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Generic automorphisms

• Start with an L-theory T

, say ∀∃-axiomatised with q.e. (up to Morelyising)

• Let L′ := L ∪ {σ} and T ′ := Th({(M,σ) |M ⊨ T, σ ∈ AutL(M)}).
• Let K := Mod(T ′) and Kec := class of existentially closed M ⊨ T ′.

What’s that?

• Kec may or may not be elementary. (it is ⇐⇒ T ′ has a model companion)

• If it is, we say that TA := Th(Kec) exists.
• If T is the theory of (algebraically closed) fields, then TA exists (ACFA).

(T (super)stable ∧ TA exists) ⇒ TA (super)simple (Chatzidakis–Pillay). TA exists ⇒ T eliminates ∃∞ (Kudăıbergenov)

Theorem (Kikyo–Shelah)
If T has SOP, then TA does not exist.

Why?

Ordered abelian groups (oags) have SOP.
One approach: constrain the “generic” automorphism (Laskowski–Pal). More Or. . .
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Theorem (Kikyo–Shelah)
If T has SOP, then TA does not exist.

Why?

Ordered abelian groups (oags) have SOP.
One approach: constrain the “generic” automorphism (Laskowski–Pal). More Or. . .



Aut, pec, NIP oags, AP

Generic automorphisms

• Start with an L-theory T , say ∀∃-axiomatised with q.e. (up to Morelyising)

• Let L′ := L ∪ {σ} and T ′ := Th({(M,σ) |M ⊨ T, σ ∈ AutL(M)}).
• Let K := Mod(T ′)

and Kec := class of existentially closed M ⊨ T ′.

What’s that?

• Kec may or may not be elementary. (it is ⇐⇒ T ′ has a model companion)

• If it is, we say that TA := Th(Kec) exists.
• If T is the theory of (algebraically closed) fields, then TA exists (ACFA).

(T (super)stable ∧ TA exists) ⇒ TA (super)simple (Chatzidakis–Pillay). TA exists ⇒ T eliminates ∃∞ (Kudăıbergenov)
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A tale of homomorphisms
Throughout: a, b, x, y, . . . are allowed to be tuples.

• Positive logic: to define sets, you are only allowed positive formulas: the closure
of atomic formulas under ∧,∨, ∃

,⊤,⊥.

• What is special about these formulas? φ(x) is positive if and only if for all
homomorphisms f : M → N , we have M ⊨ φ(a) =⇒ N ⊨ φ(f(a)).

• Axioms are allowed to express inclusions between definable sets. They are
h-inductive sentences ∀x (φ(x) → ψ(x)) φ,ψ positive.

• M is positively existentially closed (pec) iff for every positive ∃y φ(x, y) and
a ∈M , if there is a homomorphism f : M → N such that N ⊨ ∃y φ(f(a), y),
then M ⊨ ∃y φ(a, y).

• Equivalently, every homomorphism f : M → N is an immersion: for positive φ,
we have M ⊨ φ(a) ⇐⇒ N ⊨ φ(f(a)).

• Analogue of completeness: joint continuation property (jcp): like jep, but with
homomorphisms. Equivalently, if T ⊢ ¬φ ∨ ¬ψ then T ⊢ ¬φ or T ⊢ ¬ψ
(φ,ψ positive). (for h-universal theories this is the same as being of the form Th∀(M))
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• Axioms are allowed to express inclusions between definable sets. They are
h-inductive sentences ∀x (φ(x) → ψ(x)) φ,ψ positive.

• M is positively existentially closed (pec) iff for every positive ∃y φ(x, y) and
a ∈M , if there is a homomorphism f : M → N such that N ⊨ ∃y φ(f(a), y),
then M ⊨ ∃y φ(a, y).

• Equivalently, every homomorphism f : M → N is an immersion: for positive φ,
we have M ⊨ φ(a) ⇐⇒ N ⊨ φ(f(a)).

• Analogue of completeness: joint continuation property (jcp): like jep, but with
homomorphisms.

Equivalently, if T ⊢ ¬φ ∨ ¬ψ then T ⊢ ¬φ or T ⊢ ¬ψ
(φ,ψ positive). (for h-universal theories this is the same as being of the form Th∀(M))
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Examples
• If L = ∅ and T = ∅, pec models are

singletons.

