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Deliberate omissions are marked [like this], while MISSING denotes that
I was unable to transcribe something (which can be a single word, an entire
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\chapter{21/09}
\section{Overview}
We will have 4 weeks with4 hours and 6 with 2 hours.

We will work in first order logic. The contents/goals of the course will be:
  \begin{itemize}
  \item Stable theories: definability of types, the counting types theorems, the order property, the binary tree property,\ldots
  \item Simple theories: the tree property, independence relations,\ldots
  \item \textsc{Nip} (dependent) theories: \textsc{vc}-dimension, Keisler measures,\ldots
  \end{itemize}
\section{Languages, Formulas, Theories, Structures,\ldots}
\begin{defin}
  A language $L$ is a collection of constant, function and relation symbols. By abuse of notation, $L$ will also denote the set of formulas in the language $L$, i.e.\ of the form\
\[
\psi(x_1,\ldots, x_n; y_1,\ldots, y_m)\equiv \forall x_1\exists x_2\forall x_3\ldots\exists x_n \phi(\bar x; \bar y)
\]
where $\phi(\bar x; \bar y)$ is a Boolean combination of basic relations (atomic formulas) in $L$ with  variables $(\bar x; \bar y)$, of the form $t_1=t_2$ or $R(t_1,\ldots, t_k)$.
\end{defin}
\begin{defin}
  An $L$-structure $M$ is given by interpreting every constant $c$ with an element $c^M\in M$, every function symbol $f_i$ of arity $n_{f_i}$ with a function $M^{n_{f_i}}\to M$, and each relation symbol $R_i$  of arity $n_{R_i}$ with a subset $R_i^M\subseteq M^{n_{R_i}}$.
\end{defin}
\begin{eg}
  $L=\set{}=\set =$. Here the terms are variables, the basic relations are of the form $x=y$. If $M$ is an infinite set, it is an $L$-structure.
\end{eg}
We will use standard abuses of notation as $\bigwedge_{i,j}$, $\ne$, etc.
\begin{defin}
  \emph{Definable sets} are solutions of formulas in $M$.
\end{defin}
\begin{eg}
  Consider the formula $\phi(x, y)\equiv x=y$. In $M^2$ this formula defines the diagonal:
\[
\phi(M^2)=\set{(a,b)\in M^2\mid M\models \phi(a,b)}=\set{(a,b)\in M^2\mid a=b}
\]
\end{eg}
\begin{defin}
Given $A\subseteq M$ we define $L(A)=L\cup \set{c_a\mid a\in A}$, where each $c_a$ is a constant symbol.
\end{defin}
This allows to use parameters and have formulas like\footnote{We will write $a$ instead of $c_a$.} $\phi(x,y)\equiv x=a$ or $\psi(x,y)\equiv y=b$ where $a,b\in M$. Notice that $x=a$ does not mention the variable $y$. Anyway we can pad it by rewriting as $x=a \land y=y$. In general we will write something like $\phi(x,y)$ to denote that we are regarding the defined set as a subset of $M^2$, even if $\phi$ does not mention all of its free variables.
\begin{defin}
  A \emph{sentence} is a formula without free variables. A \emph{theory} is a consistent set of sentences.
\end{defin}
\begin{eg}
  Let $L=\set R$, where $R$ is a binary relation symbol, and let $M$ be an infinite graph, where $R$ is interpreted as the edge relation. Examples of formulas here are
  \begin{itemize}
  \item $xRa$
  \item $\forall x\;(\neg xRx)$
  \item $\forall x,y\;(xRy\implica yRx)$
  \end{itemize}
(Models of the last two axioms will be called graphs/simple graphs/undirected graphs/no loops, etc.)
\end{eg}
\begin{eg}
Consider $\set{P_{m,n}\mid m,n\ge 1}$, where
\[
P_{m,n}\equiv \forall x_1,\ldots, x_m\;\forall y_1,\ldots, y_n\exists z\; \bigwedge_{i,j} x_i\ne y_j\implica \bigwedge_{i,j} zRx_i\land \neg zRy_j
\]
These axioms, together with the graph axioms, give the theory of the \emph{random graph}. We say ``the'' theory of the random graph because this theory is \emph{complete}.
\end{eg}
\begin{defin}
  A theory $T$ is \emph{complete} if for every $L$ sentence $\sigma$ either $T\proves \sigma$ or $T\sigma \neg \sigma$. Since our theories  will implicitly be considered deductively closed we will also write $\sigma\in T$ or $\neg \sigma \in T$.
\end{defin}
\begin{eg}\*
\begin{itemize}
\item  Let $L_{\textnormal{groups}}=\set{\cdot, {}^{-1}, e}$, symbols for respectively a binary function, a unary function and a constant. We could have only used $\set{\cdot}$ but the larger language has the following advantage: if $G$ is a group and $H$ is an $L_{\textnormal{groups}}$-substructure of $G$, then $H\le G$.[
\item $L_{\textnormal{rings}}=\set{+,\cdot, 0,1,-}$
\item $L_{\textnormal{ordered rings}}=\set{+,\cdot, 0,1,-, <}$
\end{itemize}
\end{eg}

Notice that if $M$ is infinite and $L=\set=$, the definable subsets of $M^1$ (i.e.\ in one variable) are either finite or cofinite, as can be seen by proving quantifier elimination\footnote{I.e.\ that every formula is equivalent to a quantifier-free one.} via induction on formulas.
\begin{defin}
  If all the definable subsets of every model of a theory are finite or cofinite, we call the theory \emph{strongly minimal}.
\end{defin}
\begin{fact}
  Let $M=(\mb C, +, \cdot, 0, 1, -)$. Then:
  \begin{itemize}
  \item $M$ is strongly minimal
  \item $\Th(M)$ has quantifier elimination and is axiomatised by $\textsc{ACF}_0$, the theory of algebraically closed fields of characteristic $0$.
  \item The definable sets are Boolean combinations of basic relations, which in this case are of the form $t_0=t_1$, for $t_0, t_1$ terms, i.e.\ an equality of two polynomials, or \textsc{wlog} $p(x_0,\ldots, x_n)=0$. These are called \emph{constructible sets}.
  \item Notice that, even if in one variable the definable sets are the same as the ones definable in the trivial language $\set =$, in higher dimensions you have new ones.
  \end{itemize}
\end{fact}
\begin{fact}
  Let $M=(\mb R, +, \cdot, 0, 1, -, <)$. Then:
  \begin{itemize}
  \item (Tarski): $\Th(M)$ has quantifier elimination.
  \item The definable sets are Boolean combinations of solutions of equalities and inequalities of polynomials. These are called \emph{semialgebraic sets}.
  \item By quantifier elimination, definable subsets of $M^1$ are finite unions of intervals and points.
  \end{itemize}
\end{fact}
\begin{defin}
  If $T$ has an order and is such that, in every of its models, the $1$-dimensional definable sets are finite unions of intervals and points, we call $T$ \emph{o-minimal}.
\end{defin}
\begin{rem}
  Let $M$ be an $L$-structure. If we enrich the language to $L'=L\cup\set{R_\phi(\bar x)\mid \phi(\bar x)\in L}$ and interpret the new relation symbols in the natural way, i.e.\ $\models R_\phi(\bar a)\sse M\models\phi(\bar a)$, then the $L'$-theory of $M$ trivially eliminates quantifiers. But this is basically useless, as the purpose of quantifier elimination is to understand definable sets, and this construction gives no new information. But finding an intermediate language in which we still have quantifier elimination \emph{and} understand the definable sets can be useful\footnote{Finding a minimal language with quantifier elimination should be called something like \emph{Morleyzation} of a theory.}.
\end{rem}

\section{Types}
\begin{defin}
  Let $M\models T$ and $A\subseteq M$. A \emph{(partial) $n$-type} over $A$ (in $M$)\footnote{But we will omit $M$ soon.} is a finitely satisfiable (in $M$) set of formulas with $n$ free variables in the language $L(A)$.
\end{defin}
\begin{eg}
  Let $M=\mb R$. The set $\set{x^2=1+1}$ is a $1$-type over $\emptyset$. The set $\set{x=\pi, y^2=x}$ is a $2$-type over $\set{\pi}$. A more interesting example is $\set{n\cdot x<1\mid 0\ne n<\omega}$, which is the same as saying $\set{x<1/n\mid 0\ne n<\omega}$. This is a $1$-type over $\emptyset$, and it is satisfied by every nonpositive element in $\mb R$. If we instead consider
\[
\set{0<n\cdot x<1\mid 0\ne n<\omega}
\]
this is finitely satisfiable in $\mb R$ (hence a type), but no element of $\mb R$ satisfies the whole type.
\end{eg}
\begin{defin}
  If $M\subseteq N$, we say that $M$ is an \emph{elementary substructure} of $N$ and write  $M\prec N$ if every $L(M)$ formula true in $M$ (we denote this theory with $\operatorname{El\,Diag}(M)$)\footnote{But warning: in the official notes this is denoted with $\operatorname{Diag}(M)$. In the literature $\operatorname{Diag}$ has sometimes another  meaning, so I prefer to use this other notation.} is true in $N$.
\end{defin}
[Tarski-Vaught test]
\begin{fact}
  If $\pi(x)$ is a type in $M$ over $A$, then there is $M'\succ M$ that realises $\pi(x)$.
\end{fact}
\begin{proof}
  Apply compactness to the $L\cup \set c$ theory $\operatorname{El\,Diag}(M)\cup \pi(c)$.
\end{proof}
\section{Saturation, Monster Models}
\begin{defin}
Let $\kappa$ be a cardinal. We say that $M$ is \emph{$\kappa$-saturated} if for every $A\subseteq M$ with $\abs a <\kappa$ and every $n$-type $\pi(\bar x)$ over $A$, $M$ realises $\pi(\bar x)$.
\end{defin}
\begin{eg}\*
\item   If $L=\set =$ and $T$ is the theory of infinite set, if $\abs M=\kappa$, then $M$ is $\kappa$-saturated.
\item $\mb R$ with the ordered field structure is not $\aleph_0$-saturated since we already showed there is a non-realised $\emptyset$-type.
\end{eg}
\begin{thm}\label{thm:satex}
  Let $M$ be a structure and $\kappa$ a cardinal $\ge \abs L$. Then there is a $\kappa$-saturated $N\succ M$ such that $\abs N\le \abs M^\kappa$.
\end{thm}
A monster model is, ideally, a model $\monster$ that embeds all models $M\models T$ and realises all types over subsets of $\monster$ (and more things). This is of course impossible, so we need to take a different approach. 
Some books say that $\monster$ is $\kappa$-saturated with ``big enough''  $\kappa$, where ``big enough'' means ``bigger than all models you are interested in''. But what if you are interested in \emph{all} models? So our approach would be to consider $\kappa$ to be bigger than all models you use in a proof. For example we will say `` if $M\models T$ and\footnote{$\tp(b/A)$ are all $L(A)$-formulas satisfied by $b$.}  $\tp(a/A)=\tp(b/A)$ for some $A\subseteq M$, then there is $\sigma\in \aut(\monster/A)$ such that $\sigma(a)=b$''. This is just to avoid to say ``there is $N\succ M$ such that (same thing with $\monster$ replaced by $N$'', which could be messy if we have a lot of different models in the same proof. Instead, we just use a big $\monster$ where to embed all we will use. This is analogous to what you do in calculus where you first assume there is a $\delta$ doing stuff and then estimate the size of $\delta$. The same can be done with $\kappa$ here.

Indeed, this is not the full story. The point is that we would like to have a $\abs{\monster}$-saturated $\monster$. This is the best we could hope for because
\begin{fact}
  $M$ cannot be $\abs{M}^+$-saturated: just consider the type $\set{x\ne m\mid m\in M}$.
\end{fact}
Anyway $\abs M$-saturated $M$ do not always exist. Sometimes they do under additional hypotheses, such as \textsc{gch} (try to plug it in Theorem~\ref{thm:satex}\ldots). Another approach is to assume the existence of a \emph{regular} cardinal $\kappa\ge\aleph_1$ such that for all $\lambda<\kappa\; 2^{\lambda}<\kappa$ (a \emph{strongly inaccessible}) cardinal).


Anyway, let's see the proof of Theorem~\ref{thm:satex}:
\begin{proof}
  \begin{claim}
There is $M'\succ M$ such that $M'$ realises all $1$-types over subsets of $M$ of cardinality $\le\kappa$, and $\abs{M'}\le \abs{M}^\kappa$.    
  \end{claim}
  \begin{proof}[Proof of Claim] \renewcommand{\qedsymbol}{\qedclaim}
First notice that realising all $1$-types is sufficient: if you have an $n$-type $p(x_1,\ldots, x_n)$ you just need to realise first all formulas which only involve $x_1$, then add a realisation to the parameters and iterate.

Also, notice that $\abs{\set{A\subseteq M\mid \abs A\le \kappa}}\le \abs M^\kappa$. Given $A\subseteq M$, $\abs A\le \kappa$, then the space of \emph{complete} types $S_1^M(A)$ has cardinality $\le 2^{\abs L+\abs A}=2^\kappa$. Hence there are at most $\abs M^\kappa$ possible types over subsets of $M$ of cardinality $\le \kappa$. Let us thus enumerate this set as $\set{p_\alpha(x)\mid \alpha<\abs M^\kappa}$.

