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La filosofia è scritta in questo grandissimo libro che continuamente ci sta
aperto innanzi a gli occhi (io dico l’universo), ma non si può intendere se

prima non s’impara a intender la lingua, e conoscer i caratteri, ne’ quali è
scritto. Egli è scritto in lingua matematica, e i caratteri son triangoli,

cerchi, ed altre figure geometriche, senza i quali mezi è impossibile a
intenderne umanamente parola; senza questi è un aggirarsi vanamente per

un oscuro laberinto.
- Galileo Galilei, Il Saggiatore





Introduction

In this dissertation we will talk about manifolds of curvature bounded above
in the sense of CAT, an approach originally formalized by Aleksandrov in
[Ale51]. The concept is general, but we are interested in seeing how much
freedom it leaves in the manifold setting. Let us introduce some terminology
to set the problem.

A geodesic is an isometric embedding of an interval into a metric space.
We consider geodesic metric spaces, where for any pair of points there is a
geodesic having them as extremes. Then, given 3 points in a geodesic space,
we can construct a geodesic triangle having them as vertices, and define a
concept of curvature bounded above by κ by comparing triangles in the space
with triangles having sides of the same length in 2-dimensional model spaces
of curvature κ; that is, the Euclidean space for κ = 0, a suitably rescaled
sphere for κ > 0 and a suitably rescaled hyperbolic space for κ < 0. A space
is locally CAT (κ) if every point has a neighbourhood which is CAT (κ).

The (locally) CAT (κ) condition allows us to describe the curvature of a
large class of metric spaces, of which polyhedral metric complexes are no-
table representatives: these are spaces made up by polyhedra attached via
isometries. If we restrict our attention to Riemannian manifolds, they are
locally CAT (κ) if and only if all of their sectional curvatures are less or equal
than κ. We may ask ourselves, however, if for manifolds the requirement on a
distance function compatible with the topology to be induced by a Rieman-
nian metric is restrictive when talking about curvature. The answer is yes;
and we will in fact exhibit a smooth closed 4-manifold that supports a lo-
cally CAT (0) distance function but is not homeomorphic to any Riemannian
manifold of non positive curvature.

We will follow the approach presented in [DJL12]. The manifold will be
the geometric realization of a cubical complex, i.e. polyhedral complexes
made up by euclidean cubes. Cubical complexes are a very important tool
in the geometry of non positively curved spaces; an example is provided by
the recent proof of the Virtual Fibering Conjecture. Their power comes from
the fact that the locally CAT (0) condition on them can be verified in purely
combinatorial terms. In particular, we have to look at a neighbourhood of a
vertex, which is a cone on a simplicial complex called link at that vertex.

We begin the exposition with a review of definitions on curvature of met-
ric spaces. Then we construct, for a given complete CAT (0) space X, its
boundary at infinity ∂X. We continue by describing a natural structure
of metric space on finitely generated groups, and an equivalence relation
called quasi isometry useful in this context. Quasi isometry invariants be-
come more evident when seen through a construction allowing us to see the

4



space “from the infinity”, namely the asymptotic cone. With the strength
of this construction, we define hyperbolic groups, hyperbolic spaces, and
generalizations of these concepts: relatively hyperbolic spaces and groups,
and spaces with isolated flats. Hyperbolic spaces and spaces with isolated
flats share a nice behaviour of their boundary at infinity when talking about
quasi isometries which are quasi equivariant, i.e. equivariant with respect to
a cocompact properly discontinuous action of a group G; in particular, such
quasi-isometry induces a homeomorphism between the boundaries at infinity.

We then pass to examine polyhedral complexes and prove the facts we
need in the sequel, including the description of the curvature in combinatorial
terms we have already cited.

The cubical complex of the main theorem’s thesis will be constructed
starting from a link at any of its vertices. To be a 4-manifold, this link
has to be a triangulation of S3 with certain properties. We will define these
properties and construct the required triangulation.

Finally, we pass to describing the manifold. There is a standard way,
introduced by Davis in [Dav08], to create a cubical complex once known the
link we want its vertices to have. This construction also allows to give a
concise description of the fundamental group of the manifold, which we will
call P . If P was homeomorphic to a smooth Riemannian manifold M of
non positive curvature, the structure of the triangulation and thus of the
fundamental group of both manifolds would allow us to conclude that the
respective universal covers P̃ and M̃ would have both an isometrically em-
bedded euclidean plane, with the embedding totally geodesic in the smooth
case, and that the boundaries at infinity, topologically S3 in both cases, would
be homeomorphic, with the homeomorphism taking the boundary of the flat
found in P̃ to the boundary of the flat found in M̃ . This will turn to be
impossible: the boundary of the flat is a knot in S3, but it will be non trivial
in the former case and trivial in the second.
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1 Curvature of metric spaces

We are first going to recover some basic definitions on metric spaces and on
how one can define a concept of curvature bounded above on a particular
class of them. Then we are going to explore some recent developments in the
theory of spaces of non positive curvature.

1.1 Basic definitions

We recover quickly some notations we will use throughout the text. The
distance function on a metric space will be often denoted by d, and we will
call with the same letter the distance of a point x from a subset A, which
is the infimum over a in A of d (x, a). The R-neighbourhood of a subset
of a metric space is the set of all points with distance strictly less than R
from that subset; we will call closed R-neighbourhood the analogous concept
where the distance can be equal or less than R. The Hausdorff distance
between two subsets is the infimum of R such that the first is contained in
the R-neighbourhood of the second, and vice versa. It fulfils the axioms of a
distance, but it may be infinite for unbounded sets.

The diameter of a metric space is the supremum of the distances between
its points. The open balls of centre x0 and radius r will be denoted with
B (x0, r) and the closed ones with B (x0, r). A local isometry is a function
between metric spaces which restricts to an isometry on a collection of open
sets covering the domain.

Definition 1.1.1 (Geodesics). Let X be a metric space. A geodesic in X is
an isometric embedding of a real interval in X.

If a geodesic is defined on a closed interval, it is said to be a geodesic
segment, and images of the endpoints of the interval are the endpoints of the
geodesic.

A geodesic defined on a half line will be called geodesic ray, whilst a
geodesic line is defined on the whole R.

A closed geodesic is an isometric embedding of a suitably rescaled copy of
S1 into the space.

A local geodesic is a locally isometric immersion of an interval or of a
suitably rescaled S1 into the space.

For brevity, we will often designate the image of a geodesic with the same
name. We will do the same for paths.

Talking about paths, if we have a suitable definition of length for a collec-
tion of them, we may define a pseudo-distance on the space, i.e. a function
with the same properties of distance except it may be 0 even between different
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points. The length has to be non negative and additive, i.e. the concatena-
tion of paths must be a path of the collection and its length must be equal
to the sum of the lengths of then original paths, and for every pair of points
in the space there must be a path of the collection between them. In this
setting, we define the pseudo distance of a pair of points to be the infimum of
the lengths of paths between them. This becomes a distance if we can argue
somehow that the length of any path between two different points must be
bounded below by a positive constant depending on the points.

The typical examples are the integral definition of length of piecewise C1

paths in a Riemannian manifold and the induced length of continuous paths
in a metric space. We recover it briefly:

Definition 1.1.2 (Length of a continuous curve). Let (X, d) be a metric
space and [a, b] a real interval (the definition adapts as well to other intervals
and to S1) and let P = {a = t0, t1, . . . , tn = b} be a partition of [a, b]. The
length of a curve α : [a, b]→ X is

sup
P

n∑
i=1

d (α (ti) , α (ti−1)) .

The induced distance is called induced length metric and leads to a dis-
tance greater or equal than the original one; on subspaces it is not to be
confused with the induced distance, which is the plain restriction of the dis-
tance function of the space. If the induced length metric coincides with the
original distance, we say that the metric space is a length space.

The metric spaces which we will consider in this text will usually have
many geodesics.

Definition 1.1.3 (Geodesic metric space). A metric space X is said to be
geodesic if for every x and y in X there is a geodesic segment in X with
endpoints x and y. We will indicate one such segment with the notation xy.

X is said to be uniquely geodesic if such segment is unique.

A geodesic space is obviously a length space. Geodesics allow us to define
convexity in geodesic metric spaces. A subspace is said to be convex if any
geodesic between its points lies entirely in the subspace.

We will now describe the simplest metric spaces, which we will use for
comparisons and further definitions; they are called model spaces.

Definition 1.1.4 (Model spaces). Let κ be a real number and n > 2 be an
integer. The model space of curvature κ and dimension n, denoted by Mn

κ,
is the unique complete simply connected Riemannian manifold of dimension
n and all sectional curvatures equal to κ. In particular,
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• If κ < 0, the hyperbolic space Hn with distance function multiplied by
1√
−κ

;

• If κ = 0, the euclidean space En;

• If κ > 0, the sphere Sn with distance function multiplied by
1√
κ

.

All model spaces are uniquely geodesic, except for κ > 0; in that case
the geodesic is unique only for points closer than the diameter of the space,
equal to π√

κ
. The cases we will mostly use throughout this text are κ = 0,

−1, 1.
Given 3 points x, y, z in a geodesic metric space X, a geodesic triangle

or simply triangle with vertices x, y, z is the union of three segments xy, yz,
zx; we will denote it with the notation 4xyz.

Definition 1.1.5 (CAT (κ) space). Let κ be a real number, and let d be the
distance function in M2

κ. A geodesic metric space (X, d) is CAT (κ) if for
every triangle 4xyz in X, with the additional hypothesis that

d (x, y) + d (y, z) + d (z, x) <
2π√
κ

if κ > 0, and for every choice of points p on the side xy and q on the side xz,
the inequality d (p, q) 6 d (p, q) holds, where p and q are points on the sides
xy and xz of the (unique up to isometry) triangle 4xyz in M2

κ with d (x, y) =
d (x, y) and so on, such that d (x, p) = d (x, p) and d (x, q) = d (x, q).

The triangle 4xyz of the definition is called comparison triangle for
4xyz.

The CAT (κ) condition just provided is global. Let us exhibit a local
definition, which gives a good generalization of the concept of a manifold
with curvature bounded above by κ.

Definition 1.1.6 (Locally CAT (κ) space). A metric space is said to be
locally CAT (κ), or of curvature bounded above by κ, if every point has a
neighbourhood which is CAT (κ).

A CAT (0) space will be shortly called of non-positive curvature.
The following fact, which is proven in many classic texts like [BH99,

Appendix II.1A], is the starting point of the problem here exposed and solved.

Theorem 1.1.7. A Riemannian manifold with its distance function has rie-
mannian curvature less or equal than κ on every 2-subspace of every tangent
space if and only if it is a locally CAT (κ) space.
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The purpose of this exposition is to prove that for a smooth manifold
endowed with a distance function compatible with the topology the request
that this distance derives from a riemannian structure is actually a restricting
condition, when talking about the curvature. The precise statement is the
following:

Theorem 1.1.8. There is a closed smooth 4-manifold endowed with a dis-
tance function that makes it a locally CAT (0) space but which is not home-
omorphic to any Riemannian manifold of non positive curvature.

The dimension 4 is the least possible for a counterexample. In dimension
1 there are only two connected manifolds: R and S1. The classification the-
orem for compact surfaces implies that a compact surface supports a locally
CAT (0) distance function if and only if it supports a Riemannian metric of
non positive curvature. In dimension 3 the question is subtler, but the fact
that a compact locally CAT (0) manifold supports a Riemannian metric of
non positive curvature is still true [DJL12, Proposition 1]. The proof uses
heavily Thurston Geometrization Conjecture, which now a Theorem thanks
to Perel’man’s work, which is, as far as we know, the best substitute for a
classification theorem in the 3-dimensional setting.

1.2 Constructions in non-positive curvature

We now exhibit some standard constructions in the setting of CAT (0) spaces.
We first need the following definition.

Definition 1.2.1 (Asymptotic rays). Two rays c, c′ defined on [0,+∞) in
a CAT (0) space (X, d) are said to be asymptotic if the function

t 7→ d (c (t) , c′ (t))

is bounded.

Note that in general, if two geodesics γ, γ′ in a CAT (0) space (X, d) are
defined on intervals [a, b] and [a′, b′] respectively, then the function defined
on [0, 1] and sending s to d (γ (a+ s (b− a)) , γ′ (a′ + s (b′ −′ a))) is convex
[BH99, Proposition II.2.2]. It follows in particular that two asymptotic rays
with the same starting point are necessarily the same.

Definition 1.2.2 (Boundary at infinity). Let X be a complete CAT (0) space.
The boundary at infinity of X, denoted by ∂X, is the set of all rays in X
quotiented by the equivalence relation of being asymptotic.
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We shall also denote by X the set X ∪ ∂X. We will see that it has a
topological structure which coincides with the original one when restricted
to X. Note that an isometry takes asymptotic rays in asymptotic rays, so it
extends naturally to a function on X, which we will see to be a homeomor-
phism with respect to the topology of X. To move ourselves towards this
result we first need the following

Definition 1.2.3 (Angle). Let (X, d) be a metric space and γ1 : [0, a1]→ X,
γ2 : [0, a2] → X be geodesics with γ1 (0) = γ2 (0). The angle between γ1 and
γ2 is defined recurring to the law of cosines:

∠ (γ1, γ2) = lim sup
(t1,t2)→(0,0)

arccos

(
t21 + t22 − d (γ1 (t1) , γ2 (t2))

2t1t2

)
.

It is easy to see that the angle is subadditive, that the angle between a
geodesic and itself is 0 and that, if γ is a geodesic defined in a neighbourhood
of 0, the angle between the two opposite parts of γ with respect to 0 is π.
Any other angle has a value between 0 and π. It is a matter of calculation
that the angle between two geodesics on a Riemannian manifold is the eu-
clidean angle in the tangent space, with scalar product given by the actual
Riemannian metric between the two tangent vectors to the geodesics [BH99,
Proposition II.1A.7]. It can also be proven [BH99, Proposition II.1.7] the
following characterization of CAT (κ) spaces:

Lemma 1.2.4. Let κ be a real number. A geodesic metric space X is
CAT (κ) if and only if in any geodesic triangle in X the angles at the vertices
are less or equal than the corresponding angles of a comparison triangle.