• If for every atomic φ we add a symbol R¬φ and axioms ∀x ⊤ → (R¬φ(x) ∨ φ(x))
and ∀x (R¬φ(x) ∧ φ(x)) → ⊥, then we recover classical ec models of ∀∃ theories.

• An arbitrary classical theory can be seen as an h-inductive theory by a similar
trick: don’t stop at atomic φ, add R¬φ for every formula, inductively
(Morleyisation). Then, homomorphisms are elementary embeddings.

• Pec linear orders in L = {≤} = singletons. In L = {<}, we recover DLO.
• If L = {̸=} ∪ {Pi | i < ω}, and T says that the Pi are infinite and pairwise

disjoint, then we have arbitrarily large pec models, but every point of a pec
model belongs to some Pi.

• The h-inductive theory of M = (ω,≤, 0, 1, 2, . . .) has 2 pec models: M and ω + 1.
• There are theories with only bounded pec models which are not finite.

Types?

• Why bother? Hyperimaginaries, neostability. . . More
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NIP in positive logic

T h-inductive with jcp. A positive φ(x, y) has IP iff there are

a positive ψ(x, y),

some M ⊨ T , and tuples (ai)i∈ω, (bW )W∈P(ω) in M such that

i ∈W ⇒M ⊨ φ(ai; bW )

i /∈W ⇒M ⊨ ψ(ai; bW ) T ⊢ ∀x, y (φ(x; y)∧ψ(x; y)) → ⊥

• The spirit is: witnesses should be preserved by homomorphisms.
• Also: in a pec M ⊨ T , “negative things happen for a positive reason”: if
M ⊨ ¬φ(a), there is ψ with M ⊨ ψ(a) and T ⊢ ∀x (φ(x) ∧ ψ(x)) → ⊥.

Some things generalise easily from the classical case, some are more delicate.

Example (de Aldama Sánchez/Dobrowolski–M.)
The positive theory of DLO’s with a G-action by automorphisms is NIP.
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Pec OAGAs: basic properties
Q−OVSA := (Loag ∪ {σ, σ−1, q · − | q ∈ Q})−theory of Q−OVS’s with auto.
(pec OAGAs are divisible: σ extends (uniquely) to the divisible hull, so pass to ordered Q-vector spaces)

• In a pec (M,σ), the fixed group {x | σ(x) = x} has arbitrarily large/small points

:
look at (Q, id)×lex (M,σ)×lex (Q, id).

• Fixed group is codense: if (a, b) only has fixed points, add infinitesimals
εi−1 ≪ εi ≪ εi+1 acted upon by shift, consider (a+ b)/2 + εi.

• Even better: in ω-saturated pec M , for finite A ⊆M , the set
clM (A) := {solutions of σ-equations with parameters in A} is codense: no
interval is covered by finitely many f(x) = d.

• clM is a pregeometry, but even clM (∅) grows with M (fixed points!).
• Solutions to f(x) = d form a translate of a Q[σ, σ−1]-submodule.

In particular, they have size 0, 1, or infinite.
• The fixed group has more induced structure than a Q−OVS:

∃z ∈ (x0, x1) σ
2(z) = σ(z) + z induces

∧
n∈Z x1 > n · x0.

• Genericity prevents Q[σ, σ−1] from being viewed as an ordered ring!
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Main results

Theorem (Dobrowolski–M.)
Oags with an automorphism have the AP.

(A, σA)

(B, σB)

(C, σC)

(D,σD)⟳

∃

∃Corollary (Dobrowolski–M.)
The positive theory OAGA (oags w/ automorphism) is NIP.

Theorem to Corollary: proof idea.
• Enough to check NIP on pec structures.

• In this theory, positive q.f. formulas are closed under negation.
• In this setting, by classical results, AP implies: on pec models, every positive
φ(x) is equivalent to some

∧
i<ω φi(x), with φi q.f.

(cf.: the model companion of a universal T has quantifier elimination if and only if models of T have AP)

• Q.f. formulas are easily shown to be NIP.
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Aut, pec, NIP oags, AP

The real results
. . . were the lemmas we proved along the way?

Proving NIP generated three results of independent interest. First: AP.