We are now going to construct a chain of models this way: we set $M_0=M$, for nonzero limit  $\alpha$ we set $M_\alpha=\bigcup_{\beta<\alpha} M_\beta$, and $M_{\alpha+1}$ realises $p_\alpha$ and $M_{\alpha+1}\succ M_\alpha$, $\abs{M_{\alpha+1}}\le \abs{M_\alpha}^\kappa$. We do this with compactness plus L\"owenheim-Skolem. Then we set $M'=\bigcap_{\alpha<\abs M^\kappa} M_\alpha$. Since a union of an elementary chain of models is an elementary extension of each element of the chain, $M'\succ M$, and every $p_\alpha$ is realised by construction.
  \end{proof}\renewcommand{\qedsymbol}{\oldqed}

To complete the proof, we do another inductive construction: we let $N_0=M$. Set $N_\alpha=\bigcup_{\beta<\alpha} N_\beta$ for nonzero limit $\alpha$, and set $N_{\alpha+1}=(N_{\alpha})'$, where the latter is given by the claim. This is again an elementary extension of $M$ because it is a union of an elementary chain. Let now $A\subseteq N$ be of cardinality $<\kappa$. The idea now would be: if $A\subseteq N_\alpha$ for some $\alpha$ then $N_{\alpha+1}\subseteq N$ realises every type with parameters in $A$. (there is some technical problem with ensuring this, which we will fix, but modulo this the proof is finished) The fix is that the cofinality of $\abs M^\kappa$ is greater than $\kappa$, which can be proved via K\"onig's Lemma: if $f\from \kappa \to \abs{M}^\kappa$ is cofinal we have
\[
\abs{M}^\kappa=\kappa=\sum_{i<\kappa}f(i)<\prod_{i<\kappa}\abs{M}^\kappa=(\abs{M}^{\kappa})^\kappa=\abs{M}^{\kappa}
\]
which is clearly absurd.
\end{proof}
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Next week we will receives notes, exercises, bibliography, etc.


[finished the proof or Theorem~\ref{thm:satex} (reported on last lesson's notes), and Tarski-Vaught]
\section{Remarks on The Monster Model}
The monster $\monster$ has this features:
\begin{itemize}
\item $\monster$ is $\kappa$-saturated for ``very big'' $\kappa$.
\item $\monster$ is \emph{strongly $\kappa$-homogeneous}, i.e.\ whenever $A,B\subseteq \monster$, $\abs A, \abs B<\kappa$, and $f\from A\to B$ is a partial elementary map, then $f$ can be extended to an automorphism $\sigma\in \aut(\monster)$.
\item $\monster$ is $\kappa$-universal: if $M\models T$ and $\abs M<\kappa$ then there is an elementary embedding $f\from M\to \monster$, i.e.\ $M\cong f(M)\prec \monster$. This in particular means that we cannot build a monster if $T$ is not complete.

\end{itemize}
E.g.\ small subfields of $\mb C$ can be swapped by an automorphism. For time reasons we will not see how to ensure this. Anyway models constructed as in the proof of Theorem~\ref{thm:satex}\footnote{They are called \emph{special} models, or something like that.} \emph{do} satisfy this properties. An idea of how you prove homogeneity is the following.

Assume $M=\bigcup_{i<\alpha}M_i$ where each $M_i$ is saturated with respect to the cardinality of the previous ones. Suppose $A,B\subseteq M_\alpha$ (again, by cofinality reasons). You extend the map $f\from A\to B$ by a back-and-forth argument using saturation.

\begin{eg}
An example of $\aleph_0$-saturated model which is not $\aleph_0$-strongly-homogeneous is, in the theory of discrete linear orders without endpoints,  $(\mb Z\times (\mb R\sqcup \mb Q))$ with the antilexicographical order: it is $\aleph_0$-saturated because you can show that $\aleph_0$-saturated models of that theory are of the form $\mb Z\times I$, for $I$ a dense linear order. But $(0, 0_\mb R)\mapsto (0,0_\mb Q)$ is a partial elementary map that does not extend to an automorphism.
\end{eg}
[details of the example above]

\begin{defin}\*
  \begin{itemize}
  \item Let $\kappa(\monster)$ be the saturation of the monster.  A set is \emph{small} if it has cardinality less than $\kappa(\monster)$.
  \item We will write $\models \phi(\bar a)$ for $\monster \models \phi(\bar a)$.
  \item Let $\Phi(\bar x)$ and $\Psi(\bar x)$ be small sets of formulas. We say that $\Phi(\bar x)\proves \Psi(\bar x)$ to mean that for all $\bar a\in \monster$ such that\footnote{I.e.\ $\bar a$ realises all formulas in $\Phi(\bar x)$.} $\models \Phi(\bar a)$, then $\models \Psi(\bar a)$
  \end{itemize}
\end{defin}
\begin{fact}
  Let $\phi(\bar x)$ be an $L(\monster)$ formula and $\Phi(\bar x)$ be a consistent small set of $L(\monster)$-formulas. If $\Phi(\bar x)\proves \phi(\bar x)$, then there is a finite set $\Phi_0(\bar x)\subseteq \Phi(\bar x)$ such that $\Phi_0\proves \Phi$.
\end{fact}
\begin{proof}
  Assume otherwise, and define the type 
\[
\Gamma(\bar x)\coloneqq \Phi(\bar x) \cup \set{\neg \phi(\bar x)}
\]
Since $\Phi\proves \phi$, the monster $\monster$ has no realisations of $\Gamma$. However, $\Gamma$ is a type over a small set of parameters, which is finitely consistent, so by compactness and saturation it should have realisations; this is a contradiction.
\end{proof}
\begin{fact}
  Let $A$ be a small set. Then $\tp(a/A)=\tp(b/A)$ if and only if there is\footnote{I.e.\ an automorphism of $\monster$ that fixes $A$ pointwise.} $\sigma\in \aut(\monster/A)$ such  that $\sigma(a)=b$
\end{fact}
\begin{proof}
  The map being the identity on $A$ and sending $a$ to $b$ is a partial elementary map by hypothesis. By strong homogeneity it extends to an automorphism which will be the required $\sigma$.
\end{proof}
\begin{lemma}\label{lemma:defhom}
  Let $X$ be a definable set. Then $X$ is $A$-definable if and only if $\sigma(X)=X$ for every $\sigma\in \aut(\monster/A)$.
\end{lemma}
From now one we will write $x$ or $b$ even if $x$ or $b$ are tuples, instead of, say, $\bar x$ and $\bar b$.
\begin{proof}
  \bigoval{$\allora$} Let $X=\phi(\monster, \bar a)$, for some $\phi(\bar x, \bar y)\in L$ and $\bar a\in A$. We have $\sigma(X)=\phi(\monster, \sigma(\bar a))$. But then
\[
\begin{split}
b\in \sigma(X)\sse b=\sigma(b')\textnormal{ for some }b'\in X\\\sse \models \phi(b', a)\textnormal{ and }\sigma(b')=b\sse\models \phi(\sigma(b'), \sigma( a))\sse \models \phi(b, \sigma(a))
\end{split}
\]
So if $\sigma\in \aut(\monster/A)$ we have $\sigma(X)=\phi(\monster, \sigma(a))=\phi(\monster, a)=X$.


\bigoval{$\se$}
Suppose $X=\phi(\monster, b)$ for some $b$. Consider $p(y)=\tp(b/A)$. We want to prove that $p(y)\proves \forall x\bigl(\phi(x,y)\coimplica \phi(x,b)\bigr)$. If $b'\models p(y)$ then $\tp(b'/A)=\tp(b/A)$. This implies that there is $\sigma\in \aut(\monster/A)$ such that $\sigma(b)=b'$ and $\phi(\monster,b)=\phi(\monster, b')$. So $b'\models \forall x(\phi(x,y)\coimplica \phi(x,b))$. Therefore there is a finite $p_0(y)\subseteq \phi(y)$ such  that $p_0(y)\proves\forall x\bigl(\phi(x,y)\coimplica \phi(x,b)\bigr)$. Let $\psi(y)$ be the conjunction of $p_0$. Consider
\[
\theta(x)\coloneqq \exists y (\psi(y)\land \phi(x,y))
\]
which has parameters in $A$. Then 
\[
c\in \theta(\monster)\iff \exists b'\; \monster \models \psi(b')\land \phi(c,b')\iff c\in \phi(\monster, b')=\phi(\monster, b)\iff c\in X
\]

\end{proof}

\begin{rem}
  The hypothesis that $X$ is already definable is very important. For example, in \textsf{DLO} (Dense Linear Orders), consider a monster $\monster$ and embed $\mb Q$ in it. Consider the set
\[
X=\set{m\in \monster \mid 0<x<1/n\mid n<\omega}
\]
This set is not definable, but it is \emph{type-definable}, over $\mb Q$ i.e.\ it is an infinite intersection of definable sets: just write $X=\bigcap_{n<\omega} 0<x<1/n$. Therefore if $\sigma\in \aut(\monster/\mb Q)$ we have that $\sigma(X)=X$, even if $X$ is not definable.
\end{rem}
\begin{defin}
  If $X$ is such that for every $\sigma\in \aut(\monster/A)$ we have that $\sigma(X)=X$, we say that $X$  is \emph{$A$-invariant}.
\end{defin}

The whole point is that we want to say ``small'' in the same spirit as we say ``finite''.

\begin{rem}
If for you ``small'' means ``countable'', then $\mb C$ is a monster model.
\end{rem}
\section{Almost $A$-definable Sets}

As with completions and eliminations of quantifiers, you do not know if your  theory has elimination of quantifier, but there is also a construction that yields a ``sibling'' theory which has it.

\begin{notation}
  Sets of parameters will be often implicitly assumed to be small.
\end{notation}
\begin{lemma}\label{lemma:almostdef}
  Let $X\subseteq \monster^n$ be definable and $A$ be small. The following are equivalent:
  \begin{enumerate}
  \item $X$ is \emph{almost $A$-definable}, i.e.\ there is an $A$-definable equivalence relation $E$ with finitely many classes and $X$ is the union of some of those.
  \item The set $\set{\sigma(X)\mid \sigma\in \aut(\monster/A)}$ is finite.
  \item The set $\set{\sigma(X)\mid \sigma\in \aut(\monster/A)}$ is small. 
  \end{enumerate}
\end{lemma}
\begin{proof}
  \bigoval{$1\allora 2$} Assume $E(x,y;a)$ is the formula witnessing that $X$ is almost $A$-definable. Then $X=\bigcup_{i=1}^n E(\monster, b_i; a)$, and $\set{E(\monster, b_j;a)\mid 1\le j\le m+n}$ is the full set of classes in $\monster$. Notice that if $\sigma\in \aut(\monster/A)$ then $\sigma(E(\monster, b_i;a))=E(\monster, \sigma(b_i); a)=E(\monster, b_j;  a)$. Therefore $\abs{\set{\sigma(X)\mid \sigma\in \aut(\monster/A)}}\le\binom {n+m}n$.

\bigoval{$2\allora 3$} :)

\bigoval{$3\allora 1$} Let $X=\phi(\monster, b)$, so $\set{\sigma(X)\mid \sigma\in \aut(\monster/A)}=\set{\sigma(\phi(\monster, \sigma(b)))\mid \sigma\in \aut(\monster/A)}$. By hypothesis, there is a small number $\alpha<\kappa(\monster)$ of realisations $\seq{b_i\mid i<\alpha}$ of $\tp(b/A)$ such that for any $b'\models\tp(b/A)$ there is $i<\alpha$ such that $\phi(\monster,b')=\phi(\monster, b_i)$.
\begin{claim}\footnote{Which is $2$, by the way.}
  In fact, there are finitely many realisations $b_1,\ldots, b_k$ of $\tp(b/A)$ such that
\[
\forall b'\models \tp(b/A)\; \exists i\le k\; \phi(\monster, b')=\phi(\monster, b_i)
\]
\end{claim}
\begin{proof}[Proof of Claim] \renewcommand{\qedsymbol}{\qedclaim}  
Let 
\[
\Gamma(y)\coloneqq \tp(b/A)\cup \set{\neg \forall x\bigl(\phi(x,y)\coimplica \phi(x, b_i)\bigr)\mid i<\alpha}
\]
This is the same as
\[
\Gamma(y)= \tp(b/A)\cup \set{\neg \forall x\bigl(\phi(\monster,y)\ne \phi(\monster, b_i)\bigr)\mid i<\alpha}
\]
If the Claim is not true, $\Gamma$ is finitely consistent, and since $\Gamma$ is a type over a small set of parameters, it has a realisation in $\monster$. This is a contradiction.
\end{proof}\renewcommand{\qedsymbol}{\oldqed}
This means that $\tp(b/A)=p(y)\proves \bigvee_{i=1}^k \forall x\bigl(\phi(x,y)\coimplica \phi(x, b_i)\bigr)$. Therefore there is $\psi(y)$ such that $\psi(y)\proves\bigvee_{i=1}^k \forall x\bigl(\phi(x,y)\coimplica \phi(x, b_i)\bigr)$. Define
\[
E(x_1, x_2)\coloneqq \forall y\;\bigl(\psi(y)\implica (\phi(x_1, y)\coimplica \phi(x_2, y))\bigr)
\]
in other words, $a_1Ea_2$ iff they agree on $\phi(x, b_i)$ for all $i=1,\ldots, k$. So each class can be codified by a function $s\from \set{1,\ldots, k}\to \set{0,1}$. Therefore
\[
\phi(\monster, b)=\bigcup \set{E_s\mid s(i)=1\textnormal{ whenever }\phi(\monster, b_i)\cap \phi(\monster, b)\ne \emptyset}
\]
\end{proof}
\begin{defin}\label{def:alganddef}
We say that $a$ is \emph{algebraic} over $A$ if there is $\phi(x)\in L(A)$ such that
  \begin{itemize}
  \item $\models \phi(a)$, and
  \item $\phi(\monster)$ is finite.
  \end{itemize}