In particular, if κ = 0, the sum of the angles in any geodesic triangle of
a CAT (0) space is less or equal than π. This turns useful in the proof of the
following

Lemma 1.2.5. For every x0 in a complete CAT (0) space (X, d) and for
every element of ∂X there is a geodesic ray c : [0,+∞)→ X with c (0) = x0

representing it.

Proof. Let γ be a geodesic ray representing an element of ∂X and let y0 be
its endpoint. Define cn to be the geodesic segment x0γ (n). By the triangle
inequality, when we fix t the sequence (cn (t))n∈N is defined for every n big
enough. We claim that it is a Cauchy sequence, so by completeness it has a
limit, and by continuity of the distance the function

c (t) = lim
n→+∞

cn (t)
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is a geodesic. The function d (c (t) , γ (t)) is convex and therefore it is always
less or equal than d (x0, y0) by construction and continuity of the distance
function.

So it remains to prove the Cauchy property. We suppose m > n are
non negative integers, big enough that ci (t) is defined for any i > n. The
angle at γ (n) in the comparison triangle 4x0y0γ (n) can be made arbitrarily
small if n is big enough because of the triangle inequality. The corresponding
angle in X is less or equal than it, but its sum with the angle at γ (n) in
4x0γ (n) γ (m) is π, so the latter can be made arbitrarily close to π. The
corresponding angle in 4x0γ (n) γ (m) is greater or equal than the angle in
the space, so the angle α at x0 can be made arbitrarily small. The distance
d (cn (t) , cm (t)) is less or equal than the distance between cn (t) and cm (t),
which is equal to 2t sin

(
α
2

)
, and α can be made arbitrarily small by choosing

a suitable n, like we have just seen.

To describe the topology of X we need the following fact [BH99, Propo-
sition II.2.4]:

Lemma 1.2.6. Let X be a CAT (0) space and B a convex subset which
is complete with respect to the induced distance function. Then there is a
continuous (in fact, 1-Lipschitz) retraction ρ : X → B such that for every
x in X, its image ρ (x) is the unique point of B at minimal distance from
x. Furthermore, if x and y in X are such that ρ (x) 6= ρ (y), then the two
geodesics joining the points to their images are disjoint.

Consider a complete CAT (0) space X and choose a point x0 in it. Then
the closed ball B (x0, r) is a complete convex subset of X, so there is a
retraction ρr like previously stated. If r′ > r we have that ρr ◦ ρr′ = ρr. In
fact, for x in X with d (x0, x) > r the projection ρr (x) is the intersection
of the unique geodesic between x0 and x with the boundary of B (x0, r); it
can be proven by contradiction using the triangle inequality. But then the
behaviour of the composition is easily proven to be the one we described.
We can then consider the collection

(
B (x0, r)

)
r∈[0,+∞)

together with maps

ρr′,r : B (x0, r
′) → B (x0, r), which are simply the restrictions of ρr defined

before. These maps form an inverse system of topological spaces. Call X̃ the
inverse limit.

Lemma 1.2.7. Let (X, d) be a complete CAT (0) metric space. X̃ has
a natural bijection with X defined before, such that the restriction of the
topology of X̃ to X coincides with the one induced by the distance.

Proof. Elements of the inverse limit are functions c : [0,+∞)→ X such that
for every r′ > r one has ρr (c (r′)) = c (r). Using the previous considerations,
there are two cases:
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• c (t) coincides with the parametrization of the geodetic segment x0x for
some x when t 6 d (x0, x), and then it is constant;

• c is a geodesic ray.

In the first case, we identify c with x, in the second we identify c with its
class in ∂X. This is a bijection with X thanks to the previous considerations.

The topology restricted to X is the standard one because internal parts
of the balls cover X.

Let us describe the neighbourhoods of the boundary points in X. Choose
a geodesic ray c issuing from x0 and an open set U in X where it passes.
Consider all the possible pairs (c̃, t) where c̃ is a geodesic ray issuing from x0

and t is a real number such that c̃ (t) ∈ U . The points c̃ (t′) for which exists a
pair (c̃, t) of this type with t < t′ form an open neighbourhood of the class of
c in X; furthermore these sets, which we will call A (U, x0), along with open
sets of X, form a basis for the topology of X. Note that these new open
sets, when intersected with X, give open sets of X. With this description in
mind, we can prove that the topology does not depend from x0.

Lemma 1.2.8. Let y0 be another point in X and construct the topology on
X following the previous Lemma but starting from y0. Then it is the same
topology as the one constructed starting from x0.

Fot a proof, see [BH99, Proposition II.8.8].
Let us now explore the behaviour of X under extensions of isometries of

X.

Lemma 1.2.9. Let X be a complete CAT (0) space and f : X → X an
isometry. Then the induced function f : X → X is a homeomorphism.

Proof. It is clear that, along with old open subsets of X, we can restrict
our attention only to open sets of the type A (B (c (t) , r) , x), with x in X,
c geodesic issuing from x, r and t a positive real numbers and B the open
ball. An isometry sends a set of this type in another set of this type.

1.3 Tools from Geometric Group Theory

Let G be a finitely generated group. It is possible to make it a metric
space, or to construct a geodesic metric space starting from it using a set of
generators. We will see that the constructions we make will not depend, in
a precise sense, from the finite set of generators chosen.

We begin with defining an equivalence relation between metric spaces
that is useful in this context.
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Definition 1.3.1 (Quasi-isometry). Let (X, d), (X ′, d′) be metric spaces,
K > 1, C > 0, D > 0 real numbers. A function f : X → Y is said to be a
(K,C,D)-quasi-isometry, or simply quasi-isometry, when the constants are
clear or inessential, if

• For every x, y in X, the following inequality holds:

1

K
d (x, y)− C 6 d′ (f (x) , f (y)) 6 Kd (x, y) + C;

• Y is contained in the D-neighbourhood of f (X) (quasi-surjectivity).

Two metric spaces are said to be quasi-isometric if there is a quasi-isometry
between them.

It is easy to verify that quasi-isometry is an equivalence relation. In
particular, any quasi isometry f : X → Y has a quasi inverse, i.e. a function
g : Y → X which is a quasi isometry too, perhaps with different parameters,
and such that f ◦ g (y) is uniformly close to y and g ◦ f (x) is uniformly close
to x. The composition of quasi isometries is a quasi isometry too.

If we do not assume quasi surjectivity the function will be called a quasi
isometric embedding. The typical case is a quasi isometric embedding of an
interval of R; this will be called quasi geodesic and it typically arises when
composing geodesics in the domain of a quasi isometry f with f .

Now we can make constructions using groups.

Definition 1.3.2 (Cayley graph). Let G be a finitely generated group and
S some finite set of generators. The Cayley graph of G relative to S, or
simply Cayley graph of G when the set of generators is clear or inessential,
denoted by C (G,S) or C (G) is a graph having G as set of vertices and an arc
between x and y in G if and only if x−1y is an element of S or an inverse of
an element of S.

The Cayley graph is endowed with a distance function which is simply
the path distance when length 1 is given to the arcs. The restriction of such
distance to the set of vertices is the word metric on G (relatively to S). The
word metric has values in the set of non negative integers and the distance
between elements x and y of G is given by the length of the shortest string
of elements of S or of their inverses representing x−1y.

Clearly the previous definitions depend on S. However, this dependence
vanishes if we consider the metric spaces up to quasi isometry.

Lemma 1.3.3. Let S and S ′ be finite set of generators for a group G. Then
the identity of G is a quasi isometry when we consider the word metrics given
by S and S ′. Furthermore, the relative Cayley graphs are quasi isometric.
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Proof. There is a positive integer K such that every element of S can be
written like a string of at most K elements of S ′ or their inverses and vice-
versa. Then the identity of G is clearly a (K, 0, 0)-quasi-isometry between
the two word metrics. The Cayley graph relative to a set of generators is in
an obvious way quasi-isometric to the set of vertices; then we conclude by
composition of quasi-isometries.

We will now define a construction defined on metric spaces which becomes
useful when talking about quasi-isometry invariants.

We begin with a construction from infinite combinatorics.

Definition 1.3.4 (Ultrafilter). An ultrafilter on an index set I is a family
U ⊂ ℘ (I) such that:

• I ∈ U , ∅ /∈ U ;

• U is closed under intersections and supersets;

• If A ∪B ∈ U , then either A ∈ U or B ∈ U .

A principal ultrafilter is one consisting of subsets containing a fixed el-
ement. We will avoid them; in fact we will only consider non principal
ultrafilters on N. Non principal ultrafilters on infinite sets do exist, if we
assume the Axiom of Choice.

Given an ultrafilter U on I and an I-sequence (xi)i∈I of elements of a set
X, we will say that a property P of elements of X holds U -almost everywhere
on (xi)i∈I if the set of indices i such that P (xi) holds is in U . If X is a
topological space, we say that the U -limit of a sequence (xi)i∈I is l, and write
U − limxi = l, if for every open set A containing l, U -almost every xi belongs
to A. In compact spaces U -limits always exist; they are unique in Hausdorff
spaces.

Let us define the object of our interest.

Definition 1.3.5 (Asymptotic cone). Let (X, d) be a metric space, U a non
principal ultrafilter on N, (dn)n∈N a sequence of non negative real numbers
which is not U-a.e. bounded by any real number, (xn)n∈N a sequence of points
in X. Consider the set C of all sequences (yn)n∈N of elements of X such that
the sequence (

d (xn, yn)

dn

)
n∈N

is U-a.e. bounded by some real number. Define an equivalence relationship
∼ in C by declaring two such sequences equivalent if

U − lim
d (xn, yn)

dn
= 0.
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The set C (U , (xn) , (dn) , X) = C/ ∼ is said asymptotic cone of X relative
to U and (dn), or simply CX, asymptotic cone of X, if the other parameters
are clear or inessential. This set has a metric space structure with distance
function given by

d ([yn] , [y′n]) = U − lim
d (yn, y

′
n)

dn
,

which always exists and is unique because of the previous considerations.

We introduce the following model theoretic construction to give a some-
what alternate view on asymptotic cones. We follow here [CK90].

Definition 1.3.6 (Ultrapower). Let X be any structure, i.e. set with opera-
tions and relations, and let U be a non principal ultrafilter on a set of indices
I. The U -ultrapower of X, or simply ultrapower of X when the ultrafilter is
clear or inessential, denoted by ∗X, is the set of all I-sequences of elements
of X quotiented by the relation (xi)i∈I ∼ (yi)i∈I if xi = yi for U-almost every
i ∈ I.

We denote by [xi] the equivalence class of (xi)i∈I . Having fixed the ultra-
filter, a function f : X → Y induces a function ∗f : ∗X → ∗Y defined on [xi]
to be [f (xi)], and a relation R ⊆ X×X gives a relation ∗R ⊆ ∗X× ∗X such
that ∗R ([xi] , [yi]) if and only if R (xi, yi) for U -a.e. i. There is a canonical
immersion of X in ∗X given by the classes of constant sequences.

When talking about a metric space (X, d) the structure consists of:

• The set X;

• R with the whole of its structure;

• A function d : X ×X → R respecting the hypotheses of distance.

Associated to a given structure X we define the superstructure V (X) the
following way:

Definition 1.3.7 (Superstructure). Let X be a set. Suppose for simplicity
no element of X contains other elements of X. The superstructure V (X) on
X is the union

⋃
n∈N Vn (X), where the Vn’s are recursively defined as follows:

• The set V0 (X) is X;

• The set Vn (X) is the powerset of Vn−1 (X).
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The definition given in [CK90] is slightly different, in fact there Vn is the
union on i 6 n of the Vi’s we have defined here.

Note that on a superstructure is naturally defined a membership rela-
tion ∈. Superstructures allow us to take in exam particular subsets of an
ultrapower of X, particular subsets of subsets, and so on. The precise con-
struction goes as follows. Suppose I is an index set and U is a non principal
ultrafilter on I. We first take Y = ∗X, and, for every x in X, call ∗x the
class in ∗X of the sequence constantly equal to x; this is the immersion of X
in ∗X we already told about. Define, like we already did, Y = V0 (Y ) = ∗X
to be the set of all classes of sequences of elements of X.

If A is a subset of X, we call ∗A the subset of ∗X made up of all classes
of sequences [xi] such that xi ∈ A for U -a.e. i in I; we can say, without lost
of generality, that ∗A is the set of classes of sequences of elements of A. If
(Ai)i∈I is a sequence of subsets of X, we denote by [Ai] and call the class of
the sequence (Ai) the subset of ∗X made up of classes of sequences [xi] such
that xi ∈ Ai for U -a.e. i in I. We then define V1 (Y ) like the set of all classes
of sequences in V1 (X). The sets in V1 (Y ) are said to be internal (sub)sets
of ∗X. It is important to stress that internal sets are not all the subsets of
∗X.

Recursively, if A is a subset of Vn (X), we call ∗A the subset of Vn made up
of classes of sequences of elements of A. If (Ai)i∈I is a sequence of elements of
Vn (X), then its class [Ai] is a subset of Vn (Y ) made up of sequences (Bi)i∈I
of elements of Vn (X) such that Bi ∈ Ai for U -a.e. i in I. Finally, Vn+1 (Y )
is the set of all classes of sequences in Vn (X).

Definition 1.3.8 (Non standard universe). Let X be a set like in the previous
Definition and V (X) be its superstructure. A non standard universe is a
triple (V (X) , V (Y ) , ∗) where V (Y ) is the union on n in N of the Vn (Y )’s
just constructed and ∗ : V (X)→ V (Y ) is the function, called transfer map,
just defined.

Note that we can say, more concisely, that Vn (Y ) = ∗Vn (X).
The power of the concept of non standard universe comes from their

property to transport certain predicates on V (X) to V (Y ) and vice versa.

Theorem 1.3.9 (Transfer principle). Let (V (X) , V (Y ) , ∗) be a non stan-
dard universe. A first order formula on V (X) with constants c1, . . . , ck is
satisfied in V (X) if and only if the same formula with constants respectively
substituted by ∗c1, . . . , ∗ck is satisfied in V (Y ).

