p(£,x)) =0, §(0,x) = v(x).

Definition (Stable subsets of H(IR"; C))
S C HY(R";C) is stable if Ve > 0 35 > 0 such that

dist(v,S) < 6 = dist(Ue(v),S) < ¢

for every t > 0 and v € HY(R"; C).




The equality E(zv(- +y)) = E(v) for every (z,y) € S x R gives
Gu(u) i= {zu(- +y) | z€ 5%, y €R™} C 6.

If Gy (u) is stable, we say that u(x)e/®t is orbitally stable.

V. Benci et al. 2007, Adv. Nonlinear Studia

The set G, is non-empty and stable, provided

4
(g) lg(s)l <c(lslPt+]s]9h), 2<p<2+ — inf(G) <0.

(gc) is considered the minimum requirement to have G, .
It follows from the Concentration-Compactness Lemma (Lions).

We are interested on the stability of G, (u) when (gc) is satisfied.



The pure power case

T. Cazenave and P. L. Lions, CMP, 1982, n > 1

If g(s) = —a|s|P~1 (pure power), then G, (u) is stable.

The main ingredients, are the symmetry g(ts) = tP~1g(s) and

M. K. Kwong, ARMA 1989

Given w > 0, there is only one solution u € H} | to

Au+auP~! —wu=0.

By definition, u € H,:l’+ if u is real valued, symmetric, non-negative.

In their paper, Cazenave and Lions proved that G, (u) = G,.



Byeon, Jeanjean and Maris, Calc. Var., 2009

Gy (u) has a unique positive and symmetric representative in H} , (IR").

If we define
P:=GyNH!,

then T. Cazenave and P.L. Lions proved that #P = 1.

Lemma (G. and Georgiev, (gc))
If P is finite, then G, (u) is stable for every u € G, .




Kwong's result has been extented by Serrin and Tang (IUMJ 2000).

However,
g(s) = —als|P~t +b|s|97 !, ab>0.

does not satisfy their requirement. And symmetry fails.

So far, we have a weak uniqueness result

G. and Georgiev, n > 1

gis Ct and g(0) = 0= g(0). If u1, up € H} | solve
Au—g(u) —wu=0,

and ||U1||% = ||u2||%, then uy = up.

We do not know whether E(u1) = E(u2) = w1 = wa.



The dimension n =1

Conjecture 1, n=1

We think that the functional E over S(A) N H} is non-degenerate.

Then P = Gy N H} is a finite set.
It was proved by M. Weinstein (CMP, 1986) for solutions to

v —g(u)—wu=0
under the additional a-priori assumptions on u
[ (B + (et - EE) vo?) ex 20

We wish to remove this assumption.

Conjecture 2, n=1

If E is non-degenerate on S(A) N HY, then #P = 1.




Pure-power non-linearities enjoy special rescalings.

Given w > 0, if u solves
Au—wu+ |ulP2u=0
then
u(x) = W PV up(w2x), |ul2, = w5t |lug .

So, the solution is unique for every w.

If ||ul|;2 is A, there is only the pair

(wl/(”_l)uo(wl/2x), w)

where

w = (Alluoll )", o=



Serrin and Tang (IUMJ, 2000) generalized Kwong's result.

However, they require
2G(s) + ws?

to have a unique zero.

Berestycki and Lions e Arch. Ration. Mech. Anal., 1983 e n =1

If the first positive zero of 2G + ws? is simple, then the solution to
/! —
u"—g(u) —wu=0

is unique.




If the H! is replaced by (V), the uniqueness fails:

Del Pino, Guerra, Davila e Proc. Lond. Math. Soc., 2013 ¢ n = 3

For every 1 < p < 3, there exists (a, q) such that
Au—u-+uP+au9 =0

has at least three solutions in H,lo';rr N V.