We say that $a$ is \emph{definable} over $A$ if there is $\phi(x)\in L(A)$ such that
  \begin{itemize}
  \item $\models \phi(a)$, and
  \item $\phi(\monster)=\set a$.
  \end{itemize}
\end{defin}
\begin{eg}
  In algebraically closed fields (say of characteristic $0$) being algebraic over $A$ just means being algebraic over $A$ in the algebraic sense, and being definable over $A$ means being in the field generated by $A$.
\end{eg}
\begin{defin}
  The \emph{algebraic closure} $\acl(A)$ of $A$ is\footnote{Remember that in our notational conventions $b$ can be in general a tuple, so the $\monster^1$ is to stress that it is a single element (in Definition~\ref{def:alganddef}  it could be a tuple.).} $\set{b\in \monster^1\mid b\textnormal{ is algebraic over }A}$.   The \emph{definable closure} $\acl(A)$ of $A$ is $\set{b\in \monster^1\mid b\textnormal{ is definable over }A}$.
\end{defin}
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\begin{rem}
  In Lemma~\ref{lemma:almostdef} there is another equivalent statement, namely ``$X$ is $M^{\textnormal{eq}}$-definable. We will see the definition now.
\end{rem}
\section{Imaginaries and $M^\textnormal{eq}$}
\begin{defin}
Let $M$ be and $L$-structure and $T=\Th(M)$. Let $\operatorname{ER}(T)$ be the set of $\emptyset$-definable equivalence relations. We define
\[
L^\textnormal{eq}\coloneqq L\cup \set{\underbrace{S_E\mid E\in \operatorname{ER}(T)}_{\textnormal{new sorts}}} \cup \set{\underbrace{f_E\mid E\in \operatorname{ER}(T)}_{\textnormal{functions}}}
\]  
\end{defin}
[recap on multi-sorted structure and difference between vector spaces with a single sort and functions for scalar multiplication and vector spaces with a separate sort for the field]

Note that equality is an $\emptyset$-definable equivalence relation, so we have a sort $S_=$ which will, when interpreted, be isomorphic to $M$.

\begin{defin}
  We define $M^\textnormal{eq}$ this way:  each sort $S_E$ is interpreted as
\[
S_E\coloneqq \set{\bar a/E\mid E\in \operatorname{ER}(T) \textnormal{ of arity $n$}, \bar a \in M^n}
\]
Moreover we have function symbols $f_E$ interpreted as $f_E\from M^n\to S_E$ sending $\bar a$ to $\bar a/E$.

We call $S_=$ the \emph{home sort}. Its elements are called \emph{real elements}. Elements in other sorts are called \emph{imaginary}.
\end{defin}
Notice that all $a/E$ are in $\acl^\eq(a)$, as witnessed by the formula $y=f_E(a)$.

What we would like is not to have imaginary elements, i.e.\ to define them in terms of the real ones.

\begin{defin}
  We define $T^\eq$ to be the $L^\eq$-theory
\[
T^\eq= T\cup \set{\forall y\in S_E\; \exists \bar x\in S_=\; (f_E(\bar x)=y)}\cup \set{\forall \bar x_1, \bar x_2\; (f_E(\bar x_1)=f_E(\bar x_2)\coimplica E(\bar x_1, \bar x_2))}
\]
\end{defin}
\begin{lemma}\label{lemma:eqbasics}
  \begin{enumerate}\*
  \item If $M=S_=$, then for every $\phi(\bar x)\in L$ and $\bar a \in M$, we have $M\models \phi(\bar a)\iff M^\eq \models \phi(\bar a)$.
  \item If $M\models T$, then $M^\eq\models T^\eq$.
  \item Every $M^*\models T^\eq$ is of the form $M^*=M^\eq$ for some $M\models T$.
  \item $M^\eq=\dcl^\eq(M)$.
  \item Given equivalence relations $E_1,\ldots, E_k\in \operatorname{ER}(T)$ and $\phi(x_1,\ldots, x_k)\in L^\eq$ (with $x_i\in S_{E_i}$) there is some $\psi(\bar y_1,\ldots, \bar y_k)\in L$ such that
\[
T^\eq \proves \forall \bar y_1,\ldots, \bar y_k\in S_=\;\Bigl(
\psi(\bar  y_1,\ldots, \bar y_k)\coimplica \phi(f_{E_1}(\bar y_1),\ldots, f_{E_k}(\bar y_k))
\Bigr)
\]
  \end{enumerate}
\end{lemma}
We will skip the proof for now (but the first $4$ points are easy).
Point $5$ of the Lemma is the real reason we define $T^\eq$: the point is ``eliminating imaginaries'' in the same way as the Morleyzation of a structure eliminates quantifiers. Even in this case, the real deal is eliminating imaginaries in a language which is understandable enough. Let us give the precise definition of ``eliminating imaginaries''.
\begin{defin}
  A theory $T$ \emph{eliminates imaginaries} if for every $M\models T$ and $e\in M^\eq$ there is $\bar d\in M$ such that $e\in \dcl^\eq(\bar d)$ and $\bar d\in \dcl^\eq(e)$.
\end{defin}
\begin{eg}\*
  \begin{itemize}
  \item Algebraically closed fields eliminate imaginaries.
  \item Infinite sets do not eliminate imaginaries.
  \item Vector spaces in the two-sorted language \emph{do not} eliminate imaginaries: consider
\[
x\in V\sim y \in V\iff \exists \lambda \in \mb K\setminus \set 0\; (x=\lambda \cdot y)
\]
  \end{itemize}
\end{eg}
The idea here is ``every definable $X\subseteq \mb M^n$ corresponds to an imaginary'', in the following sense:
Let $X=\phi(\monster, \bar b)$ and consider $E(\bar y_1, \bar y_2)\coloneqq \forall \bar x \bigl(\phi(\bar x, \bar y_1)\coimplica \phi(\bar x, \bar y_2)\bigr)$. We have $\bar b/E_\phi\in M^\eq$ and the following properties:
\begin{enumerate}
\item For all\footnote{Note that automorphisms of $\monster$ can be extended to automorphisms of $\monster^\eq$ in the natural way (it is not obvious that it is well-defined on equivalence classes, but it is).} $\sigma\in \aut(\monster)$, we have $\sigma(X)=X$ iff $\sigma(\bar b/E_\phi)=\bar b/E_\phi$.
This is because we have $\sigma(X)=X$ iff $\monster \models \forall \bar x\; (\phi(\bar x, \sigma(\bar b))\coimplica \phi(x, \bar b))$ iff $\sigma(\bar b)E_\phi\bar b$ iff $\sigma(\bar b/E_\phi)=\bar b/E_\phi$.
\item $X$ is $L^\eq$-definable over $\bar b/E$: consider
\[
\psi(\bar x;z)\coloneqq \exists \bar y\;(\phi(\bar x, \bar y)\land f_{E_\phi}(\bar y)=z)
\]
and plug $\bar b/E$ in place of $z$.
\item $\bar b/E$ is the unique element $e$ in the sort $S_E$ such that $\psi(\bar x, e)$ defines $X$. This is because if $\psi(\bar x, e)$ defines $X$  then $\phi(\bar x, \bar b')$ defines $X$ and $f_E(b')=e$, and this means $e=\bar b'/E=\bar b/E$.
\end{enumerate}
\begin{defin}
  $\bar b/E_\phi$ is called the \emph{code} of $X$.
\end{defin}
So the point of elimination of imaginaries is that definable sets have codes: here a definable set is fixed setwise by an automorphism iff it fixes its code. 
\begin{eg}
  A code of a plane is the tuple of coefficients of the equations defining it.
\end{eg}
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\begin{proof}[Proof of Lemma~\ref{lemma:eqbasics}]
  As anticipated, we are only going to prove the last point. The proof is by induction on $\phi$. Is $\phi$ is atomic, then either $\phi\in L$ (and there is nothing to do), otherwise it is of the form $f_E(\bar x)=f_E(\bar y)$. In this case just let $\psi_\phi(\bar x, \bar y)\coloneqq E(\bar x, \bar y)$. 

The $\neg$ and $\land$ cases are clear, so we are left to deal with $\exists$. Assume $\phi(\bar x)$ has the form $\exists z\; \Phi(\bar x, z)$. Modulo $T^\eq$, this is equivalent to
\[
\exists \tilde z\;\bigl(\Phi(\bar x, f_E(\tilde z))\bigr)
\]
where $\bar x$ has sort $S_R=(S_{E_1},\ldots, S_{E_k})$ and $z$ has sort $S_E$. By inductive hypothesis there is $\psi_\Phi(\bar y, \bar w)$ such that 
\[
T^\eq \proves \forall \bar y, \bar w\;\bigl(\psi_\Phi(\bar y, \bar w)\coimplica \Phi(f_R(\bar x), f_E(\bar w)\bigr)
\]
We claim that then it is sufficient to set
\[
\psi_\phi\coloneqq \exists \bar w\; (\psi_\Phi(\bar y, \bar w))
\]
In fact take $\bar a$ in the home sort of $\monster^\eq$, arbitrary. Then 

\begin{align*}
\monster^\eq\models \phi(f_R(\bar a)) \iff  \exists \bar b\in \monster\; \monster^\eq \models \Phi(f_R(\bar a), f_E(\bar b))\\
\iff & \exists \bar b \in \monster\; \monster^\eq\models \psi_\Phi(\bar a, \bar b)\\
\iff & \monster^\eq \models \psi_\phi(\bar a)
\end{align*}
\end{proof}
\begin{co}
  $\monster $ is \emph{stably embedded} in $\monster^\eq$ (if you know the definition; anyway we will say it later).
\end{co}
\begin{rem}
  If $T$ eliminates imaginaries and $e, \bar d$ are as in the definition, up to taking conjunctions we can assume that interdefinability is witnessed by a single formula $\phi(\bar x, y)$.
\end{rem}
Some comments:
\begin{itemize}
\item Moving from $T$ to $T^\eq$ preserves definable sets. But, for particular theories, what is the right\footnote{I.e.\ ``minimal'', or ``more natural'', or the like.} language in which you have elimination of imaginaries?\footnote{Same as with elimination of quantifiers.}
\end{itemize}
\begin{eg}\*
  \begin{itemize}
  \item Some very trivial examples of imaginaries are diagonal tuples $(a,a)$ or $(a,a,a,\ldots, a)$ (where the equivalence relation is ``being equal as a tuple'').
  \item Finite sets: you can write a formula defining the equivalence relation $E_2((x_1, x_2), (y_1, y_2))\coloneqq \set{x_1, x_2}=\set{y_1, y_2}$.
  \item Quotients: let $G$ be a definable group and $H\le G$ be $\emptyset$-definable. Consider $E_H(g_1, g_2)\coloneqq g_1H=g_2H$, which can be defined with $\exists h\;(H(h)\land g_1h=g_2)$.
  \item Consider in $\mb C \models \textsf{ACF}_0$ the formula $\phi(x,y,a,b)\coloneqq a\cdot x+b\cdot y=0$. Then consider the equivalence relation $E((z_1, z_2), (w_1, w_2))\coloneqq \exists \lambda \ne 0\; (\lambda z_1=w_1\land \lambda z_2=w_2)$.  Then $(a,b)/E$ works as a code for the set defined by $\phi$.
  \end{itemize}
\end{eg}

\begin{fact}
  The theory $T_\infty$ of infinite sets does not eliminate imaginaries: in particular, it does not eliminate $\set{a,b}$ for $a\ne b$.
\end{fact}
\begin{proof}
  Assume $e=\set{a,b}$ is interdefinable with a real tuple $\bar d$. In fact, if this was to be the case, any $\sigma\in \aut(\monster/e)$ would fix $\bar d$ by Lemma~\ref{lemma:defhom}. However, no $c$ is fixed by all these $\sigma$: if $c\ne a,b$,  then we can just swap it with some other $c'$ fixing $a$ and $b$; if $c=a$, say\footnote{The case $c=b$ is analogous.},  we can exchange $a$ and $b$ and $\set{a,b}$ would be fixed anyway.
\end{proof}
The trick with theories like $\textsf{ACF}_0$ is that you can encode finite sets with polynomials, and then you get elimination of imaginaries via strong minimality. E.g.\ encode $\set{a,b}$ with $x^2-(a+b)x+ab$.

\begin{pr}
  The following are equivalent:
  \begin{enumerate}
  \item $T$ eliminates imaginaries and there are at least two $\emptyset$-definable elements.
  \item For every $\emptyset$-definable equivalence relation $E$ on $\monster^n$ there are $m$ and a $\emptyset$-definable $f\from \monster^n\to \monster^m$ such that $\bar a E \bar b\iff f(\bar a)=f(\bar b)$.
  \end{enumerate}
\end{pr}
\begin{proof}\*


  \bigoval{$2\allora 1$}
Let $e=\bar a/E$, and consider $\bar d=f(\bar a)$. Let us show that they are interdefinable. Consider
\[
\phi(x, y)=\exists \bar z\; (f_E(\bar z)=y\land f(\bar z)=x)
\]
We want to see that $\set{\bar d}=\phi(\monster^n, e)$ and $\set e=\phi(\bar d, \monster^\eq)$, but this is just true by definition. To construct the two $\emptyset$-definable elements define
\[
(x_1, x_2)E(y_1, y_2)\iff (x_1=x_2\coimplica y_1=y_2)
\]
This has exactly two equivalence classes. Codify $E$ with some $f$, and note that the image of $f$ has exactly two elements, each of them $\emptyset$-definable by considering $f(x,x)$ and $f(x,y)$ for $x$ and $y$ two distinct\footnote{We are tacitly assuming that we have at least two elements in our structure.} elements of $\monster$.