For a proof, see [CK90, Theorem 4.4.5].
In fact, the previous theorem is a generalization of the classic  Loś’s the-

orem in model theory, which establishes the same result for X and ∗X only.
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When we take the ultrapower of a metric space, which we may call mim-
icking the standard nomenclature hypermetric space, it comes endowed with
a hyperdistance function ∗d : X ×X → ∗R. An ultrapower of reals is said a
hyperreal field.

A hyperreal field is an ordered field, superfield of the reals, with opera-
tions and order constructed like before, and has infinite elements, greater in
absolute value than any natural, and infinitesimal ones, less in absolute value
than any 1

n
for n natural but distinct from 0. Every finite, i.e. non infinite

hyperreal t has a unique standard part std (t), which is a real number such
that t− std (t) is infinitesimal.

By the Transfer Principle, the hyperdistance fulfils the hypotheses of
distance, except it has hyperreal values. Let us explore further properties of
ultrapowers of metric spaces:

Lemma 1.3.10. Let (X, d) be a geodesic metric space. Then for any index
set I and any non principal ultrafilter U in I the ultrapower ∗X is also
geodesic.

Proof. Let p = [pi] and q = [qi] be points in ∗X. The hyperdistance between
them is D = [di], where di = d (pi, qi). Let γi be a geodesic between pi and
qi. We have that [[0, di]]i∈I = [0, D] ⊆ ∗R. Therefore, if t = [ti] is a hyperreal
less or equal than D, the point γi (ti) is defined on U -a.e. i in I. Then the
function γ sending t to [γi (ti)] is a geodesic in ∗X.

The previous proof is actually a particularization of the proof of the Trans-
fer Principle; we outlined it for more clarity. The following proposition is
subtler.

Lemma 1.3.11. Let (X, d) be a uniquely geodesic metric space. Then for
any index set I and any non principal ultrafilter U in I the ultrapower ∗X is
uniquely geodesic.

The problem may come from the fact that a function defined on (a sub-
set of) ∗R with values in ∗X is not necessary obtained from a sequence of
functions on R with values in X like in the proof of the previous Lemma.
The Transfer Principle tells us only that geodesics of this type are unique
between two fixed points. So we need a different proof.

Proof. Let p = [pi] and q = [qi] be points in ∗X, γi the geodesic between pi
and qi and γ the geodesic between p and q found in the previous Lemma.
Suppose there is another geodesic β between them. It passes from a point
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r = [ri] not in the image of γ, and therefore ri is not in the image of γi for
U -a.e. i in I. Because of the uniqueness of geodesics in X we have that

d (pi, ri) + d (ri, qi) > d (pi, qi)

for U -a.e. i in I and so

∗d (p, r) +∗ d (r, q) > ∗d (p, q) ,

but then β could not be a geodesic, absurd.

Spaces which respect the CAT (0) condition are uniquely geodesic, and so
we already know how geodesics in ∗X are made. The following fact becomes
thus easy to prove.

Lemma 1.3.12. If X is a CAT (0) metric space, then any ultrapower ∗X is
a CAT (0) metric space, with the comparison triangles are taken in ∗ (R2) =
(∗R)2.

From the transfer principle follows also the following version of the Lemma
1.2.6 for ultrapowers of CAT (0) spaces.

Lemma 1.3.13. Let X be a complete CAT (0) metric space, and let ∗X an
ultrapower of X. Let C be the collection of closed subsets of X and A a
subset of ∗X in ∗C. Then there is a retraction ρ of X on A with the same
properties of the Lemma 1.2.6.

We return now to asymptotic cones. Note that the hyperreal represented
by (dn) in the definition of asymptotic cone is infinite. With this in mind,
a rephrasing of definition of the asymptotic cone C (X,U , (xn) , (dn)) is of a
subset of ∗X consisting of all points [yn] such that

∗d ([xn] , [yn])

[dn]

is finite, quotiented by the relation that identifies pairs of points having that
ratio infinitesimal, with distance function given by

d ([yn] , [zn]) = std

(∗d ([yn] , [zn])

[dn]

)
.

We will call [xn] the center of the cone and [dn] the radius, despite it is not
a true radius.

The main interest in asymptotic cones lies in the fact they annihilate
the finite errors comparing in the definition of quasi-isometry. The exact,
straightforward, statement is the following
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Lemma 1.3.14. Let X and Y be metric spaces and f : X → Y a
(K,C,D)-quasi-isometry. Let U be an ultrafilter on N, (xn)n∈N a sequence in
X and (dn)n∈N a real sequence. Then ∗f brings points of the subset of ∗X that
defines the cone C (X,U , (xn) , (dn)) in the subset of ∗Y that defines the cone
C (Y,U , (f (xn)) , (dn)), when two such points are identified in the former cone
their images are identified in the latter and the function C (f,U , (xn) , (dn)),
or simply C (f), induced at the quotient is a K-bi-Lipschitz homeomorphism
between C (X,U , (xn) , (dn)) and C (Y,U , (f (xn)) , (dn)).

We will now define particular types of geodesic spaces which often arise
when taking asymptotic cones of groups, i.e. of their Cayley graphs.

Definition 1.3.15 (Real tree). A topological space X is said to be a real tree
if for any pair of points x, y in X there is a unique, up to reparametrization,
topological embedding of [0, 1] into X with endpoints x and y.

If a real tree has a distance function, it naturally has a structure of
geodesic metric space. Note that a real tree is CAT (κ) for every real κ.

Definition 1.3.16 (Tree graded space). A topological space X is said to be
tree-graded respect to a family P of subspaces called pieces if:

• Every element of P is path connected;

• Two different pieces have at most one point in common;

• The image of every topological embedding of S1 is contained in one
piece.

The definition usually given in literature [HK05, Definition 2.1.3] requires
X to be a complete geodesic space and pieces to be convex. We see that
adding the first of these hypotheses ensures the second.

Lemma 1.3.17. Let X be a tree graded space in the topological sense.
Suppose furthermore the topology is given by a distance function d that
makes X a complete geodesic metric space. Then the pieces are convex.

Proof. Take two distinct points x and y in the same piece P . They are
joined by a path α : [0, 1]→ X entirely contained in P and also by a geodesic
γ : [0, d (x, y)]→ X. We can suppose without loss of generality α is injective.
This claim will be the subject of a technical Lemma of which we defer the
proof.

Suppose that the image of γ is not entirely contained in the image of α.
The set of t in [0, d (x, y)] such that γ (t) is not contained in the image of α is
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open. Take one such t and consider the endpoints a < b of the maximal open
interval containing t and mapped by γ outside the image of α. Then γ (a)
and γ (b) lie in the image of α. It follows that γ ([a, b]) together with the
subpath of α between γ (a) and γ (b) form a simple closed loop, which stays
thus in the same piece, the one containing the image of α and hence x and
y. By arbitrariness of t all of the image of γ is contained in this piece.

We will implicitly use an argument similar to the one used in the proof of
the previous Lemma whenever we want to produce a simple closed curve from
two injective curves with the same endpoints but having different images. To
actually have injective curves, we may make use of the following

Lemma 1.3.18. Let X be a T1 topological space and α : [0, 1]→ X be any
continuous path in it. Then there is an injective continuous path in X with
endpoints p = α (0) and q = α (1).

Proof. Consider the set Z of all continuous paths in X between p and q
defined on [0, 1]. Consider the following order relation on Z: if γ1 and γ2 are
in Z, then γ1 6 γ2 if and only there is an open set U ⊆ (0, 1) such that:

• The paths γ1 and γ2 coincide outside U ;

• The path γ2 is locally constant in U .

To prove the antisymmetry, if γ1 6 γ2 using a set U and γ2 6 γ1 using a set
V it is easy to see that γ1 and γ2 coincide outside U ∩ V , and from locally
constant property they coincide on U ∩ V too. If γ1 6 γ2 with respect to a
set U1 and γ2 6 γ3 with respect to a set U2 it can be seen that γ1 6 γ3 with
the set U1 ∪ U2.

Consider a chain C = {γi}i∈I in Z, where I is a set of indices. We claim
that for any t there is an index i such that for any γj > γi the value of γj (t)
coincides with γi (t). This is immediate for any t which is not involved in any
open set defining the order between a pair of elements of C. Otherwise, if
γi1 6 γi2 with a set U containing t, then i = i2 suffices. Then we can define
a path β that takes on t its definitive value. Making the same distinction on
t we used for the proof of existence, the continuity of β follows as well.

The Zorn Lemma gives us a maximal element α̃. We claim that if there
are 0 6 t < s 6 1 such that α̃ (t) = α̃ (s), then α̃ takes the same value
on any point between t and s. Otherwise, there would be a greater element
in Z constructed by taking U = (t, s) and making it in this interval be
constantly α̃ (t) = α̃ (s). But then it can be seen that defining the equivalence
relation∼ on [0, 1] that identifies points on which α̃ takes the same values, the
quotient [0, 1] / ∼ is homeomorphic to an interval (perhaps a point), thanks
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to the hypothesis on the topology. The induced map α̃/ ∼ : [0, 1] / ∼→ X is
injective.

Note that a real tree is tree graded respect to the collections of its sin-
gletons so tree graded spaces provide, in a sense we will explore further, a
generalisation of real trees.

We will now give some definitions about actions of a group on a space by
isometries, including a condition which will be essential in the proof of the
main theorem.

From now on metric spaces in exam will be proper, i.e. closed balls are
compact subsets. Note that proper spaces are complete.

Definition 1.3.19 (Geometric action). Let X be a proper geodesic metric
space and G a group acting on it by isometries. We say that the action of G
is geometric if it is properly discontinuous and cocompact, i.e. the quotient
space of X by the action is compact.

The prototypical example of a geometric action is that of the fundamental
group of a compact geodesic metric space on its universal cover. Geometric
actions have a clear interpretation in terms of quasi-isometries.

Lemma 1.3.20 (Milnor-Švarc Lemma). Let (X, d) be a proper geodesic
metric space and G a group geometrically acting on it. Then G is finitely
generated by a set S and for any x0 in X the function f sending an element
g of G to g · x0 is a quasi-isometry between G with the word metric dS given
by S and (X, d).

Proof. Quasi-surjectivity is an immediate consequence of the cocompactness.
In particular, if R is the (finite) diameter of the quotient, taken any x0 in X
we can be sure that the projection X → X/G is surjective on B (x0, R) or,
said otherwise, the translates of this ball through the G action cover X.

The set of elements g in G such that g · x0 ∈ B (x0, 2R) is finite for
the properly discontinuous property of the action. Call S0 the set of such
elements. If S0 = G we are done. Otherwise, let

r = inf
g∈G\S0

d (x0, g · x0)− 2R > 0

and S = S0\ {1}. We claim that S generates G and that for any h1, h2 in G
the inequality dS (h1, h2) 6 1

r
d (h1 · x0, h2 · x0) + 1 holds.

Take g in G and a geodesic γ : [0, D = d (x0, g · x0)]→ X between x0 and
g · x0. Let

N =

⌊
D

r

⌋
+ 1.
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For every i in {1, . . . , N − 1}, let gi be such that

d

(
gi · x0, γ

(
iD

N

))
6 R;

by construction we can always find a gi with this properties; also set g0 = 1
and gN = g. We have that d

(
x0, g

−1
i−1gi · x0

)
= d (gi−1 · x0, gi · x0) < 2R + r

and thus g−1
i−1gi ∈ S. But then g can be represented with a string of at most

N elements of S and N 6 D
r

+ 1. The thesis follows by taking g = h−1
2 h1.

Vice versa, consider a point x = h · x0 in the orbit of x0 and an element
s ∈ S. By hypothesis, 2R > d (x0, s · x0) = d (h · x0, hs · x0). Then from the
triangle inequality for any h1, h2 in G we have that

d (h1 · x0, h2 · x0) 6 2RdS (h1, h2)

holds.
The two inequalities together ensure the quasi isometry property.

If the group G already has a finite generating set S ′, by the transitivity
of the quasi isometry relation and Lemma 1.3.3 we have that C (G,S ′) and
X are quasi isometric too via one of the maps from the previous lemma.

We pass now to some definitions using asymptotic cones.

Definition 1.3.21 (Hyperbolic space). A complete metric space X is said
to be Gromov hyperbolic, or simply hyperbolic in this dissertation, if any
asymptotic cone of it is a real tree.

In the literature hyperbolic spaces are defined in a different way [Gro87];
it can be proven that the classical definitions are equivalent to the one we
use here [Dru02, Proposition 3.A.1]. The definition we use has the advantage
to behave in a clear way under quasi-isometries.

Lemma 1.3.22. If two complete metric spaces X and Y are quasi-isometric
and X is hyperbolic then Y is hyperbolic too.

Proof. A quasi isometry between spaces becomes a bi-Lipschitz homeomor-
phism between corresponding asymptotic cones, like stated in 1.3.14. The
notion of real tree is clearly invariant under homeomorphism.

The proof can be enriched if we consider geodesic spaces. If X is geodesic,
any asymptotic cone of it is geodesic too, so the unique topological path
between two points in the cone is a geodesic with the right parametrization.
Then the corresponding path in the corresponding cone of Y is a geodesic
too, up to reparametrization, thanks to the bi-Lipschitz property.
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Note that the standard hyperbolic space is hyperbolic in the sense we
have just defined. To prove this, we need another definition of hyperbolic
space, the one usually found in literature. We say that a complete geodesic
metric space is δ-hyperbolic if in any geodesic triangle every side is included
in the δ-neighbourhood of the union of the other two.

Lemma 1.3.23. Let X be a δ-hyperbolic geodesic metric space. Then X is
hyperbolic.

Proof. Fix an ultrafilter U on N, sequences (xn)n∈N in X and (dn)n∈N in
R and consider C (X,U , (xn) , (dn)). The hypothesis of the Lemma are true
also for the U -ultrapower ∗X because of the transfer principle. But then
the asymptotic cone is also geodesic, and every triangle in it fulfils the same
hypothesis on δ. By dividing all distances by the infinite [dn] we have that
every geodesic triangle in C (X) is in fact a tripod: every side is contained in
the union of the other two.

It remains then to prove that this characterises real trees. The argument
is a bit long and rather technical, so we leave it for a separate lemma.

The converse of the previous statement is also true, but we will not use
this fact. Let us estabilish the technical Lemma announced before.

Lemma 1.3.24. Let (X, d) be a geodesic metric space such that every
geodesic triangle is a tripod. Then X is a real tree, in the topological sense.