Second:

Theorem (Dobrowolski–M.)
Let (A, σA) ⊨ OAGA. There is an ordered R-vector space (B, σB) ⊇ (A, σA) with
σB an automorphism of ordered R-vector spaces.
This can be done in a way that allows to transfer AP from R to Q.

Third:

Theorem (Dobrowolski–M.)
Let M be a pec R−OVSA. Every

∑n
i=0 λiσ

i(x) has the IVP.
So does every minj≤k fj(x), with fj(x) =

∑
λiσ

i(x) + dj .

These turned out to be trickier than expected. Why?
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Getting AP: proof strategy
• Absolutely monotone σ-polynomials are invertible on pec structures.

:= monotone on every OVSA, e.g. σ2(x) + 5σ(x) + 7x

by ↓ also σ2(x) − σ(x) + x.

• Characterisation:
∑
λiσ

i(x) abs. mon. ⇐⇒
∑
λiy

i has no positive real root.
• Pass to the R case, so polynomials factorise easily.

(we also need completeness of R to use asymptotics: σ(x) ≍ x =⇒ ∃r ∈ R>0 σ(x) ∼ r · x)

• Prove IVP by hand for σ(x)− λx, factorise =⇒ full IVP.
(composition of IVP is IVP!)

• Use IVP to amalgamate σ-algebraic points. (A, σA)

(B, σB)

(C, σC)
• Reduce to A “σ-algebraically closed” in pec B.
• IVP for minima =⇒ A is “1 free variable-pec”.

Idea: A closed in pec B implies A>0 coinitial in B>0 and belonging to an open cell can be written as mini fi(x) > 0.

• This + compactness =⇒ amalgamate σ-transcendental b ∈ B.

Thanks for listening!
Preprint: arxiv.org/abs/2209.03944 or scan the QR code:

arxiv.org/abs/2209.03944
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Idea: A closed in pec B implies A>0 coinitial in B>0 and belonging to an open cell can be written as mini fi(x) > 0.

• This + compactness =⇒ amalgamate σ-transcendental b ∈ B.
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Existentially closed structures
Throughout: a, b, x, y, . . . are allowed to be tuples.

K a class of L-structures. Recall: Back

M ∈ K is existentially closed (ec) in K iff, for every existential formula ∃y φ(x, y)
and a ∈M , if there is an embedding M → N ∈ K with N ⊨ ∃y φ(a, y), then

M ⊨ ∃y φ(a, y).

• Ec fields = algebraically closed fields.
• Ec oags = nontrivial divisible oags. (oag = Ordered Abelian Group)

• J Fraïssé class, K := structures with age J =⇒ the Fraïssé limit of J is ec in K.
• K inductive := closed under unions of chains =⇒ every A ∈ K embeds in an ec B ∈ K.
Suppose K = Mod(T ). Then:

• K inductive ⇐⇒ T is ∀∃-axiomatisable.
• T model complete ⇐⇒ every M ∈ K is ec.
• Kec := {M ∈ K |M ec} elementary ⇐⇒ T has a model companion = Th(Kec).

T1, T companions := each M ⊨ T embeds in a M1 ⊨ T1 and conversely; model companion := model-complete companion.
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SOP vs generic automorphisms

Theorem (Kikyo–Shelah)
If T has SOP, then TA does not exist.

Example: let T = DLO and let (M,σ) be ec. Then ∃x = σ(x) ∈ [a, b] ⇔ orb(a) ≤ b.
Proof: if a ≤ x = σ(x) ≤ b then σk(a) ≤ σk(x) = x ≤ b. Conversely, let A be
intersection of all (−∞, c) ⊇ orb(a). Clearly, σ(A) = A (setwise). If A has a
maximum, or M \A has a minimum, this must be a fixed point (in [a, b]).
Otherwise, enlarge M by adding a fixed point right after A, violating ec’ness.
Therefore DLOA does not exists: in an ω-saturated M , on one hand

M ⊨ ∀y

[(
∃z

(
(a < z < y) ∧ (σ(z) = z)

))
↔

∧
n∈Z

σn(a) < y

]

but if σ(a) ̸= a, by cptns+saturation there is b ∈M satisfying rhs but not lhs.