  \bigoval{$1\allora 2$}
Fix an $\emptyset$-definable equivalence relation $E$. For every $e=\bar a/E$ there is a tuple $\bar d_e\in \monster^{m_e}$ and a formula $\phi_e(\bar x,y)$ such that $\phi_e$ witnesses the interdefinability\footnote{Up to conjunctions: if $\set b=\zeta(a, \monster)$ and $\set a=\theta(\monster, b)$, look at $\zeta(x,y)\land \theta(x,y)$.} of $\bar d$ and $e$. Now consider the fact that $\set{\phi_e(\bar x, y)\mid e\in S_E}$ covers $S(\monster)$. By compactness there are formulas $\phi_1(\bar x_1, y_1),\ldots, \phi_k(\bar x_k, y_k)$ such that [\ldots]. We therefore find sets $D_1,\ldots, D_k$ who partition $\monster^n$ (the preimages of the appropriate imaginaries). This defines a function, but it could be not into a single $\monster^m$ because the $m_e$ depend on $e$. That's where you use interdefinability: we have $\set{D_i\to \monster^{m_i}\mid i\le k}$ and we amalgamate them in $\monster ^{m_1+\ldots+m_k+k}$ padding tuples with some ``noise''. Anyway the noise should be carefully chosen to avoid clashes, but his can be done up to taking  larger $k$. We'll see in more detail in next lessons/the official notes of the course.\footnote{It is one of those usual coding tricks: use the two constants as $0$s and $1$s and look in the last $k$ coordinates (probably $\lceil \log_2 k \rceil$ suffice) to know in which coordinates to look.}
\end{proof}
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\section{Indiscernible Sequences}
This is somehow a generalisation of the behaviour of converging sequences.
\begin{defin}
Let $I$ be a linear order. A sequence $\seq{a_i\mid i\in I}$ is \emph{$A$-indiscernible} (or \emph{indiscernible over $A$}) if for every formula $\phi(x_1,\ldots, x_n)\in L(A)$, whenever $i_1<\ldots<i_n$ and $j_1<\ldots<j_n$ we have $\models \phi(a_{i_1},\ldots, a_{i_n}) \iff \models \phi(a_{j_1},\ldots, a_{j_n})$.
\end{defin}
So the idea is that ordered tuples all have the same $A$-type.
\begin{eg}These are some examples:
  \begin{enumerate}
  \item   Take $\seq{a_i=a\mid i\in I}$.
  \item Let $T=T_\infty$. Then any sequence $\seq{a_i\mid i\in \omega}$ with different elements $a_i\ne a_j$, each not in $A$, is $A$-indiscernible.
  \item If $T=\textsf{DLO}$, any increasing sequence $\seq{a_n\mid n\in \omega}$ is $\emptyset$-indiscernible. Note that here, if we permute the $a_i$, the type changes (this was not the case in the previous example): if $a_i<a_j$ and we swap them\ldots{} In other words, for all $m<n$ we have $\tp(a_1, a_2)=\tp(a_m, a_n)$, but $\tp(a_1, a_2)\ne \tp(a_2, a_1)$. Also, if we take $A=\set b$ with $a_2<b<a_3$, say, the sequence will not be $A$-indiscernible. In fact,
    \begin{fact}
      $A$-indiscernible sequences in \textsf{DLO} are monotone sequences in a specific $A$-cut\footnote{An $A$-cut $S$ is a subset of $A$ closed under initial segments (i.e.\ downwards), and saying that something lies in $S$ means that it's bigger than (all the stuff in) $S$ but smaller than (all the stuff in) $A\setminus S$}.
    \end{fact}
  \item If $A\subseteq M\models\textsf{ACF}_0$, how does a non-constant indiscernible sequence $\seq{a_i\mid i<\omega}$ over $A$ look like? Take a single element, say  $a_1$. Since all the other ones must have the same $A$-type, and they are infinitely many and different, we cannot have $a_1\in \acl(A)$. So $a_1$ is transcendental over $A$, and so are all the other $a_i$. Take now $a_2$ and consider $\tp(a_2/Aa_1)$. By indiscernibility, this must be the same as $\tp(a_j/Aa_1)$ for $j>1$, and for the same reason as above it cannot be algebraic. Continuing this way, we realise that $\seq{a_i\mid i<\omega}$ is a sequence of $A$-algebraically independent transcendentals. In this case, we can still permute the sequence and get another $A$-indiscernible one (being algebraically independent is something that does not depend on the order). [definition of ``transcendental'' in fields]
  \end{enumerate}
  \end{eg}
Indiscernible sequences are a very useful tool: for example they come handy in inductive arguments because if you spot a relation between, say $a_1, a_{20}, a_{55}$, you can move it to $a_1, a_2, a_3$.

\begin{thm}[Ramsey's Theorem]
For every coloring $c$ of the $n$-elements subsets $[\mb N]^n$ of $\mb N$ into $k$ colors there is an infinite $I\subseteq \mb N$ such that $c\restr [I]^n$ is constant. We say that $I$ is \emph{homogeneous}.

  In \emph{arrow notation},
\[
\aleph_0\to (\aleph_0)_k^n
\]
\end{thm}
\begin{proof}
  Not here.
\end{proof}
\begin{thm}[Erd\"os-Rado]
  In arrow notation, 
\[
\l(\beth_n(\kappa)\r)^+\to (\kappa^+)_\kappa^{n+1}
\]
I.e.\ every time you color the $n+1$-elements subsets of $\l(\beth_n(\kappa)\r)^+$ with $\kappa$ colors there is an homogeneous subset of size $\kappa^+$.
\end{thm}
\begin{proof}
  Not here.
\end{proof}
\begin{rem}
There is the following estimate for \emph{Ramsey numbers} (two colors and $2$-subets)  $R(k)> 2^{\frac k2}$ (e.g.\ $R(3)=6$, $R(4)=17$, i.e.\ $6\to (3)^2_2$, $17\to (4)^2_2$ and $6$, $17$ are minimal.).
\end{rem}
\section{Expanding and Shrinking Indiscernibles}
We can use these theorems for \emph{expanding and shrinking indiscernibles}.
\begin{defin}
  Given a sequence\footnote{Actually, we can give the same definition with any infinite linear order in place of $\omega$.} $I=\seq{a_i\mid i<\omega}$, the \emph{Ehrenfeucht-Mostowski type} of $I$ over $A$, denoted $\emtype(I/A)$, is the set of formulas (in infinitely many variables\footnote{$\omega$ of them, even if $I$ is indexed on a bigger set.}) $\phi(x_1,\ldots, x_n)\in L(A)$ such that for all $i_1<\ldots<i_n$ we have $\models \phi(a_{i_1},\ldots, a_{i_n})$.
\end{defin}
So, if $I$ is $A$-indiscernible, its Ehrenfeucht-Mostowski type is basically its type. But if you take, for instance,  $1,2,1,2,1,2,\ldots$ in $\mb Q$, you will not get a complete type, but you still get formulas as $x>0$.
\begin{pr}\label{pr:gimmeindie}
  Let $\bar a=\seq{a_i\mid i<\omega}$ be an arbitrary sequence in $\monster$ and $A$ a small set of parameters. Then, for any small linear order $I$ there is an $A$-indiscernible sequence $\seq{b_i\mid i\in I}$ such that  whenever $\Delta$ is a finite set of $L(A)$-formulas, there are $j_1<\ldots<j_n$ in $\omega$ such that for all $\phi\in \Delta$
\[
\models \phi(b_{1},\ldots, b_{n})\iff \models \phi(a_{j_1},\ldots, a_{j_n})
\]
\end{pr}
\begin{proof}
Let $L'=L\cup \set{c_i\mid i\in I} $ and let $T'$ be the $L'$-theory given by:
\begin{enumerate}
\item \label{point:oneofindisc} $\set{\phi(c_{j_1},\ldots, c_{j_n})\in L(A)\mid \forall i_1<\ldots<i_n\; \models \phi(a_{i_1},\ldots, a_{i_n})}_{j_1<\ldots<j_n\in I}$
\item \label{point:twoofindisc} $\set{\psi(c_{i_1},\ldots, c_{i_n})\coimplica \psi(c_{j_1},\ldots, j_n)\mid \psi\in L(A), i_1<\ldots<i_n\in I, j_1<\ldots, j_n\in I}$
\end{enumerate}
Notice that our Proposition is equivalent to the fact that $T'$ is consistent: since everything is small, a model of $T'$ can be embedded in $\monster$, and the realisations of the $c_j$s will be our $b_j$s. Let us do it more precisely:
\begin{claim}
  $T'$ consistent is enough.
\end{claim}
\begin{proof}[Proof of Claim] \renewcommand{\qedsymbol}{\qedclaim}  
Since everything is small, then there are elements $\seq{b_j\mid j\in I}$ such that $\seq{b_j\mid j\in I}=\seq{c_j^\monster\mid j\in I}$. By~\ref{point:twoofindisc} above, $\seq{b_j\mid j\in I}$ is $A$-indiscernible. 

Now let $\Delta\in \pfin(L(A))$,  consider $\phi_\Delta=\bigwedge_{\psi\in \Delta}\psi$ and assume \textsc{wlog}\footnote{Up to negating the $\psi$s which do not hold for $b_1,\ldots, b_n$.} that  $\models \phi_\Delta(b_1,\ldots, b_n)$. If for all $j_1<\ldots< j_n<\omega$ we had $\models \neg \phi_\Delta(a_{j_1},\ldots, a_{j_n})$, then we would have had $\neg \phi_\Delta\in \emtype(\seq{a_i\mid i<\omega}/A)$, so $\neg \phi_\Delta$ would have  been inn  $\ref{point:oneofindisc}$ above and we get the absurd $\models \neg \phi_\Delta(b_1,\ldots, b_n)$. 
\end{proof}\renewcommand{\qedsymbol}{\oldqed}
We are now going to use compactness to show that $T'$ is consistent. Let $T_0\in \pfin(T')$ and let\footnote{Clearly, we mean that the $\phi$s are coming from~\ref{point:oneofindisc} and the $\psi$ from~\ref{point:twoofindisc}} $\set{\phi_1,\ldots, \phi_k, \psi_1,\ldots, \psi_m}=\Phi_0$ be the collection of all formulas mentioned in $T_0$, except we replace the constants $c_j$ with variables $x_j$.  There are at most $2^{k+m}$ types in the formulas from $\Phi_0$. Now consider the coloring obtained this way: given $j_1<\ldots< j_n$ in $\omega$, define
\[
c(j_1,\ldots, j_n)=\tp_{\Phi_0}(a_{j_1},\ldots, a_{j_n})
\]
In other words, color the set of indexes $\set{j_1,\ldots, j_n}$ with the $\Phi_0$-type realised by the corresponding $a_j$s. By the instance $\aleph_0\to (\aleph_0)^n_{2^{k+m}}$ of Ramsey's Theorem we have an infinite subsequence of the $a_j$s all\footnote{More precisely, we should speak of the ordered $n$-tuples coming from them. } with the same $\Phi_0$-type, and this completes the compactness argument.
\end{proof}

\begin{co}
  Let $\seq{a_i\mid i\in I}$ be a small $A$-indiscernible sequence and $J\supseteq I$ another small linear order. Then, there is an $A$-indiscernible sequence $\set{b_j\mid j\in J}$ in $\monster$  extending it, i.e.\ such that for all $j\in I$ we have $a_j=b_j$.
\end{co}
\begin{proof}
  Use the previous Proposition together with saturation an homogeneity of $\monster$: first find some suitable $(b_j\mid j\in J)$ with the Proposition and then, since $\tp((a_i\mid i\in I)/A)=\tp((b_j\mid j\in I)/A)$ and everything is small, we can swap them with some element of $\aut(\monster/A)$.
\end{proof}
\section{Stable Formulas}
\begin{defin}
  Let $T$ be a complete theory.
  \begin{enumerate}
  \item We say that $\phi(\bar x, \bar y)$ has the \emph{$k$-order property} (in $T$) iff there are elements $\bar a_1,\ldots, \bar a_k$ and  $\bar b_1,\ldots, \bar b_k$ in $\monster$ such that $\models \phi(\bar a_i, \bar b_j)\iff i<j$.
  \item We say that $\phi(\bar x, \bar y)$ is \emph{unstable} (has the \emph{order property}) if, for all $k<\omega$, it has the $k$-order property.
  \item \emph{Stable} means ``not unstable''.
  \end{enumerate}
\end{defin}
Philosophically speaking, ``$\phi(x,y)$ has the order property if it encodes and infinite order''\footnote{The ``philosophically'' is because the infinite linearly order set will not in general be definable. But there will be something like a type-definable partial order with an infinite chain or stuff like that. Whether the statement is true depends on how you interpret ``encodes''.}.