Proof. Note that a space like in the hypotheses is uniquely geodesic.
If there are two points in the space joined by more than one topological

path we can find, by taking appropriate subpaths of these two, a simple
closed non constant loop in X. With this hypothesis, we will prove that
there is a triangle which is not a tripod.

It will also be sufficient to find a quadrilateral x1x2x3x4 with geodesic
sides that intersect only if they are consecutive and only at extremes: this
way x1 and x3 cannot form a tripod with both x2 and x4.

Starting with the simple closed non constant loop we have, we take a
geodesic between two points of it and, up to throwing away some common
pieces, we can suppose there are two points, the geodesic γ joining them and
another simple curve α having them as extremes, and this two curves intersect
only at extremes. We suppose for simplicity, without lost of generality, that
both are defined on [0, 1]

For every point p of α there is a nearest point q to it on γ by compactness.
The geodesic joining p and q intersects γ only in q, otherwise there would be
a nearer point to p on γ. Then q is unique: if there were another point q′ on
γ at the same distance from p, there would be a triangle non tripod having
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for sides the piece of γ between q and q′, and pieces of geodesics joining q
and q′ to p from these points to their first intersection.

So there is a function f : [0, 1]→ γ[0, 1] associating to t the nearest point
on γ to α (t). This function cannot be constant, and thus neither locally con-
stant, on (0, 1) because near 0 it takes values near γ (0) and near 1 values near
γ (1). So there is a t0 in (0, 1) such that in any of its neighbourhoods there is
a point where f takes a value different from f (t0). Let L = d (α (t0) , f (t0)).
Take t1 in (0, 1) such that d (α (t0) , α (t1)) < L

3
and d (α (t1) , f (t1)) > 2

3
L,

which we can do by continuity of the distance function, with the additional
property that f (t0) 6= f (t1), which can be assured by construction. If the
geodesics α (t0) f (t0) and α (t1) f (t1) intersect, we find a triangle non tripod,
otherwise a piece of them, the piece of γ between f (t0) and f (t1) and a piece
of the geodesic α (t0)α (t1) form a quadrilateral of the type pointed out in
the beginning of the proof.

The proof that Hn is hyperbolic relies then on the fact that it is δ-
hyperbolic.

Lemma 1.3.25. Hn is δ-hyperbolic for every δ > log
(
cot
(
π
8

))
, for example

δ = 1.

Proof. Every triangle in Hn lies in a 2-subspace, so it suffices to prove the
thesis for H2. Take a geodesic triangle there and an internal point p and trace
the three geodesics from p passing by the vertices. The thesis for the original
triangle descends from the thesis for the ideal triangle with extremes the
points on ∂H2 corresponding to these three geodesics: the original triangle
lies inside the new one and a point on one its side is closer to the union of the
other two than to the union of the two new sides asymptotic to the geodesic
from p and passing by the opposite vertex.

There is only one ideal triangle in H2 up to isometry: we consider, in the
half plane model, the one of vertices −1, 1 and ∞, and prove that the side
between −1 and 1 lies in the δ-neighbourhood of the union of vertical sides.

For a positive real r, the r-neighbourhood of a vertical line is boarded by
oblique (euclidean) lines making an angle α with the vertical and departing
from the same ideal finite point. The angle α is such that∫ π

2
+α

π
2

1

sin θ
dθ = r,

and for α = π
4
, which is the adequate value for containing the third side in

this case, r = log
(
cot
(
π
8

))
.

This implies immediately the following
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Corollary 1.3.26. If ε is a positive real number, then every complete metric
space satisfying the CAT (−ε) property is hyperbolic.

Having turned groups into metric spaces, the following definition is nat-
ural.

Definition 1.3.27 (Hyperbolic group). A finitely generated group G is said
to be hyperbolic if there is a finite set of generators S for which the Cayley
graph C (G,S) is hyperbolic.

The definition we gave is by Lemma 1.3.14 a quasi-isometry invariant, so
being a hyperbolic group is, by Lemma 1.3.3, independent from the gener-
ating set. The considerations we made previously allow us to conclude the
following

Lemma 1.3.28. If ε is a positive real number, every group acting geomet-
rically on a complete geodesic CAT (−ε) space is hyperbolic.

In particular, fundamental groups of compact locally CAT (−ε) spaces
are hyperbolic.

We are going now to introduce a subtler definition. We begin by returning
to ultrapowers. Given a collection A of subspaces of a metric space (X, d), we
already know how to define ∗A. Take an asymptotic cone C (X) of X having
x as centre and R as radius. If Z is a subspace of ∗X, we call intersection of
Z with C (X) the set of points z of Z such that

∗d(x,z)
R

is finite. When we later
quotient the intersection of Z with the cone by the relation that identifies
points with hyperdistance infinitesimal when divided byR, we obtain a subset
of C (X) which we call the projection of Z to the cone. We can then define
C (A) as the collection of nonempty projections of sets in ∗A to the cone.
Note that different sets may lead to the same projection.

Alternatively, if we have an asymptotic cone C (X,U , (xn) , (dn)), we can
consider sequences (An)n∈N of elements of A such that

d (xn, An)

dn

is bounded and sequences (yn) representing elements of the cone and such
that yn ∈ An for U -a.e. n in N: these sequences determine a subset [An] of
the cone, and we call C (A,U , (xn) , (dn)), or simply C (A) the collection of
all possible [An].

Let us apply these considerations to the following

Definition 1.3.29 (Relatively hyperbolic space). Let X be a complete metric
space and A a family of subspaces such that any two distinct members have
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infinite Hausdorff distance. The space X is said to be relatively hyperbolic
with respect to A if every asymptotic cone C (X) is tree-graded with respect
to C (A).

Take now a finitely generated group G and consider a finite collection
H = {H1, . . . , Hn} of finitely generated subgroups. Let A (H) be the collec-
tion of all left cosets of subgroups in H.

Definition 1.3.30 (Relatively hyperbolic group). A group G is said to be
relatively hyperbolic with respect to H if it is a relatively hyperbolic space
with respect to A (H).

A hyperbolic group is considered to be hyperbolic relatively to its trivial
subgroup. In this case C (A) is the set of all singletons of C (X). This
convention is made even if the cosets have not infinite Hausdorff distance
from each other.

Group actions on CAT (0) metric spaces have additional features that
make their structure richer and more interconnected with that of the group
itself. We begin with a geometric definition.

Definition 1.3.31 (Flat). Let k > 2 be an integer. A k-flat in a CAT (0)
space X is the image of an isometric embedding of Ek into X.

One classical result that links the algebra of the fundamental group of a
compact locally CAT (0) space to its geometry is the following:

Theorem 1.3.32 (Flat Torus Theorem). Let k be a positive integer. Sup-
pose that the fundamental group of a compact CAT (0) space X with uni-

versal cover X̃ has a subgroup G isomorphic to Zk. Then there is a k-flat in
X̃ invariant under the action of G and with quotient by such action a flat
torus locally isometrically immersed in X.

If X is a smooth manifold of non-positive curvature, the embeddings and
immersions of the theorem are totally geodesic in the Riemannian sense.

For a proof in the CAT (0) setting, see [BH99, Theorem II.7.1]. The proof
in the smooth case can be found in the original papers [GW71], [LY72].

Another classical result on flat spaces is concerned with their group of
isometries.

Theorem 1.3.33 (Bieberbach Theorem). Let G be a group acting geomet-
rically on En. Then G has a finite index subgroup isomorphic to Zn that acts
geometrically by translations. Furthermore, the translations associated to a
basis of this subgroup form a basis for the underlying vector space Rn.

The thesis of the theorem is expressed saying that G is virtually free
abelian of rank n.
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1.4 Isolated flats condition

We have already seen the strict connection between hyperbolic groups, hy-
perbolic spaces and complete CAT (κ) spaces, with κ strictly negative. In
the more general CAT (0) setting the large scale structure of the space, i.e.
properties invariant under quasi-isometry, can be far more complicated. The
situation is easier to deal with in the smooth setting, of course. Another
condition that simplifies and partially rigidifies the geometry is the following

Definition 1.4.1 (Isolated flats). Let X be a proper CAT (0) space, G a
group acting geometrically on it, and let F be a collection of flats in X.
Suppose that:

• F is G-invariant;

• For any pair F1, F2 of flats in F and any positive R, the flat F2 is not
contained in the R-neighbourhood of F1 (we say that there are no two
parallel flats in F).

• X is relatively hyperbolic with respect to F .

Then X has the isolated flats property with respect to F .

We adopt the convention that a CAT (0) space which is also hyperbolic
has isolated flats. This is because being hyperbolic is the same thing as being
relatively hyperbolic with respect to singletons, which we may think to as
“0-dimensional flats”.

Before proceeding, we make an observation involving ultrapowers and
asymptotic cones. The definition of isolated flats makes use of these concepts
through the relative hyperbolicity. Elements of ∗F are hyperflats in the
ultrapower, meaning that they are isometric embeddings of ultrapowers of
an En constructed with the same index set and the same ultrafilter. At
the level of asymptotic cones, they became regular flats. Hyperflats in ∗F
are obviously internal sets, and r-neighbourhoods of internal sets, with r
hyperreal, are internal sets too.

Lemma 1.4.2. Let F1 6= F2 be hyperflats in ∗F . Then they are distinct in
any asymptotic cone, i.e. if their intersection with a cone C (X) is nonempty,
then their projections to the cone determine two distinct flat pieces in C (X).

Proof. Suppose by contradiction there are hyperflats F1 and F2 that are equal
in some cone C (X) of centre x and radius R. This means that the intersection
of R-neighbourhoods of F1 and F2 has a diameter D which is infinite when
divided by R. Take another asymptotic cone C ′ (X), having centre in the
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intersection of these neighbourhoods and radius D. In this cone, F1 and
F2 become two flats having diameter of the intersection 1, which is absurd
because of relative hyperbolicity, in particular the tree graded property.

We will now state and prove some technical lemmas about spaces with
isolated flats. The hypothesis we will assume from now on is: let X be a
proper CAT (0) with a geometric action of a group G and having isolated
flats with respect to a family F . We begin with proving that the definition
we gave implies another definition of isolated flats, the one usually found in
the literature.

Lemma 1.4.3. In the above hypotheses on X we have:

1. Every flat of X is contained in an R-neighbourhood of a flat in F ;

2. For every r > 0 there is D (r) > 0 such that for any pair of flats in F
the diameter of the intersection of their r-neighbourhoods is less than
D.

The last condition says precisely the flats of F are isolated in the Haus-
dorff topology of convergence on bounded subsets (see [HK05, Definition
2.1.1] for a definition).

Proof. Suppose X is relatively hyperbolic with respect to F . Take a flat F
in X. ∗F ⊆ ∗X is a hyperflat. Take an asymptotic cone C (X,U , (xn) , (dn))
such that it intersects ∗F : the projection on the cone is a flat which we will
call C (F ). Take a simple closed curve in C (F ): by relative hyperbolicity, it
must be contained in a piece of C (F). By taking arbitrarily large triangles,
the whole of ∗F is contained in a piece of C (F). That means F is contained
in a neighbourhood of a flat of F , otherwise the proposition “for every r
and for every flat of F there is a point of F at distance greater than r from
that flat” would become, in the ultrapower, “for every flat in ∗F there is a
point in ∗F with distance more than [dn] from it”, i.e. no C (F ) could not be
contained in any flat piece of the corresponding C (F).

It remains to prove the isolation condition. The converse, i.e. the propo-
sition “there is r such that exist pairs of flats in F with intersection of their
r-neighbourhoods having arbitrarily large diameter” would become in the ul-
trapower “there is a pair of distinct flats in ∗F with the intersection of their
r-neighbourhoods having diameter greater or equal than an infinite hyperreal
D̃”. Taking a point of this intersection as the center of the asymptotic cone
and D as the radius, we obtain a contradiction for the relative hyperbolicity,
because the two flats are distinct in the cone by the previous Lemma.
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The characterization we just found allows us to conclude some results on
the structure of the space.

Lemma 1.4.4. F is locally finite, i.e. every compact set in X intersects only
finitely many elements of F .

Proof. It suffices to prove the property for closed balls. Choose r > 0 and
x0 in X. By hypothesis, if two flats F1, F2 in F intersect both B (x0, r) then
there are no points in the intersection of r-neighbourhoods of F1 and F2 at
distance D (r) from x0, where D is defined in the Lemma 1.4.3. For every
flat in F intersecting B (x0, r) take a point in the (non empty) intersection of
∂B (x0, R) with it: the balls of radius r centered in these points define disjoint
open sets in ∂B (x0, R). By properness of X, these points are finite.

Lemma 1.4.5. The action of G on F has finitely many orbits and stabilizers
of elements of F lie in finitely many conjugacy orbits.

Proof. Let K be a compact set whose translates by G cover X. It intersects
only finitely many flats in F , and the number of orbits of the action is less or
equal that that finite number. The thesis on the stabilizers easily follows.

Lemma 1.4.6. The stabilizer of a flat F in F acts geometrically on F .

Proof. Fix a compact set K whose G-translates cover X. Consider a subset
{gi}i∈I of G, with I a set of indices, such that for every i in I the set gi ·K
intersects F . By hypothesis, {gi ·K}i∈I cover F .

If for some i, j in I the flats g−1
i · F and g−1

j · F coincide, then gjg
−1
i is

in H = StabF , and thus gj ∈ Hgi. By Lemma 1.4.4 the gi’s lie in a finite
number of right cosets of H. Furthermore, for any i, j the sets

⋃
h∈H hgi ·K

and
⋃
h∈H hgj · K lie at finite Hausdorff distance, less or equal than the

Hausdorff distance between gi ·K and gj ·K. Take then representatives gi1 ,
. . . gim for the right cosets of H intersecting {gi}i∈I and a K ′ ⊇ K compact
and large enough so that gi1 · K ′ contains all of gi2 · K, . . . , gim · K: by
construction, the H-translates of K ′ cover F .