Back
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Constraining automorphisms
By Kikyo–Shelah, to study “generic” automorphisms of ordered structures, we need
to change something.

One approach: impose restrictions on the automorphism.

Theorem (Pal)
Let L = Loag ∪ {σ}, and let MODAG be the theory of difference oags together with,
for every L ∈ Z[σ], the axiom

(∀x > 0 L(x) > 0) ∨ (∀x > 0 L(x) = 0) ∨ (∀x > 0 L(x) < 0)

Then MODAG has a model companion, which eliminates quantifiers.
Note that, in particular, in a model of MODAG, either σ is the identity or it has no
fixed points (look at L(x) := σ(x)− x).
This approach has been useful in the context of valued difference fields (e.g.
isometric, contractive); see Azgın–van den Dries, Chernikov–Hils, Scanlon,. . .
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Type spaces in positive logic
What are types (over ∅) in this context? There are different approaches.

1. Consider types of elements of arbitrary models. Same as: prime consistent sets of
positive formulas: if p(x) ⊢ φ(x) ∨ ψ(x), then p(x) ⊢ φ(x) or p(x) ⊢ ψ(x).

2. Consider only types of elements of pec models. Same as: maximal.
Note: definable sets only form distributive lattices (not always Boolean algebras).

Boolean algebras : Stone spaces = Distributive lattices : Spectral spaces

Concretely:
1a. For prime types, take as basic open sets [φ(x)], with φ(x) positive.

1b. Or, take as basic closed sets [φ(x)], with φ(x) positive. This yields the Hochster
dual of the space above. Both are spectral (in particular, compact and T0).
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Positive neostability

Why bother doing all this?

One reason: can develop stability and generalisations on pec structures.
Also: can add hyperimaginaries, need to consider only positive φ, no need to care about models of Th(Kec) not in Kec, . . .

Some instances (with no claim of exhaustivity):
• Shelah: stability.
• Pillay: simplicity (in “Robinson” setting). Generic automorphisms of stable

structures (they are simple).
• Ben Yaacov: simplicity in general setting (and more).
• Haykazyan–Kirby: ec exponential fields are TP2 and NSOP1.
• d’Elbée–Kaplan–Neuhauser: ec fields with an R-submodule are TP2 and NSOP1.
• Dobrowolski–Kamsma: development of NSOP1.

Back



Bonus slides

Positive neostability

Why bother doing all this?
One reason: can develop stability and generalisations on pec structures.
Also: can add hyperimaginaries, need to consider only positive φ, no need to care about models of Th(Kec) not in Kec, . . .

Some instances (with no claim of exhaustivity):
• Shelah: stability.
• Pillay: simplicity (in “Robinson” setting). Generic automorphisms of stable

structures (they are simple).
• Ben Yaacov: simplicity in general setting (and more).
• Haykazyan–Kirby: ec exponential fields are TP2 and NSOP1.
• d’Elbée–Kaplan–Neuhauser: ec fields with an R-submodule are TP2 and NSOP1.
• Dobrowolski–Kamsma: development of NSOP1.

Back



Bonus slides

Positive neostability

Why bother doing all this?
One reason: can develop stability and generalisations on pec structures.
Also: can add hyperimaginaries, need to consider only positive φ, no need to care about models of Th(Kec) not in Kec, . . .

Some instances (with no claim of exhaustivity):
• Shelah: stability.
• Pillay: simplicity (in “Robinson” setting). Generic automorphisms of stable

structures (they are simple).

• Ben Yaacov: simplicity in general setting (and more).
• Haykazyan–Kirby: ec exponential fields are TP2 and NSOP1.
• d’Elbée–Kaplan–Neuhauser: ec fields with an R-submodule are TP2 and NSOP1.
• Dobrowolski–Kamsma: development of NSOP1.

Back



Bonus slides

Positive neostability

Why bother doing all this?
One reason: can develop stability and generalisations on pec structures.
Also: can add hyperimaginaries, need to consider only positive φ, no need to care about models of Th(Kec) not in Kec, . . .