\begin{eg}\*
  \begin{itemize}
  \item It is easy to see that in any theory, the formula $x=y$ is stable: if $a_1=b_2$ and $a_1=b_3$, then we also should have $a_2\ne b_2$ but $a_2=b_3$, contradicting transitivity.
  \item The formula $x<y$ in \textsf{DLO} has the order property. Just take an increasing sequence $a_n=b_n$ for all $n\in \mb N$.
  \item Let $T$ be the theory of an equivalence relation with infinitely many infinite classes. For the same reason as in the first example, $xEy$ is going to be stable.
  \item If $T$ is the theory of the random graph, the formula $\phi(x,y)\coloneqq xRy$ has the order property. Just choose the appropriate $a_i$ and $b_j$ inductively  using the random graph axiom. Anyway, we will see later that here there is no formula defining an order with infinite chains.
  \end{itemize}
\end{eg}
Note that even unstable theories have a ``stable part'': for example we just said that $x=y$ is stable in every theory.
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\section{Some Remarks On Stability}
\begin{rem}
By compactness,  $\phi(\bar x, \bar y)$ is unstable (in $T$) iff for some $M\models T$ there are $\seq{\bar a_i, \bar b_i\mid i<\omega}$ such that $M\models \phi(\bar a_i, \bar b_j)\iff i<j$. 
\end{rem}
\begin{exr}
  You can assume $(a_i)$ and $(b_i)$ to be indiscernible.
\end{exr}
\begin{pr}
  Assume $\phi(\bar x, \bar y)$ is unstable. Then for every linear order $I$ there is $M\models T$ and $\seq{\bar a_i, \bar b_i\mid i\in I}\subseteq M$ such that $M\models \phi(\bar a_i, \bar b_j)\iff i<j$ in $I$.
\end{pr}
\begin{proof}
  Compactness. Just write the set of formulas
\[
\set{\phi(\bar x_i, \bar y_j)\mid i<j}\cup \set{\neg \phi(\bar x_i, \bar y_j)\mid i\ge j}
\]
It suffices to show that this is finitely consistent. But each finite subset of this can easily be shown to be finitely consistent under our hypotheses. Then any $\abs{I}^+$-saturated\footnote{Actually $\abs I$-saturation should suffice.} $M\models T$ will realise our type.
\end{proof}
\section{Counting Types}
\begin{defin}
  Given a\footnote{Complete, as usual.} theory $T$, for each infinite cardinal $\kappa$ define the \emph{stability function} of $T$ to be
\[
g_T(\kappa)\coloneqq \sup\set{\abs{S_1(M)}\mid M\models T, \abs M=\kappa}
\]
\end{defin}
(actually it all started with Shelah noticing that the behaviour of this function is related to combinatorial patterns as the ones we saw above).

\begin{defin}
We define, for $\kappa$ an infinite cardinal,
\[
\ded\kappa \coloneqq \sup\set{\abs I\mid (I,<)\textnormal{ is a linear order with a dense }J\subseteq I\textnormal{ with }\abs J=\kappa}
\]
\end{defin}
\begin{fact}
$\kappa\le \ded \kappa \le 2^\kappa$.
\end{fact}
\begin{proof}
    By density,  every element of $I$ is then determined by its cut in $J$. The lower bound is trivial.
\end{proof}
\begin{eg}
  $\ded\aleph_0=2^{\aleph_0}$
\end{eg}
\begin{pr}\label{pr:kappadedkappa}
For all infinite cardinals $\kappa$, we have  $\kappa <\ded \kappa$.
\end{pr}
\begin{proof}
  Assume $\mu$ is minimal such that $2^\mu>\kappa$. Consider the lexicographic order on\footnote{Sequences of $0$s and $1$s of length $\le \mu$, i.e.\ the functions from some ordinal $\lambda\le \mu$ to $2$. You can think of the order as projecting the relative tree on a line. For example $0<01$.} $2^{\le \mu}$. Let now $I=2^{\le \mu}$ and $J=2^{<\mu}$. By choice of $\mu$, we have 
\[
\abs J=\abs{2^{<\mu}}=\sup\set{2^\lambda\mid \lambda <\mu}\le \kappa
\]
On the other hand $\abs I\ge 2^{\mu}$.  It only remains to show that $J$ is dense in $I$, but this  is obvious: follow two functions until they coincide. At some point they have to split, and this point is less than $\mu$ and the corresponding node belongs to $J$. Then $\ded \kappa\ge 2^\mu>\kappa$.
\end{proof}
\begin{pr}
  If $T$ is unstable, then for all $\kappa\ge \abs T$ we have  $g_T(\kappa)\ge \ded\kappa$.
\end{pr}
\begin{proof}
Let\footnote{From now on, I will deliberately write $x$ instead of $\bar x$, and the like.} $\phi(x,y)$ be an unstable formula in $T$.
  Let $I$ be a dense linear order of size\footnote{Here we are cheating a bit because we did not show that the supremum is attained. But for the purposes of this proof this is just an abuse of notation: just show the same thing for every $\lambda < \ded\kappa$\ldots} $\ded\kappa$ with a dense subset $J$ of size $\kappa$. Pick $\seq{a_i, b_i\mid i\in I}$ witnessing the order property for $\phi(x,y)$. Then 
\[
\abs{S_\phi(\underbrace{\set{b_j\mid j\in J}}_{B})}\ge\ded\kappa
\]
because if $a_i\ne a_{i'}$ are in $I$ there is some $j\in J$ such that $i<j<i'$ so $\phi(x, b_j)$ is in $\tp(a_i/B)\setminus \tp(a_{i'}/B)$. By L\"owenheim-Skolem there is some $M\models T$ such that $B\subseteq M$ and $\abs M=\kappa$. This shows that $\abs{S_x(M)}\ge \abs{S_\phi(B)}\ge \ded \kappa$.
\end{proof}
\section{On $\ded \kappa$}
Obviously, $\textsc{gch}\allora \ded\kappa\ge 2^\kappa$.
\begin{fact}[Mitchell(1972)] If $\cof\kappa\ge \aleph_1$, then there is a cardinal preserving Cohen extension forcing $\ded\kappa<2^\kappa$.
\end{fact}
\begin{fact}[Chernikov-Kaplan-Shelah]
  Starting with \textsc{gch} you can force 
\[
\aleph_{\omega+\omega}=\ded\aleph_\omega< (\ded \aleph_\omega)^{\aleph_0}=\aleph_{\omega+\omega+1}=2^{\aleph_\omega}
\]
\end{fact}
\begin{opprob}
  Can we have these two strict inequalities simultaneously?
\[
\ded\kappa<(\ded\kappa)^{\aleph_0}<2^\kappa
\]
\end{opprob}
\begin{thm}[Keisler-Shelah\footnote{Actually mostly done by Shelah, last two functions done by Keisler.}]
Let $T$ be countable. Then  the function $g_T(\kappa)$ coincides with one of the following six, and they correspond to properties of the theory:
\begin{enumerate}
\item $\kappa$, corresponding to $T$ being $\omega$-stable (in this case it is the same as totally transcendental)
\item $\kappa+2^{\aleph_0}$ corresponding to $T$ being superstable (but not $\omega$-stable)
\item $\kappa^{\aleph_0}$ corresponding to $T$ being stable (but not superstable)
\item $\ded \kappa$ [multi-order]
\item $(\ded \kappa)^{\aleph_0}$ corresponding to $T$ being \textsc{nip} (but none of the previous)
\item $2^\kappa$ corresponding to $T$ being none of the above (i.e.\ having \textsc{ip})
\end{enumerate}
\end{thm}
\begin{co}
  In an universe with \textsc{gch}, you cannot detect \textsc{nip} by counting types.
\end{co}
\begin{proof}
  In that case, $(\ded \kappa)^{\aleph_0}=2^\kappa$.
\end{proof}
\begin{lemma}\label{lemma:stablefacts}
  Let $T$ be a complete theory, and let $\phi(x,y)$, $\psi(x,z)$ be stable formulas. Then the following hold:
  \begin{enumerate}
  \item \label{point:stableopp} $\phi^*(y,x)\coloneqq \phi(x,y)$ is stable.
  \item $\neg \phi(x,y)$ is stable.
  \item $\phi\land \psi$ and $\psi\lor \phi$ are stable.
  \item If $y=uv$ and $c\in M^{\abs v}$ then $\phi(x,uc)$ is stable.
  \item If $T$ is stable, then $T^\eq$ is stable.
  \end{enumerate}
\end{lemma}
\begin{proof}\*
  \begin{enumerate}
  \item Reverse the order.
  \item Reverse the order.
  \item By the previous point, it suffices to prove one of the two. So assume that $\theta(x;yz)\coloneqq\phi\lor \psi$ is unstable, as witnessed by sequences $\seq{a_i, b_ic_i\mid i<\omega}$. We have
\[
\models\theta(a_i; b_jc_j) \iff \models \phi(a_i, b_j)\lor \psi(a_i, c_j)\iff i<j
\]
Define
\begin{align*}
  P&\coloneqq\set{(i,j)\in \mb N^2\mid i<j\textnormal{ and } \models \phi(a_i, b_j)}\\
  Q&\coloneqq\set{(i,j)\in \mb N^2\mid i<j\textnormal{ and } \models \psi(a_i, c_j)}\\
\end{align*}
This is a $2$-coloring of the pairs in $\mb N$, and it suffices to use Ramsey's theorem: an infinite homogeneous set for $P$ would say that $\phi$ is unstable, while an infinite homogeneous set for $Q$ would say that $\psi$ is unstable.
\item If $\phi(x; uc)$ is unstable, as witnessed by $\seq{a_i, b_i}$, then $\seq{a_i, b_ic}$ witnesses that $\phi(x,uv)$ is unstable.
\item Painful but easy.
  \end{enumerate}  
\end{proof}
There will be homework between today and tomorrow, to be handed in two weeks.
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\section{This Week's Goals}
The goal for this week is to prove these theorems (some of the definitions are still going to be given).
\begin{thm}\label{thm:localgoal}
Let $T$ be a complete theory, and $\phi(x,y)$ a formula.  The following are equivalent:
\begin{enumerate}
\item $\phi(x,y)$ is stable.
\item $R_\phi(x=x)<\omega$.
\item All $\phi$-types are definable.
\item For every $\kappa\ge \abs L$ and $M\models T$ of size $\kappa$, we have $\abs{S_\phi(M)}\le \kappa$.
\item There is some $M\models T$ of size $\kappa$ such that $\abs{S_\phi(M)}<\ded\kappa$.
\end{enumerate}
\end{thm}
This is a \emph{local} statement. It can be turned in the following \emph{global} one.
\begin{thm}\label{thm:globalgoal}
Let $T$ be a complete theory.  The following are equivalent:
\begin{enumerate}
\item $T$ is stable.
\item There is no indiscernible sequence $\seq{a_i\mid i<\omega}$ and formula $\phi(x,y)$ such that $\models \phi(a_i, a_j)\iff i<j$.
\item For all $\kappa\ge\aleph_0$ we have $g_T(\kappa)\le \kappa^{\abs T}$.
\item There is some $\kappa$ such that $g_T(\kappa)\le \kappa$.
\item There is some $\kappa$ such that $g_T(\kappa)< \ded \kappa$.
\item All formulas $\phi(x,y)$ with $\abs x=1$ are stable.
\end{enumerate}
\end{thm}
These can be used for the homework.
\section{Some Combinatorics}
\begin{lemma}[Erd\"os-Makkai]
  Suppose $H$ is infinite and $\mc C\subseteq \ms P(H)$ is such that $\abs{\mc C}>\abs H$. Then, for every $n\in
 \mb N$, there are $h_1,\ldots, h_n\in H$ and $C_0,\ldots, C_n\in \mc C$ such that
\begin{equation}\label{eq:starn}
\set{h_1,\ldots, h_n}\cap C_j=\set{h_1,\ldots, h_j}\tag{$\star_n$}
\end{equation}
In other words $h_i\in C_j\iff i\le j$.
\end{lemma}
\begin{proof}
  For a given $n$, \eqref{eq:starn} holds for $\mc C$ if and only if it holds for $H\setminus \mc C=\set{H\setminus C\mid C\in \mc C}$: just define $h_1'=h_n,\ldots, h_n'=h_1$ and $C_0'=H\setminus C_n, \ldots, C_n'=H\setminus C_0$. Then
\[
    h_i'\in C_j'\iff h_{n-i+1}\notin C_{n-j}\iff n-i+1>n-j\iff i<j+1\iff i\le j
\]
Assume the result holds for $n$ (the case $n=0$ is trivial). Pick $C\in \mc C$. Then either
\begin{equation}\label{caseone}
\abs{\mc C \cap C}=\abs{\set{X\cap C\mid X\in \mc C}}>\kappa\coloneqq \abs{H}
\end{equation}
or
\begin{equation}\label{casetwo}
\abs{\mc C \cap C}\le\kappa
\end{equation}

If~(\ref{caseone}) holds, then there is $c\in C$ such that $\abs{\set{Y\in \mc C\cap C \mid c\notin Y}}>\kappa$. This is because otherwise
\[
\abs{\set{X\cap C\mid X\in \mc C}\setminus \set C}\le \abs*{\bigcup_{c\in  C}\set{Y\in \mc C\cap C\mid c\notin Y}}\le \kappa\cdot\kappa=\kappa
\]
Take such $c\in  C$ and let $\mc D=\set{Y\in C\cap \mc C\mid c\notin Y}$. Then $\abs {\mc D}> \abs{C}$ and $\mc D\subseteq \ms P(C)$. By inductive hypothesis, there are $Y_0,\ldots, Y_n\in \mc D$ and $c_1,\ldots, c_n\in C$ such that $c_i\in Y_j\iff i\le j$. Now by definition $Y_j=C_j\cap  C$ for some $C_j\in \mc C$. Set $h_{n+1}\coloneqq c$ and $C_{n+1}\coloneqq C$.