Like already seen in the case of hyperbolic spaces, the geometric structure
of spaces with isolated flats reflects in the geometric structure of groups acting
geometrically on them. We begin by observing that a maximal free abelian
subgroup H in G stabilizes a flat FH of the same dimension as the rank
of H by the Flat Torus Theorem 1.3.32. This flat is parallel to a flat F
in F for the previous considerations, and F is stabilized by H too thanks
to [BH99, Theorem II.6.8]; in fact, parallel flats determine a product of a
flat by an interval stabilized by the same subgroup. Then F must have the
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same dimension as FH , otherwise the stabilizer of F would contain an abelian
subgroup containing H of rank higher than H. So a maximal free abelian
subgroup of G determines the flat of F it stabilizes.

Vice versa, a flat of F is stablized, according to Bieberbach Theorem
1.3.33, by a virtually free abelian subgroup H of the same rank as the di-
mension of the flat. Similarly to the previous reasoning, the subgroup found
is maximal because no pair of flats in F are parallel. So a flat in F deter-
mines the virtually free abelian subgroup it is stabilized by. We have then
found a one-to-one correspondence between maximal virtually free abelian
subgroups of G of rank at least 2 and flats of F .

Lemma 1.4.7. LetX be a CAT (0) space andG a group acting geometrically
on it. Then G is relatively hyperbolic with respect to a collection of virtually
free abelian subgroups of rank at least two if and only if X has isolated flats
with respect to a G-invariant family F of flats.

Proof. Suppose X has isolated flats with respect to the family F . The stabi-
lizers of the elements of F lie in finitely many conjugacy classes of subgroups
by Lemma 1.4.5, and are virtually free abelian. Choose a set of representa-
tives H1, . . . , Hm. If Hi stabilizes F and g is an element of G, then gHg−1

stabilizes g · F . So a quasi isometry induced by the action associates left
cosets of the Hi’s to flats in F . Finite index subgroups are quasi isometric
to the groups they are contained in and X is relatively hyperbolic with re-
spect to F , so, by homeomorphism of corresponding asymptotic cones, G is
relatively hyperbolic with respect to {H1, . . . , Hm}.

Suppose vice versa that G is relatively hyperbolic with respect to a finite
collection of virtually free abelian subgroups {H1, . . . , Hm}. A finite index
free abelian subgroup of each one stabilizes a flat Fi by the Flat Torus The-
orem 1.3.32. We have already seen that if two such flats were parallel, they
would be in fact stabilized by the same subgroup, so the associated flats are
not parallel. We have already seen that translates of these flats are stabilized
by conjugates of the Hi’s and that a quasi isometry induced by the action
associates left cosets of Hi’s to the translates of flats they stabilize. Two
corresponding asymptotic cones of X and G are homeomorphic; so the fact
that G is relatively hyperbolic with respect to {Hi} implies X has isolated
flats with respect to the G-translates of {Fi}.

We now want to study the behaviour of spaces with isolated flats under
quasi isometries. Remember first that if we have the action of a group G on
two sets X and Y , we say that a function f : X → Y is G-equivariant if for
every x in X and every g in G the equality f (g · x) = g · f (x) holds. In the
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category of metric spaces with quasi isometries as morphisms we consider G-
quasi-equivariant quasi isometries (briefly G-q.e.q.i.) f such that the distance
between f (g · x) and g ·f (x) is uniformly bounded. Note that a quasi inverse
of a G-q.e.q.i. is automatically a G-q.e.q.i.

An example is readily provided by two proper metric spaces X and Y with
a geometric action of a group G on both. Remember that G acts on itself
by left multiplications and that this action is by isometries on any Cayley
graph. Then, for any x0 in X and y0 in Y , the maps g 7→ g ·x0 and g 7→ g ·y0

are G-q.e.q.i’s, and the quasi isometry defined like the composition of one of
these two with a quasi inverse of the second is G-quasi-equivariant too.

We concentrate now on spaces with isolated flats. Remember that this
property is invariant under quasi isometries. The fact we want to prove is
the following

Lemma 1.4.8. Let X and Y be proper CAT (0) spaces with isolated flats
with respect to a geometric action of a group G, let f : X → Y be a G-q.e.q.i.
and γ be the geodesic between p and q in X. Then there is a constant λ
depending only on the spaces, the group and f such that the Hausdorff
distance between the image of f ◦ γ and the image of the unique geodesic
between f (p) and f (q) is less or equal than λ.

Furthermore, if γ is a geodesic ray in X issuing from p, there is a geodesic
ray β in Y issuing from f (p) such that f ◦ γ and β have Hausdorff distance
less or equal than λ.

First part of the proof. We begin the proof for a very particular case, namely
the one where X and Y are both En and G is Zn acting by translations. This
case falls into the hypothesis because En has isolated flats with respect to
{En}. Chosen basepoints x0 and y0 = f (x0) in X and Y respectively, f
brings g ·x0 in a point uniformly close to g · y0. It follows that f is uniformly
close to an affine map, and then the thesis follows immediately, because affine
maps bring geodesics into geodesics.

Before continuing with the proof, note that an action of a group G on
a space X induces an action of ∗G on ∗X, where the ultrapowers are made
on the same index set and the same ultrafilter. In particular, a G-q.e.q.i f
between X and Y becomes ∗f , which is a ∗G-q.e.q.i. with the same con-
stants, between ∗X and ∗Y . For example, the action by translations of Zn
on En induces an action by translations of an ultrapower (∗Z)n = ∗ (Zn) on
the corresponding ultrapower ∗En. The proof we just made tells us that in
the large scale, a Zn-q.e.q.i between two En’s becomes an affinity between
corresponding asymptotic cones.
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In the more general case of a space X having isolated flats with respect to
a family FX , we already know that there is only a finite number of G-orbits
in FX . When we have f : X → Y as in the hypothesis, it brings flats in FX
near to flats in FY , the family with respect to which Y has isolated flats,
and the correspondence is bijective, mediated by free abelian subgroups of
G. So restricting f to a flat in FX and then projecting, using Lemma 1.2.6,
on the corresponding flat in FY , gives a map uniformly close to an affinity.
Different flats in FX are transformed via different affinities this way, but
there is only a finite number of them, up to isometry. In fact, if F0 is a flat in
FX corresponding to F ′0 in FY and f |F0

later composed with the projection
on F ′0 is close to an affinity ϕ, then, taken a g in G, the flat g · F0 in X
corresponds to the flat g ·F ′0 in Y , and f |g·F0

is uniformly close to g ◦ϕ◦ g−1.
The conclusion follows from the finiteness of G-orbits in FX .

These considerations extend directly to ultrapowers. The only observa-
tion to make here is that ∗FX has only a finite number of ∗G-orbits. In fact,
if I is the index set and U is the ultrafilter, an I-sequence Fi of flats in FX
induces a subdivision of I in sets of flats Fi in the same G-orbit. Exactly
one of these sets is in U , so we may suppose without lost of generality that
all the flats of the sequence lie in the same well defined G-orbit.

Take two sequences (Fi)i∈I and (F ′i )i∈I such that the flats of both lie in
the same G-orbit. There are elements gi in G, such that gi · Fi = F ′i . But
then, in the ultrapower, we have that [gi] · [Fi] = [F ′i ]. The finite number of
G orbits of flats in X implies thus a finite number of ∗G-orbits of hyperflats
in ∗X.

Second part of the proof. Step 1 : Suppose, to fix the notation, that f is a
(K,C)-quasi-isometry, and take a geodesic α : [0, a] → X. The geodesic α′

between f (α (0)) and f (α (a)) is a closed convex subset of a proper CAT (0)
space, so we can apply the Lemma 1.2.6 to get a 1-Lipschitz retraction ρ of
Y on it. It follows by taking subdivisions of the domain of α in arbitrarily
small pieces that for any point in the image of α′ there is a point in the image
of ρ◦f ◦α at distance at most C from it. Then, to prove the thesis it suffices
to prove that the distance of points on f ◦ α from α′ is uniformly bounded
independently of α.

Step 2 : Suppose by contradiction that for any positive real λ there are
geodesics in X whose image through f has points at distance greater than
λ from the geodesic in Y joining the images of the endpoints. This means
that in ∗X there is a geodesic α such that there are points in the image of
∗f ◦ α at infinite distance from the geodesic α′ in ∗Y joining the images of
the endpoints.

We have already seen in the Lemma 1.3.11 that images of the geodesics
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are internal subsets in the ultrapower. So, by Transfer Principle it is well
defined the infinite hyperreal Λ, the supremum of the distances of points in
∗f ◦ α from α′. Take a point r = ∗f ◦ α (t) at distance at least Λ

2
from

α′ and consider the asymptotic cone C (X) of centre α (t) and radius Λ, the
corresponding asymptotic cone C (Y ) and the K-bi-Lipshitz homeomorphism
C (f) between them induced by f . The intersection of α′ with C (Y ) projects
to a geodesic α̃′ in the cone, whilst the intersection of ∗f ◦ α projects to a
continuous injective K-bi-Lipschitz curve, both defined on an interval of a
suitable asymptotic cone of R, which is still R. The projection of r, which
we will call r̃, stays in the image of the latter curve, at a distance at least 1

2

from α′.
Step 3 : Now we distinguish two cases. In the first one, the endpoints of

∗f ◦ α both lie in C (Y ). Call α̃ : [0, ã] → C (Y ) the projection on the cone
of this curve and let (t1, t2) ⊂ [0, ã] be the maximal interval whose image
contains r̃ and does not intersect the image of α̃′. Then α̃ ([t1, t2]) along with
the piece of α̃′ between α̃ (t1) and α̃ (t2) forms a simple closed curve, that

stays thus on a single flat piece F̃ of C (Y ). The function C (f) is an affinity

when restricted to the pre image of F̃ because of the first part of the proof.
But then the image of α̃|[t1,t2] should coincide with the image of the geodesic

between two endpoints, which is the piece of α̃′ between these two points,
absurd.

Step 4 : The other case is when at least one of the endpoints of ∗f ◦α lies
outside C (Y ). In this case α̃′ becomes a geodesic ray or line in the cone and
α̃ a continuous K-bi-Lipschitz embedding of R or of a half line into the cone.
If there is an interval [t1, t2] whose endpoints are sent by α̃ into the image of
α̃′ and the internal part outside it, the configuration may be dealt with like
in the first case. So we may suppose that α̃ and α̃′ intersect at most once in
a closed segment inside the cone.

Take then a point s̃ on α̃′ that stays outside this (maybe empty) intersec-
tion; this is also true for points near s̃. The point s̃ is represented by some
point s on α′ in ∗Y , and, by the argument at the beginning of the second
part of the proof, called ρ the projection on α′ there is a point in the image
of ρ ◦∗ f ◦ α at distance at most C from s. This means that, taking the
projection ρ̃ on α̃′ the point s̃ is in the image of ρ̃ ◦ α̃, like any other point
in α̃′.

Take a point s′ on α′ such that its projection to the cone s̃′ is near s̃ on
α̃′, but different from it, and still outside the intersection. We can suppose
s comes before s′ on α′. Connect each of s̃ and s̃′ with a geodesic to a pre
image via ρ̃ on α̃. We can suppose each of these geodesics intersects α̃ only
once in the endpoint. Thus the piece of α̃ between these two endpoints, the
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two geodesics and the piece of α̃′ between s̃ and s̃′ form a simple closed curve,
which then stays on a single flat piece of C (Y ).

Step 5 : This piece is the projection on the cone of a well defined hy-
perflat F in ∗F . To fix the ideas, suppose that α′ is parametrized on the
hyperreal interval [0, A] and that α′ (t0) = s. It is well defined, for the previ-
ous considerations on internal sets, the hyperreal t′, the supremum of positive
hyperreals t less or equal than t0 for which the distance of α′ (t) from F is
greater than Λ. Take the asymptotic cone C ′ (Y ) of centre α′ (t′) and radius
Λ, and call F ′ the non empty projection of F on this cone. For the other
points, we will continue to use the convention to put a tilde over a point to
indicate its projection to the cone. The symbol α̃ will be again used for the
projection of ∗f ◦ α to the cone, and α̃′ analogously for α′

We search for an intersection of α̃ and α̃′ in F ′. If t′ = 0 and α̃′ (0) stays
in F ′ we are done. Otherwise,

α̃′ (t′) = α̃′ (τ)

is at a positive distance less or equal than 1 from F ′. We claim that in
α̃′ ([τ, τ + 3]) there is a point in F ′. If it were not, by construction the distance
of every point in α̃′ ([τ, τ + 3]) from F ′ is less or equal than 1. Consider the
two geodesics η′ and η′′ from α̃′ (τ) and α̃′ (τ + 3) to the points u′ and u′′

nearest to them on F ′. These point are different, therefore the pieces of η′

and η′′ from u′ and u′′ respectively until their first intersection with α̃′, the
piece of α̃′ between these two intersections and the geodesic, lying on F ′,
between u′ and u′′ form a simple closed curve, so it stays on a single flat
piece in C ′ (Y ), which must be F ′ for the tree graded property, absurd.

Step 6 : Now we found a point s′′ on α′ which stays at a hyperdistance from
F infinitesimal when divided by Λ, and such that the points of α̃′ preceding
s̃′′ are not on F ′. By the convexity of the distance function on geodesics all
the points of the piece of α′ between s′′ and s′ have a hyperdistance from F
infinitesimal when divided by Λ; in particular, the points on α̃′ after s̃′′ and
close enough to it stay on F ′. If s̃′′ stays on α̃ we are done.

Suppose by contradiction this is not true. Then there are no intersections
of α̃′ and α̃ neither near s̃′′. Take then two points s̃0 and s̃1 on α̃′ in this
neighbourhood of s̃′′, the first before s̃′′ and the second after. Similarly to
the argument in Step 4 we obtain a simple closed curve containing the piece
of α̃′ between s̃0 and s̃1 and a piece of α̃, which thus stays in a single flat
piece of C ′ (Y ): it must be F ′ for the tree graded property but cannot be F ′

for the choice of s̃0.
Step 7 : When we interpret this configuration in the ultrapower, we obtain

three points v1, v2 and v3 in ∗Y such that the first stays on F , the second
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Figure 1: Lemma 1.4.8, Step 6 of the second part of the proof

on α′ before s and the third on ∗f ◦ α and whose distances are infinitesimal
when divided by Λ. We repeat the same argument to find t′′, the infimum
of hyperreals t in [t0, A] for which α′ (t) stays at a greater distance from F
than Λ and then three points w1, w2 and w3 with analogous properties, with
w2 on α′ but after s. Furtermore, the choice of s ensures us that ∗d (v2, w2)
is not inifinitesimal when divided by Λ.