Some instances (with no claim of exhaustivity):
• Shelah: stability.
• Pillay: simplicity (in “Robinson” setting). Generic automorphisms of stable

structures (they are simple).
• Ben Yaacov: simplicity in general setting (and more).
• Haykazyan–Kirby: ec exponential fields are TP2 and NSOP1.
• d’Elbée–Kaplan–Neuhauser: ec fields with an R-submodule are TP2 and NSOP1.
• Dobrowolski–Kamsma: development of NSOP1.

Back



Bonus slides

Positive counterparts
• These go through for NIP: phrasing in terms of alternation on an indiscernible

sequence, being NIP is preserved by ∨,∧, op, can be checked in one variable, some
version of Borel definability. . .

• Things like invariant types, coheirs,. . . require care.
• For example, what is a coheir? We should look at closure in which space?
• If we work naively, coheirs of maximal types need not be maximal (look at the

type at +∞ in (ω,≤, 0, 1, 2, . . .)).
• One can even build a type over a pec M with no global M -invariant extensions!
• In general, some technology is delicate: e.g. there are theories where having the

same type over a pec model does not imply having the same Lascar strong type
(defined with indiscernible sequences).

• Assumptions that are sometimes required/useful: being semi-Hausdorff (equality
of types is type-definable), being thick (indiscernibility is type-definable).
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Generic automorphisms of dense linear orders
• Let L = {<, σ, σ−1}, and let T be the L-theory of a DLO with an automorphism.

• (why not just a linear order? because a pec M is going to be a DLO anyway)
• As we saw before, the class Mod(T )ec is not elementary.

Theorem
Let G be a group. The positive theory of dense linear orders with a G-action by
automorphisms is NIP.
Proof idea: use that NIP is equivalent to finite alternation number.
Let (ai)i<ω be indiscernible increasing and i, j ≥ 2. We cannot have
g · ai < a0 < a1 < g · aj . Also, we cannot have a0 < g · ai < a1: otherwise
g · a3 ∈ (a0, a1) ∩ (a1, a2) = ∅. It follows that for every finite b there is i0 such that,
for every g ∈ G,

b ∩ g · Conv((ai)i0<i<ω) = ∅

From this, one deduces that the trimmed sequence is b-indiscernible.
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for every g ∈ G,

b ∩ g · Conv((ai)i0<i<ω) = ∅

From this, one deduces that the trimmed sequence is b-indiscernible.
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Generic automorphisms of dense linear orders
• Let L = {<, σ, σ−1}, and let T be the L-theory of a DLO with an automorphism.
• (why not just a linear order? because a pec M is going to be a DLO anyway)
• As we saw before, the class Mod(T )ec is not elementary.

Theorem
Let G be a group. The positive theory of dense linear orders with a G-action by
automorphisms is NIP.
Proof idea: use that NIP is equivalent to finite alternation number.
Let (ai)i<ω be indiscernible increasing and i, j ≥ 2. We cannot have
g · ai < a0 < a1 < g · aj . Also, we cannot have a0 < g · ai < a1: otherwise
g · a3 ∈ (a0, a1) ∩ (a1, a2) = ∅. It follows that for every finite b there is i0 such that,
for every g ∈ G,

b ∩ g · Conv((ai)i0<i<ω) = ∅

From this, one deduces that the trimmed sequence is b-indiscernible. Back
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Counterexamples
Why is extending σ to an ordered R-vector space automorphism not obvious from
Hahn’s Embedding Theorem?
• Consider A := ((Q+

√
2Q)×lex Q). Define σA((a+

√
2b, c)) = (a+

√
2b, c+ b).

• Hahn gives A ↪→ B := R×lex R. No extension of σA to B preserves
√
2 · − !

• Solution: embed in R×lex R×lex R instead, map (
√
2, 0) 7→ (

√
2, 1, 0).

• In general, assume dimQA ≤ ℵ0 by cptns, so A ∼=
⊕

i<ω aiQ (Hahn sum).
• Idea to order A⊗Q R: if ai ∼ r · aj , add a new archimedean class for ai − r · aj .
Why is pec necessary for IVP?

• Consider R((Z+ Z)). Let σ act by shifting the first copy of Z forwards, and the
second copy of Z backwards, then look at σ(x)− x.

• min(f, g) = (f + g−|f − g|)/2. So why is IVP for minima not obvious from IVP?
• In general, IVP functions are not closed under sum (example just above!).
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