If~(\ref{casetwo}) then we can do the same trick with $H\setminus C$ in place of $C$, because then\footnote{The map $\mc C\to (\mc C\cap C)\times ((H\setminus\mc C)\cap (H\setminus C))$ sending $C_0\mapsto (C_0\cap C, (H\setminus C_0)\cap (H\setminus C))$ is injective: if $C_0$, $C_1$ differ by some element $c$, it either lies in $C$ or in $H\setminus C$, and this will be detected by one of the two components of the map.} $\abs{(H\setminus\mc C)\cap (H\setminus C)}>\kappa$ and we can apply what we said in the beginning.
\end{proof}
This has the following consequence:
\begin{pr}\label{pr:toomanytypesunstable}
  Assume $B$ is an infinite set of parameters and $\phi(x,y)$ is a formula such that $\abs{S_\phi(B)}>\abs B$. Then $\phi(x,y)$ is unstable.
\end{pr}
\begin{proof}
  Consider, for each $a\in \monster$, 
\[
\tp_\phi(a/B)=\set{\phi(x,b)^{\eta_b}\mid \monster \models \phi(a,b)^{\eta_b}}
\]
where $\eta_b$ can be $0$ or $1$ and we mean that $\phi^0=\phi$ and $\phi^1=\neg\phi$. Then set
\[
S_a=\set{b\in B\mid \models \phi(a,b)}
\]
and
\[
\mc C=\set{S_a\mid a\in \monster}
\]
Since by hypothesis $\abs{\mc C}>\abs B$, we can apply the Erd\"os-Makkai Theorem, and we get that, for each $n$, there are $a_1,\ldots, a_n, a_0$ and $b_1,\ldots, b_n$ such that 
\[
i\le j\iff b_i\in S_{a_j}\iff \models \phi(a_j, b_i)
\]
And this means that $\phi^*(y,x)=\phi(x,y)$ is unstable, and we can conclude by point~\ref{point:stableopp}  of Lemma~\ref{lemma:stablefacts}.
\end{proof}

\section{Shelah's Local Rank}
\begin{defin}We say that $\phi(x,y)$ has the \emph{binary tree property} iff there are tuples $\seq{b_\sigma \mid \sigma \in 2^{<\omega}}$ such that for every $\eta\in 2^\omega$ this set of formulas is consistent:
\[
\set{\phi(x, b_{\eta\restr k})^{\eta(k)}\mid  k<\omega}
\]
\end{defin}
In other words the branches of this tree are consistent:
\begin{center}
\begin{tikzpicture}[scale=1]
\node(top) at (0,0){$\phi(x, b_\Lambda)$};
\node(left) at (-2,-1){$\phi(x, b_0)$};
\node(right) at (2,-1){$\neg \phi(x, b_1)$};
\node(left21) at (-3,-2){$\phi(x, b_{00})$};
\node(left22) at (-1,-2){$\neg\phi(x, b_{01})$};
\node(right21) at (1,-2){$\phi(x, b_{10})$};
\node(right22) at (3,-2){$\neg\phi(x, b_{11})$};
\node(dots1) at (-3.5, -3){$\ldots$};
\node(dots2) at (-2.5, -3){$\ldots$};
\node(dots3) at (-1.5, -3){$\ldots$};
\node(dots4) at (-0.5, -3){$\ldots$};
\node(dots5) at (0.5, -3){$\ldots$};
\node(dots6) at (1.5, -3){$\ldots$};
\node(dots7) at (2.5, -3){$\ldots$};
\node(dots8) at (3.5, -3){$\ldots$};
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\draw (right) -- (right22);
\draw (left21)-- (dots1);
\draw (left21)-- (dots2);
\draw (left22)-- (dots3);
\draw (left22)-- (dots4);
\draw (right21)-- (dots5);
\draw (right21)-- (dots6);
\draw (right22)-- (dots7);
\draw (right22)-- (dots8);
\end{tikzpicture}
\end{center}
\begin{defin}
  Let $\phi(x,y)$ be a formula. The \emph{$R_\phi$-rank} of $X$ (a definable set) is defined as follows:
  \begin{itemize}
  \item $R_\phi(X)\ge 0$ iff $X$ is consistent (nonempty).
  \item $R_\phi(X)\ge n+1$ iff there is a tuple $a\in \monster^{\abs y}$ such that $R_\phi(X\land \phi(x,a))\ge n$ and $R_\phi(X\land \neg\phi(x,a))\ge n$
  \end{itemize}
\end{defin}
This rank somehow measures ``how stable'' a formula is.
\begin{rem}
  Note that in the tree generated here siblings have the same parameters.
\end{rem}

\begin{eg}
  Let's try with $X\coloneqq x=x$ and see what happens. First, use $\phi(x,y)\coloneqq x=y$. Since both $x=a$ and $x\ne a$ are consistent, the rank is at least $1$. Anyway $x_a$ has rank $0$, since we cannot split it anymore. (The other one will of course continue to split on the ``$\ne$'' branch.
\end{eg}
\begin{eg}\label{ex:linearboom}
  What if $\phi(x,y)\coloneqq x<y$? This has infinite rank:
\begin{center}
\begin{tikzpicture}[scale=1]
\node(top) at (0,0){$x=x$};
\node(left) at (-2,-1){$x<\frac12$};
\node(right) at (2,-1){$x\ge\frac12$};
\node(left21) at (-3,-2){$x<\frac14$};
\node(left22) at (-1,-2){$x\ge\frac14$};
\node(right21) at (1,-2){$x<\frac34$};
\node(right22) at (3,-2){$x\ge\frac34$};
\node(dots1) at (-3.5, -3){$\ldots$};
\node(dots2) at (-2.5, -3){$\ldots$};
\node(dots3) at (-1.5, -3){$\ldots$};
\node(dots4) at (-0.5, -3){$\ldots$};
\node(dots5) at (0.5, -3){$\ldots$};
\node(dots6) at (1.5, -3){$\ldots$};
\node(dots7) at (2.5, -3){$\ldots$};
\node(dots8) at (3.5, -3){$\ldots$};
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\draw (left21)-- (dots2);
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\draw (left22)-- (dots4);
\draw (right21)-- (dots5);
\draw (right21)-- (dots6);
\draw (right22)-- (dots7);
\draw (right22)-- (dots8);
\end{tikzpicture}
\end{center}
\end{eg}
\begin{rem}
  Saying ``rank $\ge n$'' is definable! We will see later in detail.
\end{rem}
\begin{thm}
  $\phi(x,y)$ is stable  iff $R_\phi(x=x)<\omega$.
\end{thm}
\begin{proof}\*


  \bigoval{$\se$} Assume $\phi(x,y)$ is unstable, as witnessed by $\seq{a_i, b_i\mid i\in [0,1]}$. It then suffices to do as in Example~\ref{ex:linearboom}.


  \bigoval{$\allora$} Assume $\phi(x,y)$ has the binary tree property (it is implied by having infinite rank). % Take a realisation of each branch and order them in the lexicographic way (as in the proof of Proposition~\ref{pr:kappadedkappa}). Alternatively,
Note that if $B=\set{b_\sigma\mid \sigma\in 2^{<\omega}}$ then  $\abs B=\aleph_0$ and $\abs{S_\phi(B)}=2^{\aleph_0}$. Apply Proposition~\ref{pr:toomanytypesunstable}.
\end{proof}
\begin{defin}
  Suppose $p\in S(A)$. We say that \emph{$p$ is definable over $B$} if for every $\phi(x,y)$ there is $\psi_\phi(y)\in L(B)$ such that $\phi(x,a)\in p\iff \models \psi_\phi(a)$. We say that $p\in S_x(A)$ is \emph{definable} iff it is definable over $A$.
\end{defin}
\begin{eg}
  Let $T$ be the theory of equality. Here there are two kind of types: the type 
\[
P_b\coloneqq \set{x=b}\cup \set{x\ne c\mid c\ne b}
\]
and the type
\[
P=\set{x\ne a\mid a\in M}
\]
These are both definable. For example, let us look at the formula $x=y$. For the first one, notice that $x=a\in P_b\iff a=b$. For the second one, notice that $x=a\in P\iff a\ne a$. Then take respectively $y=b$ and $y\ne y$.
\end{eg}
\begin{lemma}The following facts hold:
  \begin{enumerate}
  \item For each $n\in \omega$, the set $\set{e\mid R_\phi(\theta(x,e))\ge n}$ is definable.
  \item If $R\phi(\theta(x))=n$ then for every $a\in \monster^{\abs y}$ either $R_\phi(\theta(x)\land \phi(x, a))<n$ or $R_\phi(\theta(x)\land \neg\phi(x, a))<n$.
  \end{enumerate}  
\end{lemma}
\begin{proof}
The second statement is basically definition. The first one is because you can write a big, painful but easy formula: $R_\phi(\theta(x,e))\ge n$ iff
\[
\models \exists (y_\sigma)_{\sigma \in 2^{\le n}}\exists (x_\eta)_{\eta\in 2^{n+1}}\Bigl(
\bigwedge_{\eta\in 2^{n}} \theta(x_\eta, e)\land \bigwedge_{k=1}^n(\phi(x_\eta, y_{\eta\restr k}))^{\eta(k)}
\Bigr)\qedhere
\]
\end{proof}

\begin{thm}
  If $\phi(x,y)$ is stable, then all $\phi$-types are definable.
\end{thm}
\begin{proof}
  Let $p\in S_\phi(A)$. Since $\phi$ is stable, there is some $n_\phi\in\omega$ such that $R_\phi(x=x)=n_\phi$. Then there is $p_0\in\pfin (p)$ such that $R_\phi(p_0)$ is minimal\footnote{Of course with $R_\phi(p_0)$ we mean $R_\phi(\bigwedge p_0)$.} among the finite subtypes of $p$. How do you construct it? Start with any formula, say $\phi(x, a_1)\in p$, and check if there is anything in $p$ that brings the rank down when conjuncted. Take conjunctions and keep doing that until you can. Then let $p_0$ be the resulting finite conjunction.
Then we can define $p$ using the previous Lemma: set\footnote{More precisely, if $R_\phi(p_0)=n$, let $\psi_\phi(y)$ be 
\[\Bigl(R_\phi(p_0\land \phi(x,y))\ge n\Bigr) \land \neg\Bigl( R_\phi(p_0\land \phi(x,y))\ge n+1\Bigr)\]}
\[
\psi_\phi(y)\coloneqq R_\phi(p_0)=R_\phi(p_0\land \phi(x,y))
\]
If $\phi(x,y)$ is in $p$, then the two ranks will be equal by choice of $p_0$. Otherwise the rank goes down by the second part of the Lemma. To conclude, notice that this is an $L(A)$-formula.
\end{proof}
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\section{More Characterisations of  Stability}
\begin{pr}
  The following are equivalent:
  \begin{enumerate}
  \item $T$ is unstable.
  \item There is a formula $\theta(x,y)$ and a sequence $\set{c_i\mid i<\omega}$ such that $\models \theta(c_i, c_j)\iff i<j$.
  \end{enumerate}
\end{pr}
\begin{proof}
  \bigoval{$1\allora 2$} If $T$ is unstable, there are $\phi$ and $\seq{a_i, b_i\mid i<\omega}$ such that $\models \phi(a_i, b_i)$ iff $i<j$. Just let $c_i=a_ib_i$ and $\theta(x_1,x_2; y_1, y_2)$ be $\phi(x_1, y_2)$.