Let F be the hyperflat in ∗X corresponding to F in ∗Y . We already know
that ∗f |F composed with the projection on F is uniformly close to an affine
map, where the uniformity is extended on all hyperflats in ∗X. From the
quasi-isometry we also know that pre images of v3 and w3 stay at a distance
from F which is infinitesimal when divided by Λ. By projecting them on
F and repeatedly using quasi-isometry, we obtain that the piece of ∗f ◦ α
between v3 and w3 has a Hausdorff distance from the geodesic between the
two points which is infinitesimal when divided by Λ, and this geodesic as at
a Hausdorff distance with the same property from the piece of α′ between v2

and w2; here we also used the convexity of distance on geodesics. But this is
absurd because we supposed there was a point of ∗f ◦ α between v3 and w3

at a distance at least Λ
2

from α′.
Step 8 : Finally, let γ be a geodesic ray in X issuing from p. Consider

the geodesic ∗γ defined on positive hyperreals with values in ∗X. The first
part of the proof, along with the Transfer Principle, tells us that, taken an
infinite positive real T , the image of ∗f ◦ ∗γ and the geodesic between ∗f (∗p)
and ∗f (∗γ (T )) have Hausdorff distance less than λ. By taking the standard
parts of points ad finite distance from ∗f (∗p) = f (p) we obtain a geodesic
ray issuing from f (p) at Hausdorff hyperdistance less than λ from the image
of f ◦ γ.

The previous lemma is true in hyperbolic spaces too. The proof is simpler
thanks to the more rigid structure of real trees in comparison with tree graded
spaces.

By construction, every geodesic ray in Y with the same properties of the
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one found in the end of the previous lemma, except perhaps the endpoint,
is asymptotic to the ray we already constructed. This is a fundamental
ingredient in the proof of the following

Lemma 1.4.9. Suppose X, Y , G and f are as in the previous lemma. Then
there is a G-equivariant homeomorphism ∂f : ∂X → ∂Y such that, if a
sequence (xn)n∈N in X converges to a boundary point x in the topology of

X, then (f (xn))n∈N converges to ∂f (x) in Y .

Proof. Define ∂f on the class of a geodesic ray γ to be the class of the
geodesic ray β constructed in the proof of the previous Lemma. This function
is well defined for the considerations we made, and clearly, if f̃ is a G-
quasi-equivariant quasi inverse of f , then ∂f̃ = (∂f)−1 by the quasi-isometry
property. The G-equivariance of ∂f follows easily too. So it remains to prove
the continuity; the continuity of the inverse is identical.

To fix the notations, suppose f is a (K,C)-quasi-isometry and λ is the
constant found in the previous Lemma. Choose p in X and select a ray γ
issuing from it. Consider the ray β in Y issuing from f (p) and representing
the class of ∂f ([γ]). It suffices to prove that, chosen positive reals t and ε,
the preimage of the open set A (B (β (t) , ε) , f (p))∩ ∂Y containing the class
of β, with A defined in the considerations preceding the Lemma 1.2.8, is a
neighbourhood of the class of γ in ∂Y .

Choose then s large enough to ensure that sε
t
− 2C − 4λ is positive and

call δ = 1
2K

(
sε
t
− 2C − 4λ

)
> 0. Define r = K (s+ C). We claim that

∂f (A (B (γ (r) , δ) , p) ∩ ∂X) ⊆ A (B (β (t) , ε)), which suffices. Indeed, let
s′ > s be d (f (p) , f (γ (r))). We know that there is a point in the im-
age of β at a distance at most λ from f (γ (r)). The distance of this point
from f (p) lies between s′ − λ and s′ + λ. From the triangle inequality fol-
lows that d (f (γ (r)) , β (s′)) 6 2λ. If a geodesic γ′ represents a class in
A (B (γ (r) , δ) , p) ∩ ∂X, then a point γ′ (r′) on it stays at distance less than
δ from γ (r) and thus d (f (γ (r)) , f (γ′ (r′))) < Kδ + C; furthermore there
is a point on the geodesic β′ issuing from f (p) and representing ∂f ([γ′])
with distance less or equal than λ from f (γ′ (r′)). Combining the triangle
inequality and an argument similar to the one already used in this proof we
obtain that d (β (s′) , β′ (s′)) < 4λ + 2Kδ + 2C. By the CAT (0) inequality
and by construction, we have d (β (t) , β′ (t)) < ε.

The last assertion follows by construction and the properties of quasi
isometries.

Note that, by definition, if F is a k-flat in X of the family F involved in
the isolated flats definition, it is stabilized by a virtually abelian subgroup of
G of rank k, and its boundary ∂F ⊆ ∂X given by the classes of geodesic rays
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contained in F , homeomorphic to Sk−1, is brought by ∂f in the boundary of
a flat in Y stabilized by the same subgroup.
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2 Polyhedral metric complexes

This section is devoted to polyhedral complexes, specifically simplicial and
cubical ones, to the natural metric space structure on them and to a proof
of the classical theorem by Gromov which provides necessary and sufficient
conditions for them to be CAT (κ) spaces.

2.1 Polyhedral complexes

We begin with some basic definitions on polyhedral complexes.

Definition 2.1.1 (Polyhedron). Let κ be a real number and n be an integer
equal or greater than 2. A polyhedron of dimension n, or n-polyhedron of
curvature κ is a compact subset of Mn

κ having non empty internal part and
being the intersection of a finite number of closed half spaces.

We will also call a real closed bounded interval 1-polyhedron and a single
point 0-polyhedron.

Note that polyhedra of dimension 0 and 1 do not have a well defined
curvature, but for sake of brevity we will not treat them separately when
talking about collections of polyhedra, some having higher dimension and
thus a curvature, usually the same for all of them, and some having dimension
0 or 1. By definition, polyhedra are convex subsets of the relative model
spaces.

Polyhedra have faces, which are polyhedra too.

Definition 2.1.2 (Face). Let σ be the boundary of one of the half spaces
involved in the definition of a polyhedron P , such that σ ∩ P has nonempty
internal part in σ. A face of codimension 1 is σ ∩ P for one such σ.

If n = 1, a face is an endpoint of the interval. A 0-polyhedron has no
faces.

Note that a face of codimension 1 of a polyhedron of dimension n and
curvature κ is a polyhedron of dimension n− 1 and curvature κ. So we can
also say that a face of codimension 1 has dimension n− 1.

We can then define faces of codimension 2 and dimension n−2, and so on,
until 1-dimensional faces, which we will call arcs or edges, and 0-dimensional
ones, which we will call vertices.

If P is a polyhedron, we will denote by ∂P the union of its faces and by
IntP the internal part P\∂P . Note that ∂ {point} = ∅.

The examples of polyhedra which will be used mostly throughout this
text are simplices and cubes.

39



Denoting by I the real interval [0, 1], a standard euclidean cube of dimen-
sion n is simply In. Its faces are products of some factors I and some factors
corresponding to one endpoint of I on the relative coordinate, in some order,
and are euclidean cubes too.

To define a simplex of dimension n > 2 and curvature κ begin with choos-
ing n + 1 points in Mn

κ in general position, i.e. not lying on a hyperplane.
For every choice of n points among them, consider the half space having for
boundary the unique subspace passing for them, and containing the remain-
ing point. Intersect all these subspaces to obtain the simplex.

Note that the combinatorics of such metric n-simplex relatively to its faces
is isomorphic to that of the abstract n-simplex, but metric simplices have an
additional structure, so when constructing metric simplicial complexes later
we must take in account that structure. To have more freedom in operating
in that setting, we define the regular metric n-simplex of curvature κ having
the additional property that the group of isometries of Mn

κ has a subgroup
that permutes the vertices of the simplex in every possible way. Note that a
regular n-simplex of curvature κ is determined up to isometry by the length
of its 1-faces, which has to be less than some positive constant depending on
the dimension if κ > 0. We will always use an upper bound of π

2
√
κ

for the
length in that case, which will always suffice.

After defining polyhedra, we may pass to assemble them into polyhedral
complexes. We begin with the topological definition.

Definition 2.1.3 (Polyhedral complex). A polyhedral complex is a topolog-
ical space X together with a collection of embeddings {fα : Pα → X}α, where
Pα are polyhedra, such that:

• Every x ∈ X is contained inside one and only one fα (IntPα);

• For every α and every immersion ι : σ → Pα of a face into Pα, the
composition fα ◦ ι is an embedding fβ : Pβ → X of the collection.

• Given two distinct polyhedra fα : Pα → X and fβ : Pβ → X either
fα (Pα) ∩ fβ (Pβ) = ∅, or the pre image of the intersection via fα is a
single face of Pα and analogously for fβ.

When no confusion arises, we will call polyhedron also the image of one
of the fα in the definition. The following result tells us how we can define on
a polyhedral complex a pseudo-distance only in terms of its combinatorics
and metrics on its faces.

Lemma 2.1.4. Let X be a polyhedral complex defined by {fα : Pα → X}α,
and let κ be a real number. Suppose every polyhedron has a metric structure
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deriving from it being of curvature κ such that whenever the image of a
Pβ coincides with the image of a face of a Pα, the function f−1

α ◦ fβ is an
isometric embedding. Then there is a unique pseudo-distance on X such that
the induced length metric on every polyhedron coincides with the standard
one.

Proof. Let x and y be points in X. A sequence x0 = x, x1, . . . , xm = y of
points in X such that every pair {xi−1, xi} of consecutive elements lie in the
same polyhedron (Pi, di) is said to be a string between x and y. It is now
easy to see that the function

d (x, y) = inf
m∑
i=1

dPi (xi−1, xi)

is well defined and meets the required properties.

A polyhedral complex endowed with this pseudo-distance is said to be
a polyhedral metric complex. Note that fα become 1-Lipschitz maps but
are not, in general, isometric embeddings. We want to isolate a condition
that makes the defined function a true distance and the embeddings local
isometries.

Take a point x in X. If (P, d) is a polyhedron whose image contains
x, define εP (x) = inf dP (x, F ), with F ranging over the faces of P not
containing x; if (P, d) is a point, and thus x is its image, we define this
quantity being +∞. Then take ε (x) = infP εP (x).

Lemma 2.1.5. If for every x in X we have ε (x) > 0, then X is a metric
space and the embeddings of polyhedra are local isometries.

Proof. We will prove the following: fix x in (X, d). If y is such that d (x, y) <
ε (x), then every polyhedron (P, dP ) containing y contains x and d (x, y) =
dP (x, y), which obviously suffices.

Take then a string (x0 = x, x1, . . . , xm = y) of length less than ε (x). We
claim that the string obtained by omitting x1 has shorter length. In fact
there is a polyhedron P2 containing both x1 and x2 and by definition of ε (x)
and hypothesis on the length it also contains x. But then

dP2 (x0, x2) 6 dP2 (x0, x1) + dP2 (x1, x2) .

Proceeding by induction we get to the thesis.

Let us examine separately polyhedral metric complexes we are mostly
interested in.
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Definition 2.1.6 (Cubical complex). A cubical complex is a polyhedral com-
plex where all the faces are standard euclidean cubes.

Definition 2.1.7 (Simplicial metric complex). A simplicial metric complex
is a polyhedral complex where all the faces are metric simplices with the same
curvature.

Cubical complexes and simplicial metric complexes made up of isometric
regular simplices meet the requirements of Lemma 2.1.5 and are thus true
metric spaces.

Note that single polyhedra are in an obvious way polyhedral metric com-
plexes with the new distance function coinciding with the old one.

Lemma 2.1.4 allows us to construct a metric complex by gluing polyhedra.
We begin by taking the disjoint union of a collection of polyhedra {Pα}α of

various dimensions, but of the same curvature, and we let f̃α be the natural
embeddings. Then we take a collection of pairs of polyhedra in the set such
that one polyhedron of the pair isometrically embeds in the second as one of
its faces. We require that no polyhedron can be identified with more than
one face of another one, and that, if two distinct polyhedra σ1 and σ2 embed
each in two other polyhedra P1 and P2, then either one of the σ embeds in
the second as a face, or they both embeds as faces in a third polyhedron σ3

which embeds as a face in both P1 and P2. We require furthermore that,
if a polyhedron Q1 embeds as a face in Q2 and Q2 embeds as a face in Q3,
then Q1 embeds as a face in Q3 via the composition of the two embeddings.
Consider the quotient ∼ of the disjoint union by these isometries. We apply
the previous lemma to the quotient space with fα =∼ ◦f̃α to get a pseudo-
distance function. We say that the complex is obtained by gluing polyhedra
along identifications of faces.

Note that despite single polyhedra are complete metric spaces, we did not
at any point claim that general polyhedral complexes, even when they are
metric spaces, are complete too, and this is in fact false. There are subtler
arguments that allow us to get to such conclusion under certain hypotheses,
but we will not mention them here because the polyhedral complexes we will
use will be either compact, or obtained by lifting the polyhedral structure of
a compact polyhedral complex to its universal cover.

2.2 Links

In this subsection we will define a concept of link similar to the simplicial one,
but suitable for dealing with polyhedral complexes. We begin with defining
it for single polyhedra.
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Definition 2.2.1. Let P be a polyhedron, thought as a subset of a model
space M and v a vertex of P . The link of P at v, which we will indicate by
lkP v, is the subset of TvM consisting of all the unit vectors tangent to some
of the geodesics between v and another point of P .

Note that the link at a vertex of an n-polyhedron is an n− 1-polyhedron
of curvature 1. Note also that in both cases of a simplex and a cube, the link
at a vertex is a simplex of 1 dimension less.

To an isometric embedding of a face σ, having v as a vertex, into a poly-
hedron P corresponds an isometric embedding of lkσ v in lkP v. Therefore,
the following definition makes sense.

Definition 2.2.2 (Link of a vertex). Let K be a polyhedral metric complex
and v a vertex in it. The link of K at v, denoted by lkK v is the polyhedral
metric complex obtained by gluing the links at v of the polyhedra containing v
along the isometries given by the inclusion of the faces into the corresponding
polyhedra.

