Quasi-invarianza rispetto all'azione del gruppo di Levy su $\beta\mathbb{N}$

Guglielmo Nocera

21 luglio 2015

Sommario

Definito il gruppo di Levy di permutazioni di \mathbb{N} e mostrato che la sua azione si estende a $\beta\mathbb{N}$, dimostreremo una caratterizzazione delle funzioni "quasi invarianti" rispetto a tale azione, fornendo poi un operatore T che associa in maniera naturale ad una funzione limitata su \mathbb{N} una funzione quasi invariante.

Articolo di riferimento: MARTIN BLÜMLINGER, Levy group action and invariant measures on $\beta\mathbb{N}$, Transactions of the American Mathematical Society Volume 348, Number 12, December 1996.

1 Gruppo di Levy

Definizione 1 (Gruppo di Levy). Si definisce gruppo di Levy \mathcal{G} il sottogruppo delle permutazioni di \mathbb{N} costituito da tutte le g tali che

$$\lim_{N \to +\infty} \frac{1}{N} |\{n|n \le N, gn > N\}| = 0$$

(ovvero il limite esiste ed è 0).

Definizione 2. Definiamo l'operatore T su funzioni limitate (in modulo) da \mathbb{N} in \mathbb{R} nella maniera sequente:

$$Tf(n) = \frac{1}{n} \sum_{i=1}^{n} f(i)$$

Definizione 3. La funzione di densità di un insieme $A \subset \mathbb{N}$ è definita come

$$d_A(n) = |\{i \in A | i \le n\}|.$$

Lemma 1. Sono equivalenti:

- (a) $g \in \mathcal{G}$
- (b) $\forall f \ limitata \ su \ \mathbb{N} \ \lim_{n\to\infty} Tf(n) Tf_g(n) = 0, \ dove \ f_g(n) = f(gn)$
- (c) $\forall A \subset \mathbb{N} \lim_{n \to \infty} d_A(n) d_{gA}(n) = 0$

<u>Dim.</u> Per definizione di \mathcal{G} (a) implica (b), dato che considerando le cancellazioni:

$$Tf(n) - Tf_g(n) = \frac{1}{n} \sum_{i=1}^{n} f(i) - f(gi) \le \frac{1}{n} \sum_{i \in \Lambda(n)} f(i) - f(gi) \le \frac{1}{n} 2(\sup f) |\Lambda(n)| \longrightarrow 0$$

dove $\Lambda(n) = \{i \leq n | gi > n\}$. Considerando che $d_A = T\chi_A$ è limitata otteniamo anche (b) \Longrightarrow (c). Vediamo l'ultima implicazione, cioè supponiamo che valga (c). Allora se g non appartenesse a \mathcal{G} avremmo che esiste una successione (n_i) (che a meno di estrarre una sottosuccessione possiamo supporre che soddisfi $\frac{n_{i-1}}{n_i} \longrightarrow 0$) tale che $|E_i|/n_i > \alpha$ per un certo α (definendo $E_i = \{n | n \leq n_i, gn > n_i\}$). Sia ora $A = \bigcup_{i \in \mathbb{N}} E_i$. Quindi, poiché per definizione $gE_j \subset [n_j + 1, \infty) \ \forall j$,

$$d_{gA}(n_i) \le d_{\cup_{j< i} E_j}(n_i) \le \frac{n_{i-1}}{n_i} \longrightarrow 0,$$

ma allora $\limsup_{n\to\infty} d_A(n_i) - d_{gA}(n_i) \ge \alpha > 0$, assurdo.

Teorema 2. Se A, B sono sottoinsiemi infiniti e coinfiniti di \mathbb{N} , esiste $g \in \mathcal{G}$ con B = gA se e solo se $\lim d_A(n) - d_B(n) = 0$.

<u>Dim.</u> Certamente se B = gA per un qualche $g \in \mathcal{G}$ si ha $\lim_n d_A(n) - d_B(n) = 0$ per il lemma precedente. Viceversa se $A = \{a_1 < a_2 < \dots\}, A^c = \{a'_1 < a'_2 < \dots\}, B = \{b_1 < b_2 < \dots\}$ e $B^c = \{b'_1 < b'_2 < \dots\}$, definiamo g come $ga_i = b_i, ga'_i = b'$. Segue che

$$\frac{1}{N}|\{n|n \le N, gn > N\}| = \frac{1}{N}|\{n \in A|n \le N, gn > N\}| + \frac{1}{N}|\{n \in A^c|n \le N, gn > N\}| = \max(0, d_A(N) - d_B(N)) + \max(0, d_{A^c}(N) - d_{B^c}(N)).$$

Ma se $\lim_{n\to\infty} d_A(n) - d_B(n) = 0$ anche $\lim_{n\to\infty} d_{A^c}(n) - d_{B^c}(n) = \lim_{n\to\infty} [(n-d_A(n)) - (n-d_B(n))] = 0$, cioè per quanto appena visto

$$\lim_{N\to\infty}\frac{1}{N}|\{n|n\leq N,gn>N\}|=0$$

da cui la tesi, cioè $g \in \mathcal{G}$ (per definizione).