\bigoval{$2\allora 1$} Just let $\phi=\theta$ and $a_i=b_i=c_i$.
\end{proof}


$I$ will always be a linear order.
\begin{defin}
  We say that a sequence $\seq{a_i\mid i\in I}$ is \emph{totally indiscernible} if for any $i_1,\ldots, i_n$ (pairwise different) in  $I$ and any $j_1,\ldots, j_n$ (pairwise different) in  $I$ we have $\tp(a_{i_1},\ldots, a_{i_n})=\tp(a_{j_1},\ldots, a_{j_n})$.
\end{defin}
\begin{eg}\*
  \begin{itemize}
  \item   In \textsf{DLO}, $\seq{a_n=n\mid n<\omega}$ is indiscernible over $\emptyset$ but not totally indiscernible, since $a_1<a_2$ but $a_2\centernot<a_1$.
  \item In $\textsf{ACF}_0$, a sequence $\seq{a_i=\pi_i\mid i<\omega}$ of algebraically independent transcendentals is totally indiscernible.
  \end{itemize}
\end{eg}
\begin{pr}
$T$  is stable if and only if every indiscernible sequence is totally indiscernible.
\end{pr}
\begin{proof}\*

  \bigoval{$\se$} Assume that $T$ is unstable, as witnessed\footnote{Using the previous Proposition.} by some $\phi(x,y)$ and $\seq{a_i\mid i<\omega}$ such that $\models\phi(a_i, a_j)\iff i<j$. By Proposition~\ref{pr:gimmeindie} applied with $\Delta=\set{\phi(x,y), \neg \phi(x,y), \phi(y,x), \neg \phi(y,x)}$ there is an indiscernible sequence $\seq{a_i'\mid i<\omega}$  and $i<j$ such that  
\[
\models \phi(a_1', a_2')\land \neg \phi(a_2', a_1')\iff \models \phi(a_i, a_j)\land \neg \phi(a_j, a_i)\iff i<j
\]
So $\phi(x, y)\land \neg \phi(y,x)\in \tp(a_1', a_2')\setminus \tp (a_2', a_1')$, and our sequence is not totally indiscernible.


  \bigoval{$\allora$} Suppose $\seq{a_i\mid i\in  I}$ is an indiscernible sequence which is not totally indiscernible. Again by Proposition~\ref{pr:gimmeindie} we  can then get another sequence $\seq{a_i'\mid i\in \mb Q}$ with the same property. This means that there is a formula $\phi(x_1,\ldots, x_n)$, some $r_1<\ldots< r_n\in \mb Q$, and some permutation $\sigma$ of $\mb Q$ such that
\[
\models \phi(a_{r_1},\ldots, a_{r_n})\land \neg \phi(a_{r_{\sigma(1)}}, \ldots, a_{r_{\sigma(n)}})
\]
Since every finite permutation is a product of consecutive transpositions, there is some $j\in \set{1,\ldots, n}$ such that 
\[
\models \phi(a_{r_1},\ldots, a_{r_j}, a_{r_{j+1}},\ldots, a_{r_n})\land \neg \phi(a_{r_1},\ldots,  a_{r_{j+1}}, a_{r_j}, \ldots, a_{r_n})
\]
(not really, but almost: up to another permutation of $\set{1,\ldots n}$). Choose 
\[
\psi(x,y)\coloneqq\phi(a_{r_1},\ldots, a_{r_{j-1}},x,y,a_{r_{j+2}},\ldots, a_{r_n})\land \neg \phi(a_{r_1},\ldots, a_{r_{j-1}},y,x,a_{r_{j+2}},\ldots, a_{r_n})
\]
Then $\psi(x,y)$ has the order property: since we used $\mb Q$, we have infinitely many guys to choose from to witness it. In fact, if $\seq{k_i\mid i<\omega}$ is an increasing sequence in $r_j, r_{j+1}$ then $\psi(a_{k_i}, a_{k_j})\iff i<j$.
\end{proof}
\begin{pr}
  Assume $T$ is stable. Then for every $\phi(x,y)$ there is a $k_\phi<\omega$ such that for every indiscernible sequence $\seq{a_i\mid i\in I}$,  for all $b$, either $\abs{\set{i\in I\mid \models \phi(a_i, b)}}<k_\phi$ or $\abs{\set{i\in I\mid \models \neg\phi(a_i, b)}}< k_\phi$.
\end{pr}
\begin{proof}
  If $\phi(x,y)$ is stable, then $\phi(x,y)$ does not have the $k$-order property for some $k<\omega$. Then just let $k_\phi\coloneqq k$ (or $k+1$, depending on you definitions). Indeed, if this did not work, we could find an indiscernible sequence $\seq{a_i}$ such that $\phi(x,b)$ holds for at least $k$-many elements and $\neg \phi(x,b)$ does not hold for at least $k$-many elements. Using total indiscernibility we then get
\[
\models \exists y\Bigl(\bigwedge_{0\le j<k}\phi(a_j, y)\land \bigwedge_{k\le j< 2k}\neg\phi(a_j, y)\Bigr)
\]
and in particular, for each $i\le k$, again by total indiscernibility,
\[
\models \exists y\Bigl(\bigwedge_{0\le j<i}\phi(a_j, y)\land \bigwedge_{i\le j< k}\neg\phi(a_j, y)\Bigr)
\]
And if $b_i$ is a witness to the above existential, then $\models \phi(a_j, b_i)\sse j<i$.
\end{proof}
\section{Some Examples of Stable Theories}
Do not expect complete proofs here.

\begin{thm}
  Every strongly minimal theory is stable.
\end{thm}
\begin{proof}[Proof Sketch]
  Basically the only $1$-types over a model are the ones saying ``i am this guy'' or ``i am different from all these guys'', and for a model $M$ we have $\abs{S_n(M)}=\abs{S_1(M)}=\abs M$.
\end{proof}
Recall that these theories are strongly minimal:
\begin{enumerate}
\item $\textsf{ACF}_0$, $\textsf{ACF}_p$
\item Vector spaces
\item Graphs, finite balancing with no cycle
\end{enumerate}

A bigger class between ``strongly minimal'' and ``stable'' is ``$\omega$-stable''.
\begin{defin}[Assume the language is countable]
  A theory is $\omega$-stable iff whenever $\abs A=\aleph_0$ then $\abs{S_n(A)}\le \aleph_0$ for all $n<\omega$.
\end{defin}
These can be understood either via Morley rank or via the (omitting of the) binary tree property: the same one we had for stable formulas, except you are allowed to change the formula while going down the tree.
\begin{eg}
  These  are $\omega$-stable but not strongly minimal:
  \begin{itemize}
  \item An equivalence relation with infinitely many infinite classes (will have Morley rank $2$).
  \item The theory $\textsf{DCF}_0$ of differentially closed fields\footnote{See later.} of characteristic $0$. (Robinson)
  \end{itemize}
\end{eg}
\begin{eg}
  Examples of stable, but not $\omega$-stable theories are
  \begin{itemize}
  \item The theory $\textsf{DCF}_p$ of differentially closed fields of characteristic $p$. (Card Wood)
  \item The theories $\textsf{SCF}_{p, e}$ (separably closed fields\footnote{See later.}).
  \end{itemize}
\end{eg}
\begin{eg}
  Groups:
  \begin{itemize}
  \item All abelian groups are stable.
  \item All algebraic groups over an \textsf{ACF} are stable, since they are definable in a stable theory.
  \item The free group $F_n$ on $n$ generators is stable (Sela) (not $\omega$-stable if $n\ge 2$).
  \end{itemize}
\end{eg}
\begin{conjecture}[Cherlin]
  Every simple\footnote{In the algebraic sense.} group of finite Morley rank is an algebraic group over an algebraically closed field.
\end{conjecture}
This has been open since the $'70s$.

What about fields?
\begin{thm}[Macyntire]
  Every $\omega$-stable field is algebraically closed.
\end{thm}
\begin{conjecture}
  Every stable field  is separably closed.
\end{conjecture}
What are separably closed fields? Call an algebraic element \emph{separable} if its minimal polynomial has only simple roots. Then separably closed means that all separable elements over the field are already in the field. The \emph{degree of imperfection}  is $e\coloneqq[K\mid K^p]$.
\begin{fact}
  $\textsf{SCF}_{p,e}$ is model complete, has quantifier elimination  after you add a base of $K$ as a vector space over $K^p$, it is stable\footnote{Delon?} and not $\omega$-stable.
\end{fact}
The reason it is not $\omega$-stable is that there is a descending chain $K>K^p>K^{p^2}>\ldots$ and this cannot happen in an $\omega$-stable theory.\footnote{(Morley Rank, Morley Degree) goes down.}

Differentially closed fields are differential fields (fields with a derivation) such that for any differential polynomials $f,g\in K\set y=K[y, \partial y, \partial^2 y,\ldots]$ such that  $\operatorname{ord}(f)>\operatorname{ord}(g)$  there is $a$ such that $f(a)=0$ and $g(a)\ne 0$.

Graphs?
\begin{fact}
  Every planar graph is stable.
\end{fact}
\begin{rem}
  We did not see one of the implications (all $\phi$-types are definable implies few $\phi$-types). This is in the official notes. The proof is basically: count the definitions.
\end{rem}
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\section{Stable $=$ NIP $+$ NSOP}
\subsection{Motivation}
It all started with this ``classification map''. Some dividing lines (Shelah):
\begin{itemize}
\item Independence property
\item Tree property
\item Order property
\end{itemize}
The idea was that structures satisfying one of these are ``bad structures''. On the other side, not satisfying any of them brings us in the ``structured side'', e.g.\ in the \textsf{NOP} (i.e.\ stable) case every type is definable.  The independence property is somehow associated to ``randomness''. The prototypical example of \textsf{NIP} theories are the stable ones or \textsf{DLO}, the prototypical example of \textsf{IP} theory is the random graph.

The idea is: if $T$ is unstable, then either $T$ is ``random'' or $T$ ``has\footnote{In the sense of ``defines''. Remember that an unstable formula defines and order on a set which may not be definable.} a linear order''. Lets start  giving precise definitions.
\subsection{Definitions}
\begin{defin}
  We say that $\phi(x;y)$ has the \emph{strict order property} if there is a sequence $\seq{b_i\mid i<\omega}$ such that for all $i<j<\omega$ we have $\phi(\monster, b_i)\subsetneq \phi(\monster, b_j)$. In other words
\[
\models \forall x\; (\phi(x, b_i)\implica \phi(x, b_j))\land \exists x\; (\phi(x, b_j)\land \neg \phi(x, b_i))
\]
\end{defin}
\begin{eg}\*
  \begin{itemize}
  \item   The formula $x<y$ in \textsf{DLO} has the strict order property, as witnessed by  any increasing sequence $b_1<b_2<\ldots$, because then $\set{a\mid a<b_1}\subsetneq \set{a\mid a<b_2}\subsetneq\ldots$.
  \item $xRy$ in the random graph does \emph{not} have \textsf{SOP}. This will be a particular case of a more general result which we will show later.
  \end{itemize}

\end{eg}
\begin{defin}
  $T$ has  \textsf{SOP} if some formula in $T$ does, and $T$ is \textsf{NSOP} otherwise.
\end{defin}
\begin{thm}
  Let $T$ be a complete theory. The following are equivalent:
  \begin{enumerate}
  \item $T$ has \textsf{SOP}.
  \item There is a formula $\psi(x_1, x_2)\in L$ defining a preorder with infinite chains.
  \item There is a formula $\psi(u_1, u_2)\in L^\eq$ defining a partial order with infinite chains.\footnote{Here $\abs {u_1}=\abs{u_2}=1$.}
  \end{enumerate}
\end{thm}
\begin{defin}
  A \emph{preorder} is a binary relation which is reflexive and transitive.
\end{defin}
In other words, $x\preceq y \land y\preceq x$ does not imply $x=y$.
\begin{proof}[Proof of the Theorem]\*

\bigoval{$1\allora 2$} Assume $\phi(x;y)$ has the \textsf{SOP}, as witnessed by $\set{b_i\mid i<\omega}$. Define
\[
\psi(y_1, y_2)\coloneqq \forall x\;(\phi(x, y_1)\implica \phi(x, y_2))
\]
  This obviously defines a preorder on $\monster^{\abs y}$, and by hypothesis it has an infinite chain: namely,  $\seq{b_i\mid i<\omega}$. 

Note that this is a formula that defines a preorder \emph{on the whole structure}, not just on the $b_i$.

\bigoval{$2\allora 3$} Just define the equivalence relation
\[
E(y_1, y_2)=\psi(y_1, y_2) \land \psi(y_2, y_1)
\]
 Since $\psi$ is a preorder, this induces a partial order on $\monster^{\abs y}/E$. The formula will be
\[
\hat \psi(u_1, u_2)=\exists x_1, x_2\; (\psi(x_1, x_2)\land f_E(x_1)=u_1 \land f_E(x_2)=u_2 )
\]

\bigoval{$3\allora 1$} Given such a $\psi(u_1, u_2)$, by Lemma~\ref{lemma:eqbasics} we have a formula $\phi$ such that
\[
T^\eq\models \forall x, y\;(\phi(x, y)\coimplica \psi(f_E(x), f_E(y)))
\]
so it suffices to look at $\phi$.
\end{proof}
\begin{defin}
  We say that $\phi(x;y)$ has the \emph{independence property} (\textsf{IP}) if there are elements $\seq{a_i\mid i<\omega}$ and $\seq{b_S\mid S\subseteq \omega}$ such that
\[
\models \phi(a_i, b_S)\iff i\in S
\]
We say that $T$ has the independence property if some formula in $T$ has. Otherwise we say that $T$ is \textsf{NIP}, or \emph{dependent}.
\end{defin}
In other words, ``$\phi$ has \textsf{IP} if it can encode the power set of $\mb N$''.
\begin{rem}
  This is basically the same idea as \textsc{vc}-dimension in statistics and yes, there are connections.
\end{rem}
\begin{eg}\*
  \begin{itemize}
  \item   $x=y$ and $x<y$ in \textsf{DLO} do not have \textsf{IP} (are \textsf{NIP}). For  the second formula, the point is that we can get a configuration of the form
\[
a_1<b_{\set 1}<a_2<b_{\set{2}}
\]
but $1\notin \set 2$.