In the simplicial context St and S̊t will indicate the closed and the open
star and we will call simplicial link their set difference, to avoid any confusion
with the metric link, or simply link, we have just defined.

Note that, when the hypotheses of Lemma 2.1.5 are satisfied every ver-
tex has a neighbourhood homeomorhpic to the cone on its link. We want
therefore study cones from a metric point of view to understand more deeply
the structure of polyhedral complexes. The letter κ will always denote a real
number thought as the curvature of the objects we want to define.

We now recall the law of cosines in M2
κ with distance function d: let

4xyz be a geodesic triangle there, and α the angle at x. Let a = d (y, z),
b = d (x, y) and a = d (x, z) Then:

cosh
(
a
√
−κ
)

=

= cosh
(
b
√
−κ
)

cosh
(
c
√
−κ
)
− sinh

(
b
√
−κ
)

sinh
(
c
√
−κ
)

cos (α)

if κ < 0,
a2 = b2 + c2 − 2bc cos (α)

if κ = 0 and

cos
(
a
√
κ
)

= cos
(
b
√
κ
)

cos
(
c
√
κ
)

+ sin
(
b
√
κ
)

sin
(
c
√
κ
)

cos (α)

if κ > 0.
Let now (Y, d) be a metric space and dπ be the distance on Y defined by

inf {d, π}. We construct the topological cone CY on Y by taking

Y × [0,+∞) / ∼
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if κ 6 0 and

Y ×
[
0,

π

2
√
κ

]
/ ∼

if κ > 0, where ∼ identifies all points with real coordinate 0 to a point said
vertex, and denote the class of (y, t) by ty. We will now describe a distance
function on CY , depending on κ.

Definition 2.2.3 (κ-cone). The κ-cone on Y , denoted by CκY , is CY where
the distance between two points t1y1 and t2y2 is t2 if t1 = 0 and vice versa,
and:

arccosh

(
cosh

(
t1
√
−κ
)

cosh
(
t2
√
−κ
)
−

sinh
(
t1
√
−κ
)

sinh
(
t2
√
−κ
)

cos (dπ (y1, y2))

)
if κ < 0, √

t1
2 + t2

2 − 2t1t2 cos (dπ (y1, y2))

if κ = 0 and

arccos
(
cos
(
t1
√
κ
)

cos
(
t2
√
κ
)

+ sin
(
t1
√
κ
)

sin
(
t2
√
κ
)

cos (dπ (y1, y2))
)

if κ > 0.

In the particular case where Y is Sn−1 the space CκY is isometric to Mn
κ

if κ 6 0 and to a half space of Mn
κ otherwise. But in the general case, we

first have to show that the definition makes sense.

Lemma 2.2.4. The above defined function is a distance.

Proof. The only non trivial thing to prove is the triangle inequality. Let d
and dπ be the two previously defined distances on Y and txx, tyy, tzz three
points in CκY . If one of them is the vertex, the thesis follows from the
triangle inequality in M2

κ. If d (x, y) + d (y, z) < π, the set {x, y, z} with
the defined distances embeds into M3

κ so the thesis follows again by triangle
inequality.

So remains the case where d (x, y)+d (y, z) > π. In
(
M2

κ, d
)

choose points

ṽ, x̃, ỹ and z̃ such that d (v, x) = tx and analogously for y and z, the angle
at v between x̃ and ỹ is less or equal than dπ (x, y), the angle at v between
ỹ and z̃ is less or equal than dπ (y, z) and the angle at v between x̃ and z̃
is equal to dπ (x, z). The thesis follows from triangle inequality in M2

κ and
monotonicity of the length of a side of a triangle as a function of the opposite
angle.

Having defined the distance function on the cone, we may pass to examine
its curvature. First, let us describe when it makes sense to talk about it, i.e.
when the cone is geodesic.

44



Lemma 2.2.5. If (Y, d) is geodesic, CκY is geodesic.

Proof. Take two points txx and tyy in CκY . If one of the points is the vertex,
say the first, it can be seen by triangle inequality and construction that the
unique geodesic between them is γ : [0, ty]→ CκY given by γ (t) = ty.

In the other case, let L = d (x, y). If L > π, similarly to the previous
case the unique geodesic between txx and tyy is the concatenation of the
geodesics from the vertex to the two points. Otherwise, let β : [0, L] → Y
be a geodesic between x and y. Consider in M2

κ a triangle with one vertex
v and the two sides exiting from v having other extremes x and y, length
tx and ty respectively and forming an angle L. Let L′ be the length of the
third side and denote by γ : [0, L′] → M2

κ its parametrization as a geodesic
beginning in x. Let a : [0, L′] → [0, L] denote the angle formed by vx and
vγ (t) and b : [0, L′] → R the distance between v and γ (t), for t in [0, L′].
Then the curve t 7→ b (t) β (a (t)) defined on [0, L′] is a geodesic between txx
and tyy.

So, if Y is geodesic, we can try to study the curvature of a κ-cone on it
in the sense of CAT.

Lemma 2.2.6 (Berestovskij Theorem). If Y is CAT (1), then the cone CκY
is CAT (κ).

For a proof, see [BH99, Theorem II.3.14].

Theorem 2.2.7. Let K be a polyhedral metric complex respecting the hy-
potheses of 2.1.5 with faces of curvature κ. If the link at every vertex is a
CAT (1) space, then K is locally CAT (κ).

Proof. The thesis follows immediately from 2.2.6 for a neighbourhood of a
vertex. It remains to note that any other point x of K has a neighbourhood
isometric to an open ball in a neighbourhood of a vertex of a polyhedron
containing x.

If we want a global statement, we need to assume something on the
structure of the geodesics. We state the following result only for curvature
1.

Lemma 2.2.8. Let K be a polyhedral metric complex with faces of curvature
1. If the link at every vertex is CAT (1) and there are no closed geodesics of
length strictly less than 2π, then K is CAT (1).

45



For a proof, see [BH99, Theorem II.5.4].
Let us now concentrate specifically on cubical complexes. Note that the

link at the vertex of an n-cube is a spherical, i.e. of curvature 1, regular
n − 1-simplex with all arcs of length π

2
. Then the link at the vertex of a

cubical complex is a simplicial complex of curvature 1 and arcs of length π
2
.

The metric link of such a complex is again a complex of the same type and it
is not only combinatorially equivalent, but also isometric to the link defined
like St \S̊t. So, the metric of the simplicial complexes that arise by cubical
complexes can be described in purely combinatorial terms. We begin with
the following

Lemma 2.2.9. Let K be a simplicial metric complex with spherical faces
having edges of length π

2
and let γ be a geodesic in it. If v is a vertex of K

then S̊t (v) ∩ γ has length π.

Proof. S̊tv is C1 lkK v without the base. If γ passes through v then the thesis
is obvious, otherwise consider the collection of geodesic segments exiting from
v, passing through point of S̊t (v)∩ γ and having length π

2
. This allows us to

estabilish an isometry between a convex subset of S̊tv and a convex subset
of the northern hemisphere of S2 with v going to the north pole. The curve
γ must go to a geodesic, hence a half maximal circle, which leads to the
thesis.

We now define a combinatorial property of simplicial complexes.

Definition 2.2.10 (Flag simplicial complex). A simplicial complex is said to
be flag if every subset of vertices spanning the 1-skeleton of a simplex spans
that simplex.

Note that a flag complex is determined by its 1-skeleton. Now we can
prove the following

Lemma 2.2.11. If a locally finite simplicial complex K is flag, then giving
it a structure of metric complex with spherical faces with sides of length π

2

leads to a CAT (1) space.

Proof. We have to prove that the link at every vertex is a CAT (1) space and
that there are no closed geodesics of length strictly less than 2π. If we prove
the latter for the whole complex, by previous considerations it will be true
also for the link at every vertex, which is again a simplicial complex of the
same type, and then for every link at the vertex of this complex and so on
by induction which finishes because of locally finiteness. Then we can prove
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the thesis also by induction on the dimension of the complex, because a link
of a flag complex is still flag.

Take then a geodesic γ in K and consider the family of vertices v such
that S̊t (v) intersects γ. By the previous Lemma, it suffices to prove that
there are two vertices of the family having disjoint stars. If there are not,
then any pair of vertices of the family is joined by an arc in K, and thus the
vertices span a simplex because K is flag. But a simplex cannot contain a
closed geodesic.

We are now ready to prove the main result of this section.

Theorem 2.2.12. Let K be a locally finite cubical complex. If the link at
every vertex is a flag simplicial complex, then K is locally CAT (0).

Proof. This follows immediately by reassembling Theorem 2.2.7 and Lemma
2.2.11.
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3 Triangulations of S3

The main purpose of this section is to exhibit triangulations of S3, having
some properties defined below, which will turn useful in the following sections.

3.1 Preliminary definitions

We begin by defining some properties of the simplicial complexes of our
interest.

Definition 3.1.1 (Subcomplex spanned by a set of vertices). Let V be a
subset of the set of vertices of a simplicial complex K. The subcomplex
spanned by V is the set of all simplices in K that have vertices in V .

Definition 3.1.2 (Full subcomplex). A subcomplex of a flag simplicial com-
plex is said to be full if it coincides with the subcomplex spanned by its ver-
tices.

Definition 3.1.3 (Square). A square is a subcomplex of a simplicial complex
K, with 4 vertices v0, v1, v2 and v3, 4 arcs between vi and vi+1 mod 4, for i = 0,
1, 2, 3 and such that there is no arc between v0 and v2 or between v1 and v3

in K.

Note that a square is a full subcomplex, isomorphic to a flag triangulation
of S1.

The main result of this section is the following

Theorem 3.1.4. Let L be any knot in S3. There is a flag triangulation of S3

which contains only one square, such that the isotopy type of its immersion
in S3 is precisely L.

3.2 The 600-cell

The 600-cell, which we will call for brevity K600, is a regular triangulation of
S3. This means that, fixed any pair of tetrahedra, including the same taken
twice, and any bijection between the vertices of the first and the second,
there is a unique simplicial automorphism of K600 extending this bijection.
The simplicial link at every vertex is an icosahedron. Thus K600 is flag: a
complete graph in the 1-skeleton lies entirely in the closed star of a vertex,
which is a cone over an icosahedron, which is flag.

Furthermore, the 600-cell has no squares: two adjacent arcs share the
vertex of a cone on an icosahedron: it is easy to see that the other two
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Figure 2: Subdivision of a part of the boundary of K543.

extremes are either joined by an arc of the icosahedron, or cannot be joined
both to another point.

Take a tetrahedron σ in K600 and consider all the tetrahedra in it that
do not intersect σ. The boundary of this 3-manifold, topologically a 3-ball,
is like that of a tetrahedron in which every face is subdivided according to
Figure 2. Call this complex K543; being 543 the number of tetrahedra in it.

For any simplicial complex X realising a triangulation of a 3-manifold,
possibly with boundary, we can subdivide each tetrahedron in it by substi-
tuting it with K543 coherently with the description of the boundary we just
made. Call X∗ the obtained triangulation.

Lemma 3.2.1. X∗ is a flag simplicial complex without squares.

Proof. Subdivide the vertices in two families: the ones that are internal to
the old tetrahedra of X and the ones on their boundaries.

Take a complete graph in the 1-skeleton of X∗. We may suppose none
of its vertices is internal, otherwise it would be the vertex of a cone on the
icosahedron, which is flag.

If one of the vertices lies on a facet of an old tetrahedron, it with the
adjacent boundary vertices form a cone on a pentagon, which is flag, so
we may suppose all vertices of the complete subgraph lie on old edges. The
midpoint of an edge with its adjacent edge vertices form a cone on two points,
the extremes of the edge, and this is flag too. So the only remaining case is
that of subgraphs made only by the old vertices, but they are isolated in the
new triangulation.

Suppose now there is a square in X∗. If two of its vertices lie in the same
old tetrahedron, we are done because K543 has no squares. Observing the
triangulation induced on the facets of the old tetrahedra, we may as well
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conclude there cannot be squares there. So the only remaining possibility is
that a hypothetic square has a vertex inside one of the old tetrahedrons, the
adjacent ones on its boundary and the fourth vertex somewhere else.

Two vertices on the boundary of K543 that are joined to the same internal
vertex are either joined themselves, which concludes, or are the two vertices
of a pair of triangles in the boundary having a side in common not lying on
that side. In the latter case the two triangles have to be, furthermore, in
the simplicial link of the same internal vertex, the first in the square. We
see, observing the complement of K543 in K600 that this is possible only if
the two vertices lie on different faces of an original tetrahedron. The original
triangulation was simplicial, so it follows that in X∗ the two vertices cannot
be joined to the same vertex.

We call the subdivision provided by the previous Lemma flag-no-square
(FNS) subdivision of a simplicial complex.

3.3 The triangulation with a knot

We now want to prove the Theorem 3.1.4. We begin by constructing a
triangulation of a neighbourhood of a square. It will be further subdivided
in order to guarantee the flag property.

In R3 take the region 0 6 x 6 y 6 1, 0 6 z 6 1; this is a triangular
prism. The sets z 6 x 6 y, x 6 z 6 y, x 6 y 6 z provide a triangulation of
this prism. Take three of them and cyclically identify the face x = y of the
previous one with the face x = 0 of the following one, keeping the orientation
on the z-axis: this way we have a triangulation of a larger triangular prism,
which we will call block, with an arc joining the centre of the top face (the
union of the faces z = 1 of the original prisms) with the centre of the bottom
face (union of the z = 0 faces).

Take 4 blocks and ciclically identify the top face of one with the bottom
face of the following one. This way we get a triangulation of a solid torus,
having a square in its core. In this triangulations there are 36 tetrahedrons,
24 of which are the join of a triangle on the boundary with an internal vertex,
and 12 are the join of an arc of the boundary with an arc in the core. Note
that in this triangulation every internal vertex is adjacent only to vertices
coming from its original block, except from the internal vertex in an adjacent
block.

Take a knot in S3 (the argument works as well if we take a link). Denote

by D2 the disk of radius 1 in R2, and with D̃ the disk with radius 1
2
. Take a

regular neighbourhood of it and identify it with D2×S1. Triangulate D̃2×S1
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the way we have just described and call it T . Then triangulate simplicially
S3\ IntD2 × S1: we can always do this with a 3-manifold.