Definizione 4. Definiamo insieme quasi invariante rispetto all'azione del gruppo di Levy \mathcal{G} se $A\Delta gA$ ha densità asintotica 0 per ogni $g \in G$. Definiamo funzione quasi invariante una funzione $f: \mathbb{N} \to \mathbb{R}$ t.c. l'insieme $\{n \in \mathbb{N} | |f(n) - f(gn)| > \varepsilon\}$ ha densità 0 per ogni $\varepsilon > 0$.

2 Azione su $\beta \mathbb{N}$

Prima di proseguire, alcuni richiami su $\beta\mathbb{N}$ e sulla sua topologia. Come consuetudine, confonderemo senza preavviso A sottoinsieme di \mathbb{N} con la sua immersione in $\beta\mathbb{N}$ data dagli ultrafiltri principali associati. Ricordiamo inoltre che $\mathcal{O}_A = \overline{A}$, considerando A rispettivamente nei due sensi, e che tale sottoinsieme di $\beta\mathbb{N}$ è aperto e chiuso.

Ogni funzione $f: \mathbb{N} \to K$ (K compatto T_2) si estende in modo unico ad una funzione continua $\overline{f}: \beta \mathbb{N} \to K$. In particolare, se f è limitata su \mathbb{N} anche Tf lo è, e quindi è ben definita (per unicità dell'estensione) la funzione continua $\overline{Tf}: \beta \mathbb{N} \to \mathbb{R}$. In generale indicheremo, per una generica $h \in C(\beta \mathbb{N})$, $Th = \overline{T(h|_{\mathbb{N}})}$.

Definiamo quasi invariante una funzione continua su $\beta \mathbb{N}$ se la sua restrizione a \mathbb{N} lo è.

Osservazione 2.1. Una qualunque permutazione g di \mathbb{N} induce un automorfismo topologico di $\beta\mathbb{N}$ con la definizione naturale $g\mathcal{U} = \{gA|A \in \mathcal{U}\}$. Infatti se essendo g biunivoca su \mathbb{N} abbiamo che $gA \in g\mathcal{U} \iff A \in \mathcal{U}$. Dal punto di vista topologico, invece, vale

$$g\mathcal{O}_A = \{g\mathcal{U}|\mathcal{U} \in \mathcal{O}_A\} = \{g\mathcal{U}|A \in \mathcal{U}\} = \{g\mathcal{U}|gA \in g\mathcal{U}\} = \{\mathcal{V}|gA \in \mathcal{V}\} = \mathcal{O}_{gA}$$

per cui g trasforma elementi della base in elementi della base e dunque, essendo un automorfismo, è anche un automorfismo topologico.

Definizione 5. Definiamo S il sottoinsieme di $\beta\mathbb{N}$ contenente tutti quegli ultrafiltri che contengono solo sottoinsiemi a densità superiore positiva, cioè non contenenti insiemi a densità nulla.

Lemma 3. Per ogni
$$f \in C(\beta \mathbb{N}), g \in \mathcal{G}, \ vale \ Tf(x) - Tf_g(x) = 0 \ su \ \beta \mathbb{N} \setminus \mathbb{N}.$$

<u>Dim.</u> Sappiamo che la funzione $f|_{\mathbb{N}} : \mathbb{N} \to \mathbb{R}$, che è limitata in quanto $\beta \mathbb{N}$ è compatto e quindi f è limitata, si estende in maniera unica ad una funzione continua (che dunque sarà proprio f) da $\beta \mathbb{N}$ in \mathbb{R} , con

$$f(\mathcal{U}) = \mathcal{U}$$
- $\lim_{k} f(k)$.

Ora, \mathcal{U} - $\lim_k f(k) = 0$ se e solo se

$$\forall \varepsilon > 0 \ \{k||f(k)| < \varepsilon\} \in \mathcal{U}.$$

Ma se g è nel gruppo di Levy vale $\lim_k f(k) = 0$ come limite classico su \mathbb{N} , e quindi

$$\forall \varepsilon > 0 \ \exists M \in \mathbb{N} \ t.c. \ |f(k)| < \varepsilon \ \forall k \le M$$

il che significa semplicemente che $\{k||f(k)|<\varepsilon\}$ è cofinito e quindi sta in \mathcal{U} per ogni \mathcal{U} non principale. Quindi $f(\mathcal{U})=0$ per ogni $\mathcal{U}\in\beta\mathbb{N}\setminus\mathbb{N}$.

Teorema 4. S è chiuso, non vuoto e \mathcal{G} -invariante (nel senso che $\mathcal{G}S = S$). Ogni sottoinsieme A di \mathbb{N} è tale che $\overline{A} \cap S \neq 0$ se e solo se $\overline{d_A} > 0$.

<u>Dim.</u> D'ora innanzi, salvo specifica, con "densità" si intenderà "densità superiore e inferiore" (coincidenti).

I sottoinsiemi di \mathbb{N} con densità 1 hanno la PIF e formano un filtro \mathcal{F} . Ogni ultrafiltro che estende \mathcal{F} deve stare in S, perché se non gli appartenesse conterrebbe un sottoinsieme di densità 0, e dunque non conterrebbe il suo complementare avente densità 1, assurdo perché si è detto che l'ultrafiltro estende \mathcal{F} . In particolare S è non vuoto.

Ora, se $\mathcal{U} \notin S$ esiste $B \in \mathcal{U}$ (ovvero $\mathcal{U} \in \overline{B}$) con densità 0; ma \overline{B} è anche aperto e $\overline{B} \cap S = \emptyset$ per definizione di S. Quindi S^c è aperto perché contiene un intorno di ogni suo punto \mathcal{U} , e dunque S è chiuso.

Inoltre S non interseca \mathbb{N} , e dunque ha parte interna vuota, perché ogni \mathcal{O}_A contiene ultrafiltri principali.

 $S \in \mathcal{G}$ —invariante: infatti per il $Lemma\ 1\ \overline{d_A} > 0$ se e solo se $\overline{d_{gA}} > 0$, e dunque $\mathcal{U} \in S \iff g\mathcal{U} \in S$.

Infine, se A ha densità superiore positiva e B ha densità 1 abbiamo $\overline{d_{A\cap B}} = \overline{d_A}^1$ e quindi $A \cap B \neq \emptyset$. Quindi $\mathcal{F} \cap A$ (cioè $\{F \cap A | F \in \mathcal{F}\}$) genera un filtro (che evidentemente estende \mathcal{F}) che si estenderà a sua volta ad un ultrafiltro \mathcal{U} : questo conterrà A e non conterrà insiemi a densità nulla, poiché contiene anche \mathcal{F} . Segue che $\mathcal{U} \in \overline{A} \cap S \neq \emptyset$. Viceversa se A è tale che $\overline{A} \cap S \neq \emptyset$ allora $\exists \mathcal{U} \in \overline{A} \cap S$, ovvero $A \in \mathcal{U}$ e quindi $\overline{d_A} > 0$.

Lemma 5. Se $x \in S$ vale: f(x) = f(gx) per ogni funzione $f \in C(\beta \mathbb{N})$ quasi invariante e per ogni $g \in \mathcal{G}$.

<u>Dim.</u> Se f non fosse costante sull'orbita di x esisterebbero $g \in \mathcal{G}, \varepsilon > 0$ t.c. $f(x) + 3\varepsilon < f(gx)$. Allora l'insieme $C = \{n \in \mathbb{N} | f(n) < f(x) + \varepsilon, f(gn) > f(gx) - \varepsilon\}$ è contenuto nell'ultrafiltro x. Infatti se così non fosse avremmo $C^c = \{n \in \mathbb{N} | f(x) + \varepsilon \le f(n) \lor f(gn) \le f(gx) - \varepsilon\} \in x$, e quindi $x \in \mathcal{O}_{C^c} = \overline{C}$, ovvero esiste una successione di $n_i \in C^c$ convergente a x. Quindi $f(x) = \lim_{n_i \to x} f(n_i) \ge f(x) + \varepsilon$ oppure $f(gx) = \lim_{n_i \to x} f(gn_i) \le f(gx) - \varepsilon$, assurdo. Quindi poiché $x \in S$ C ha densità superiore positiva, e così pure $\{n | |f(n) - f(gn)| > \varepsilon\}$ che lo contiene. Dunque f non è quasi invariante, assurdo.

Ecco dunque i due risultati finali:

$$\overline{d}_A \leq \overline{d}_{A \cap B} + \overline{d}_{A \cap B^c} \leq \overline{d}_{A \cap B} + \overline{d}_{B^c} = \overline{d}_{A \cap B}$$

perché

$$\overline{d}_{B^c} \le 1 + \limsup_n -d_B(n) = 1 - \liminf_n d_B(n) = 1 - d(B) = 0.$$

¹Infatti una disuguaglianza è immediata, e per l'altra

Teorema 6. f limitata su \mathbb{N} è quasi invariante se e solo se la sua estensione continua a $\beta\mathbb{N}$ è costante sulle \mathcal{G} -orbite di S.

<u>Dim.</u> Dal lemma precedente abbiamo un'implicazione. Quanto all'altra, supponiamo che f, invece, non sia quasi invariante, ovvero che esista $\varepsilon > 0$ t.c. $\{n|f(n) < f(gn) - 3\varepsilon\}$ ha densità superiore positiva. Più precisamente esiste k t.c. $C = \{n|f(n) < k\varepsilon, f(gn) > (k+1)\varepsilon$ ha densità asintotica positiva. Per il *Teorema* 4 allora $\overline{C} \cap S \neq \emptyset$, ovvero esiste $x \in S$ t.c. $f(x) \leq k\varepsilon$ e $f(gx) \geq (k+1)\varepsilon$. Dunque f non è costante sulla \mathcal{G} -orbita di x.

Corollario 7. Per ogni funzione f limitata su \mathbb{N} , Tf è quasi invariante.

<u>Dim.</u> Segue direttamente dal teorema precedente e dal fatto che $Tf - Tf_g$ si annulla su $\beta \mathbb{N} \setminus \mathbb{N}$ e quindi su S.