It remains to triangulate the remaining S1×S1×[0, 1] region in a coherent
way to the already present triangulation on the boundary. The boundary are
two parallel triangulated tori; the triangulations have a common subdivision.
Triangulate using this subdivision the layer S1 × S1 ×

{
1
2

}
. It remains to

connect the triangulation of this layer with the triangulations on the toric
boundary components.

The problem we want to solve is the following. Consider a triangulation
S of a surface F and a subdivision S ′ of the triangulation. Then it is possible
to triangulate F × [0, 1] such that the triangulation on F × {0} is S and on
F × {1} is S ′. Fix an auxiliary total order < on the vertices of S, take σ
a triangle of S and suppose the vertices of σ are v0 < v1 < v2. Take first
the cone on the subdivision of σ in S ′ with vertex v0 × {0}, then the cone
with vertex v1 × {0} on the subdivision induced on the join of v0 × {0} and
the arc v1v2 × {1} by the previous coning. In σ × [0, 1] remains thus only a
tetrahedron with vertices v0 × {0}, v1 × {0}, v2 × {0} and v2 × {1}. Repeat
this for every triangle in S. The triangulations induced on prisms given by
the triangles agree on common faces thanks to the total order we gave to the
vertices.

Call X the triangulation of S3\T we have just obtained. Take the FNS
subdivision of X obtaining a triangulation X∗. This leads to a subdivision
of the boundary of T : every triangle in it is subdivided the way we saw when
talking about FNS subdivisions. Then, to obtain a subdivision T ∗ of T too,
we proceed as follows:

• If a tetrahedron of T is a join of a triangle on the boundary with an
internal vertex, we subdivide it like the cone on this triangle;

• If a tetrahedron of T is a join of an arc on the boundary with an arc
in the core, the arc on the boundary is divided in two, which leads to
a natural division in two of the tetrahedron.

This subdivision does not introduce new vertices in the internal part of
T . In the end, we will have a triangulation of S3 with a square describing a
knot in a prescribed isotopy class. We now prove the following

Lemma 3.3.1. The above described triangulation of S3 is flag and has as
unique square the one describing the knot.

Proof. Take a complete graph in the 1-skeleton. We can suppose it has at
least one vertex among the internal vertices of T , otherwise the whole thesis
descends directly from Lemma 3.2.1.
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Note that an internal vertex is still adjacent only to vertices in its block
and to the internal vertex in an adjacent block. So a complete graph on 3
vertices or more lies in the same block: we can see, observing the boundary,
that the triangulation obtained on a block is flag.

Suppose there are other squares in the triangulation. Like before, one
of the vertices must be an internal vertex of T . If there are two or more of
them, the square must lie into T , which is not possible unless it is the already
known square. Then we see, using the structure of the FNS subdivision, that
the other extremes of two arcs exiting from an internal vertex are either
adjacent, or cannot be adjacent both to the same other vertex.
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4 The manifold

We are now moving towards the construction of the manifold which will allow
us to prove the main theorem.

4.1 The Davis complex

Let K be a simplicial complex and v (K) its set of vertices; let I = [0, 1].
Consider the euclidean cube Iv(K). We have already seen that its faces are
a product of I on some coordinates and of one endpoint of I on some other
coordinates. Let us call the type of the face the subset of v (K) corresponding
to the I factors in it.

Definition 4.1.1 (Davis complex of a simplicial complex). Let K and v (K)
be like above. The Davis Complex associated to K, which we will indicate
by PK, is a cubical complex, subcomplex of Iv(K), consisting of all those faces
whose type spans a simplex in K.

The next fact follows immediately from the construction.

Lemma 4.1.2. Let K be a simplicial complex, PK the associated Davis
complex, and fix a vertex v in it. The map associating to a simplex σ in K
the link at v in the unique cube in PK having for type the vertices of σ and
passing by v is a simplicial isomorphism between K and lkPK v.

Consider for simplicity the vertex w = {0}v(K) of PK . The previous
lemma tells us that the subset of PK consisting of points with all coordinates
strictly less than 1 is homeomorphic to an open cone on K with vertex w. So,
if the geometric realization of K is Sn−1, then PK is a manifold: the said set
is homeomorphic to an open ball, and all analogously defined sets centered
in various vertices cover PK . Furthermore, if K is a PL triangulation of
Sn−1, there is a diffeomorphism of it with the differentiable Sn−1 that makes
the embeddings of simplices smooth. So the previous cone structure can be
made a diffeomorphism with an open ball of Rn making thus PK a smooth
manifold.

Let us now describe the fundamental group of PK . Begin with noting
that (Z/2Z)v(K) acts by reflections on PK ; here a reflection ri is a map acting
like t 7→ 1− t on the coordinate i and leaving unalterated the others. Let us
call WK the group consisting of all possible liftings of actions of (Z/2Z)v(K)

to the universal cover of PK , and let p be the covering map.
The homomorphism p◦ : WK → (Z/2Z)v(K) is obviously surjective. The

kernel consists by definition of all cover automorphisms, which is precisely
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π1PK . So we have a short exact sequence

1→ π1PK → WK → (Z/2Z)v(K) → 1,

in particular π1PK is a finite index subgroup of WK . It remains only to
understand which group it is. Let us first explore the following definition.

Definition 4.1.3 (Right angled Coxeter group). Let K be a simplicial com-
plex. The right angled Coxeter group associated to K, denoted by ΓK is a
group with set of generators {xi}i in bijection with the set of vertices {vi}i of
K, each having order two, and a relation xixj = xjxi if and only if vi and vj
are joined by an arc in K.

In fact ΓK depends only on the 1-skeleton of K.
Now we can state and prove the following

Lemma 4.1.4. The group WK is precisely the right angled Coxeter group
ΓK associated to K.

Proof. Fix a vertex w in PK and one preimage w̃ in the universal cover P̃K
to use as basepoints. Call the i-th arc at w the unique arc having the factor
I at the i-th coordinate and passing by w: it is stabilized by ri. Denote by
xi the lift of ri stabilizing the lift of the i-th arc passing by w̃. We claim that
the xi generate WK . In fact, P̃K has a cubical structure inherited by that of
PK . We prove that the group G generated by xi acts transitively on the set
of vertices, which suffices, along with the fact that G projects surjectively on
(Z/2Z)v(K) in the above mentioned exact sequence.

We prove the claim by induction on the combinatorial distance of a vertex
of P̃K from w̃, i.e the minimum number of arcs in a path from w̃ to the final
vertex. Clearly, xi’s allow us to bring w̃ in any vertex at distance 1 from it.

Suppose that G can bring w̃ in any vertex at distance n from it. Let u
be such a vertex and g an element of G such that g · w̃ = u. But then using
g ◦xi we can get to any vertex near u departing from w̃. Varying u, we prove
the thesis for all vertices at combinatorial distance n+ 1 from w̃.

Let us now explore the relations. Being x2
i a lift of the identity that

stabilizes an arc by w̃, it is the identity itself. With a similar argument,
it is clear that an arc between vi and vj in K, which means a 2-cube on
coordinates i and j in PK implies that xixj = xjxi.

There are no other relations. Suppose to the contrary there is one. The
proof we made of the fact that the action of WK is transitive on vertices tells
us in fact that that the 1-skeleton of P̃K is the Cayley graph

C
(
WK , {xi}i∈v(K)

)
.
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So, if we take a string representing the identity element in WK , it repre-
sents a closed path in the Cayley graph. But a closed path in the simply
connected P̃K bounds a discs made up of 2-cubes, which represent already
known relations.

4.2 The desired manifold

We now begin to restrict our point of view to particular complexes K. The
non positive curvature enters now in scene.

Lemma 4.2.1. If the complex K is flag, PK is locally CAT (0), and thus P̃K
is CAT (0).

Proof. This follows immediately from Theorem 2.2.12 and Cartan-Hadamard
for CAT (0) spaces [BH99, Theorem II.4.1].

Under certain hypotheses, immersions of simplicial complexes imply im-
mersions of relative Davis complexes.

Lemma 4.2.2. Let K be a flag simplicial complex and L a full subcomplex.
The immersion of L in K naturally induces a locally isometric embedding of
PL in PK .

For a proof, see [Dav08, Appendix I.6].
The previous fact has consequences at the level of fundamental groups.

Lemma 4.2.3. Let X be a locally CAT (0) compact space, Y a compact
geodesic space and f : Y → X a locally isometric immersion. Then the
induced map at the level of fundamental groups is injective.

Proof. A local isometry takes local geodesics to local geodesics. Take a non
trivial element α in π1Y . There is a representative in its equivalence class
which is a local geodesic. In fact, take a sequence of length minimizing curves
in the class of α parametrized proportionally to arclength: by Ascoli-Arzelà
Theorem the limit exists, being non trivial it is non constant and, being the
space geodesic, it is a local geodesic γ.

Consider a lift of f ◦ γ at the universal cover X̃: it is a local geodesic and
hence a non constant geodesic: this means that π1f (α) is non trivial.

Remember that in Theorem 3.1.4 we obtained a triangulation of S3 con-
taining a unique square representing a prefixed class of isotopy of knots. In
the 3 dimensional setting, the triangulation is automatically PL. We can use
it to provide the manifold which will solve our problem.
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Theorem 4.2.4. Let K be the triangulation provided by Theorem 3.1.4
when we take a non trivial knot. Then PK is a smooth 4-manifold such
that the natural metric complex distance function is locally CAT (0), but
not homeomorphic to any smooth manifold of non positive curvature.

We continue with proving some global properties of such P̃K . From now
on, this notation will refer to our manifold and P̃K will refer to its universal
cover.

Lemma 4.2.5. The universal cover of the manifold of the above theorem
is PL-equivalent to the standard R4, and the boundary at infinity of the
universal cover is homeomorphic to S3.

Proof. This follows from Stone’s Theorem, proven in [Sto76], which is the PL
version of the classic smooth Cartan Hadamard Theorem, that affirms that
the universal cover of a complete non positively curved smooth n-manifold
is diffeomorphic to Rn.

It follows immediately that P̃K is in fact diffeomorphic to the standard
R4.

Observe now more closely the square in K. The Davis complex of a
square is the standard 2-dimensional torus. By Lemma 4.2.3 there is a Z2 in
π1PK , which is a finite index subgroup of the Coxeter group ΓK . So ΓK has
a subgroup isomorphic to Z2 which can be described explicitly in terms of
the natural generators. Let v1, v2, v3 and v4 be the vertices of the square, in
this order, and xi the respective generators of ΓK . A Z2 subgroup in π1PK
is generated by x1x3x1x3 and x2x4x2x4; it is an index 4 subgroup of a Z2 in
ΓK generated by x1x3 and x2x4.

Lemma 4.2.6. ΓK is relatively hyperbolic with respect to the subgroup
generated by x1x3 and x2x4, which is isomorphic to Z2.

Proof. This follows from [Cap07]. The main observation in proving the
Lemma is that there are no squares in the triangulation that share one side
or more.

Being the fundamental group of PK a finite index subgroup of ΓK , it
is quasi isometric to it, thus it is relatively hyperbolic with respect to the
abelian subgroup of rank 2 given by the intersection of the subgroup of ΓK
we already told about with π1PK .

Now we can pass to prove the Theorem 4.2.4. Remember that in a com-
plete smooth manifold M of non positive curvature the universal cover M̃ is
always diffeomorphic to the tangent space at any point via the exponential
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map. It follows then immediately that ∂M̃ is homeomorphic to the unit
sphere in any tangent space via the map that associates to a tangent vec-
tor the geodesic ray departing from the point with that tangent. If such a
manifold has a totally geodesically immersed submanifold N , its universal
cover Ñ totally geodesically embeds in M̃ . If we take now p in Ñ , the unit
sphere SpM̃ in TpM̃ has embedded an unknotted sphere of the appropriate

dimension given by its intersection with TpÑ , because the immersion of Ñ is

obviously locally flat. At the boundary at infinity, the fact that Ñ is totally
geodesic says that we have in fact a homeomorphism of pairs(

SpM̃, SpÑ
)
∼=
(
∂M̃, ∂Ñ

)
given by the same map described before. So, in the latter pair, the second
sphere is unknotted in the first, too.

Proof. Suppose that there is a smooth 4-manifold M of non positive cur-
vature homeomorphic to PK . The homeomorphism induces an isomorphism
on fundamental groups, which we will call G from now on, and hence a
G-equivariant quasi isometry between universal covers P̃K and M̃ . For the
relative hyperbolicity of G, we have that the boundaries at infinity of P̃K
and M̃ are homeomorphic by a G-equivariant homeomorphism, as we have
seen in Lemma 1.4.9.

By the smooth Flat Torus Theorem there is an E2 totally geodesically
embedded in M̃ . By the reasoning we made, ∂E2 is a trivial knot in the
3-sphere ∂M̃ .

In PK , the torus is not locally flat by construction. The homeomorphism
between the boundaries at infinity of P̃K and M̃ would take the boundary of
the corresponding flat F to an unknot. If we could manage to prove that ∂F
is not unknotted in ∂P̃K we would have finished. In fact, we will prove that
the complement has a non abelian fundamental group, whilst the complement
of a (normal neighbourhood of an) unknot in S3 is a solid torus and thus has
fundamental group Z.

Remember that ∂P̃K is defined like an inverse limit and that, for a small
positive r and for a vertex v of P̃K the ball B (v, r) is isometric to a neighbour-
hood of the vertex in the cone C0 lkP̃K v. There is a continuous projection

ρr : ∂P̃K → ∂B (v, r). We will use the fact that this projection is, in fact, a
proper homotopy equivalence [FL04].

Let U be the complement of the knot in lkP̃K v, identified with the bound-

ary of the ball of radius r like above. Then U∞ = ρ−1
r (U) has the same

fundamental group as the complement of a non trivial knot, which is, by
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[Pap57], non abelian. We want to prove that the inclusion U∞ ↪→ ∂P̃K\∂F
is injective at the level of fundamental group, which suffices.

This latter fact is proven in [DJL12, 5, Fact 4] and relies on the observa-
tion that if we have a knotted solid torus in S3 and a simple closed curve in
the torus homotopic to its core, maybe further knotted, then the immersion
of the complement of the torus in the complement of the curve is injective
at the level of fundamental groups.
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