\item $xRy$ in the random graph has \textsf{IP}: take any sequence of different elements $\seq{a_i\mid i<\omega}$, and take, for all $S\subseteq \omega$, the partial type
\[
P_S(y)\coloneqq\set{a_iR y\mid i\in S}\cup \set{\neg a_iR y\mid i\notin S}
\]
which is finitely consistent by the random graph axioms. Then let $b_S$ be any realisation of $P_S$ in the monster.
  \end{itemize}
\end{eg}
\begin{rem}
By compactness,  for \textsf{IP}, or for \textsf{SOP}, it is enough to show that there are arbitrarily long finite sequences with the desired property, e.g.\ the same as in the definitions but replacing $\omega$ with arbitrarily large $n\in \omega$.
\end{rem}
\begin{eg}
  Some examples of \textsf{NIP} theories:
  \begin{itemize}
  \item All stable theories.
  \item All o-minimal theories, e.g.\ \textsf{DLO}, \textsf{RCF} or $\Th(\mb R_{\exp})$.
  \item Algebraically closed valued fields.
  \item Trees.
  \end{itemize}
\end{eg}

  As usual, sequences witnessing ``bad properties'' can be assumed to be indiscernible. For \textsf{NIP}, there is even a better thing:
  \begin{defin}
    Given a formula $\phi(x;y)$ we define the \emph{alternation number} of $\phi$  as
\[
\alt(\phi)=\max\set{n\mid \eqref{altn} \textnormal{ happens}}
\]
\begin{equation}\label{altn}
\exists\textnormal{ indisc.\ } \seq{a_i}_{i<\omega}\textnormal{ and $b\in \monster$ s.t.\ }
\models \bigwedge_{i=0}^{n-1}\phi(a_{2i}, b)\land \neg \phi(a_{2i+1}, b)\tag{$*_n$}
\end{equation}
If there is no maximum we set $\alt(\phi)=\infty$.
  \end{defin}
  \begin{eg}
    In \textsf{DLO}, suppose that $\seq{a_i\mid i<\omega}$ is increasing. Then, if $b$ is smaller than all the $a_i$, or bigger than all of them, there will be no alternation on $x<b$. If $b$ is ``in the middle'', it will be $1$. Since we are taking the maximum on the indiscernible sequences, this means that $\alt(x<y)\ge 1$.
  \end{eg}
  \begin{thm}\label{thm:nipifffinalt}
    $\phi$ is \textsf{NIP} if and only if $\alt(\phi)<\infty$.
  \end{thm}
  \begin{proof}\*

\bigoval{$\se$} This is very easy if you assume the following:
\begin{claim}
  If $\phi(x,y)$ has \textsf{IP} then there are an indiscernible $\seq{a_i\mid i<\omega}$ and elements $\seq{b_S\mid S\subseteq \omega}$ such that $\models \phi(a_i, b_S)\iff i\in S$.
\end{claim}
Given the Claim, it is sufficient to take as $S$ the even numbers. But the Claim follows from Proposition~\ref{pr:gimmeindie}.
    
\bigoval{$\allora$} Assume $\alt(\phi)=\infty$. By compactness there is an indiscernible $\seq{a_i\mid i<\omega}$ and some $b\in \monster^{\abs y}$ such that
\[
\forall i<\omega\; \models\phi(a_{2i}, b)\land \neg \phi(a_{2i+1}, b)
\]
From here  we will extract the independence property for arbitrarily large sequences. In other words, we are now going to show that, given $n<\omega$, there are $\seq{b_S\mid S\subseteq n}$ such that for all $i<n$ we have $\models \phi(a_i; b_S)\iff i\in S$. Given $S$, we can  find indexes $(i_0,\ldots, i_{n-1})$ such that $i_j$ is even iff $j\in S$: just take $i_j\coloneqq 2j+1-\chi_S(j)$. So for all $S\subseteq n$ we have
\[
\models \exists y\Bigl(
\bigwedge_{j\in S}\phi(a_{i_j}, y)\land \bigwedge_{j\notin S}\neg\phi(a_{i_j}, y)
\Bigr)
\]
this is in $\tp(a_{i_0}, \ldots, a_{i_{n-1}})$ which is, by indiscernibility, the same as $\tp(a_0,\ldots, a_{n-1})$. Just collect as the ``true'' $b_S$ a witness for this existential with respect to them.
  \end{proof}
  \begin{thm}
    $T$ is stable if and only if it is both \textsf{NIP} and \textsf{NSOP}.
  \end{thm}
Since \textsf{IP} and \textsf{SOP} imply unstability\footnote{For \textsf{IP}, just consider $b_{\set{0,\ldots, j-1}}$.}, this follows from the following stronger local statement.
  \begin{lemma}
  If $\phi(x,y)$ is unstable, then either $\phi(x,y)$ has \textsf{IP} or there is a formula $\theta(x, b)$ such that $\phi(x,y)\land \theta(x,b)$ has \textsf{SOP}.
  \end{lemma}
  \begin{proof}
    Let $\seq{a_i\mid i\in \mb Q}$ and $\seq{b_i\mid i\in \mb Q}$ witness the order property with $\le$ instead of $<$ for $\phi$, and assume that the second sequence is indiscernible. Assume that $\phi(x, y)$ is \textsf{NIP}. Then there is $n<\omega$ such that the formula
\[
\phi(x, b_0)\land \neg \phi(x, b_1)\land \phi(x, b_2)\land \neg \phi(x, b_3)\land\ldots\land \phi(x, b_{2n-2})\land \neg \phi(x, b_{2n-1})
\]
is inconsistent, by Theorem~\ref{thm:nipifffinalt}. On the other hand
\[
\neg \phi(x, b_0)\land \neg \phi(x, b_1)\land\ldots \land \neg \phi(x, b_{n-1})\land \phi(x, b_{n})\land \ldots\land \phi(x, b_{2n-1})
\]
is consistent, as witnessed by $a_n$ because of the order property. So we have $n$-many ``no'' and $n$-many ``yes'' . Up to a permutation given by a composition of swapping a ``yes'' with a ``no'', we can get to a `yes-no-yes-no-\ldots'' sequence\footnote{Start swapping the last ``no'' with the first ``yes'' and bring the ``no'' to the last position. Bring the moved ``yes'' to the first position. Then iterate.}. Therefore, there is a function $\eta\from 2n\to 2$  and  $i_0<2n$ such that
\[
\bigwedge_{i<i_0}(\phi(x, b_i))^{\eta(i)}\land \neg \phi(x, b_{i_0})\land  \phi(x, b_{i_0+1})\land \bigwedge_{i>i_0+1}(\phi(x, b_i))^{\eta(i)}
\]
is consistent but 
\[
\underbrace{\bigwedge_{i<i_0}(\phi(x, b_i))^{\eta(i)}}_{\bigcircled{1}}\land  \phi(x, b_{i_0})\land \neg  \phi(x, b_{i_0+1})\land \underbrace{\bigwedge_{i>i_0+1}(\phi(x, b_i))^{\eta(i)}}_{\bigcircled{2}}
\]
is inconsistent. This is because the swappings bring us from a consistent thing to an inconsistent one, so at a certain point we must stop being consistent. Let $\theta(x, \bar b)\coloneqq \bigcircled{1}\land \bigcircled{2}$, where $b=b_0,\ldots, b_{i_0-1}, b_{i_0+2},\ldots, b_{2n-1}$. 


Let us show that $\psi(x,y)\coloneqq \phi(x,y)\land \theta(x, b)$ has the strict order property. Choose an increasing sequence $\seq{r_n\mid n<\omega}$ in $(i_0, i_0+1)$ and let $c_n=b_{r_n}$. We have to check that
\begin{enumerate}
\item $\models \forall x\; (\psi(x, c_i)\implica \psi(x, c_{i+1}))$
\item $\models \exists x\; (\psi(x, c_{i+1})\land \neg \psi(x, c_i))$
\end{enumerate}
For the second thing, just use as a witness something like $a_{\frac{r_n+r_{n+1}} 2}$. For the first part: if it does not hold there is $a$ such that
\[
\models \theta(a,b)\land \phi(a, b_{r_i})\land \neg \phi(a, b_{r_i+1})
\]
but this $a$ cannot exist by construction when $r_i=i_0$ and $r_{i+1}=i_0+1$. Apply indiscernibility.
  \end{proof}

From the next time we will follow the presentation from \emph{Simple Theories} by Frank Wagner (mostly Chapter~2), but with more details\footnote{Actually filling the details in this book is probably the best way to learn simplicity, but of course it requires time.}. Other references are \emph{Simple Theories and Elimination of Hyperimaginaries} by Casanovas and \emph{A Course  in Model Theory} by Tent and Ziegler. 
\chapter{24/11}
``Map of the universe'': \url{www.forkinganddividing.com}, by G.~Conant.
[various comments]
\begin{fact}
  Triangle-free generic graph: it is $\textsf{TP}_2$, but \emph{rosy}.
\end{fact}
\section{Dividing}
\begin{defin}
Let $k\in \mb N$.  We say that a formula $\phi(x;b)$ \emph{$k$-divides over $A$} iff there is a sequence $\seq{b_i\mid i<\omega}$ such that
\begin{itemize}
\item for all $i<\omega$ we have $\tp(b_i/A)=\tp(b/A)$, and
\item $\set{\phi(x; b_i)\mid i<\omega}$ is $k$-inconsistent, meaning that every one of its subsets with $k$ elements is inconsistent.
\end{itemize}
We say that a partial type $\pi(x)$ \emph{$k$-divides over $A$} iff $\pi(x)\proves \phi(x;b)$ for some formula $\phi(x;b)$ that $k$-divides.

We say that a formula/type \emph{divides} iff it divides for some $k\in \mb N$.
\end{defin}
\begin{eg}
  The formula $x=b$ divides over $A$ if and only if $b\notin \acl(A)$.
\end{eg}
\begin{proof}
  \bigoval{$\se$} Let $\set{b_i\mid i<\omega}$ be different realisations of $\tp(b/A)$. Clearly, $\set{x=b_i\mid i<\omega}$ is $2$-inconsistent.

\bigoval{$\allora $} If $b\in \acl(A)$, then $\tp(b/A)$ has only finitely many realisations. Therefore, infinitely many $b_i$ will be equal, so there is no way to have $k$-inconsistency: you can always find $k$ equal guys.\footnote{Actually that set will be finite so $k$-inconsistency\ldots{} Another way of saying it is: there is no infinite sequence of $b_i$.}
\end{proof}

\begin{eg}
  Let $T$ be the theory of an equivalence relation with infinitely many infinite classes. Then $xEb$ divides over $\emptyset$.
\end{eg}
\begin{proof}
  There is just one $1$-type over $\emptyset$. Pick each $b_i$ in a different equivalence class. Then $\set{xEb_i\mid i<\omega}$ is $2$-inconsistent.
\end{proof}
\begin{eg}
  In the random graph, $xRb$ does not divide over $\emptyset$. This is because any attempt to have $k$-inconsistency will clash with the random graph axiom.
\end{eg}
We will see later that in the random graph the only dividing formulas are the ones of the form $x=b$.
\begin{eg}\label{eg:forkingdlo}
  In \textsf{DLO}, consider $x<b$. This does not divide over $\emptyset$ because there is no minimum. Anyway, $a<x<b$  does; it is easy to get $2$-inconsistency: just take $a_1<b_1<a_2<b_2<\ldots$. All the $(a_i, b_i)$ have the same type over $\emptyset$ because $a_i<b_i$ is the only thing to check and it always holds.
\end{eg}
\begin{eg}[With no proof]\label{eg:acfdiv}
  In \textsf{ACF} $\tp(a/B)$ divides over $A\subseteq B$ if and only if 
\[
\trdeg(a/B^{\textnormal{alg}})<\trdeg(a/A^{\textnormal{alg}})
\]
\end{eg}
\section{Forking}
\begin{defin}
  A formula $\theta(x)$ \emph{forks over $A$} iff $\theta(x)\proves \bigvee_{i=1}^n \phi_i(x, b_i)$ such that each $\phi_i(x, b_i)$ divides over $A$.
\end{defin}

The idea is that  dividing should correspond to ``small'' formulas. However, it is not true that dividing is closed under finite unions/disjunctions, and that's why you need forking. In other words, forking is the ideal generated by the dividing formulas.

Clearly, dividing implies forking.

\begin{eg}
  Let $M$ be the circle $S^1$ and define $R(x,y,z)$ to hold iff $x$ is different from $y$ and $z$ and lies in the small arc of $y$ and $z$ (if $y$ and $z$ are opposite, then we agree that no $x$ satisfies it). Then, if $b$, $c$ are not opposite, $R(x, b,c)$ is consistent but divides over $\emptyset$ (there is quantifier elimination). But $x=x\proves \bigvee_{i=1}^4 R(x, b_i, c_i)$. So the ideal can be improper.
\end{eg}
It will turn out that the above theory is \textsf{NIP}. Anyway, these pathologies will not arise in \emph{simple} theories.

\begin{lemma}[Standard Lemma]
  For every infinite sequence  $I$, every small set of parameters $A$ and any small linear order $J$, there is an $A$-indiscernible sequence $\seq{b_j\mid j\in J}$ realising $\emtype(I/A)$.
\end{lemma}
\begin{proof}
  With Proposition~\ref{pr:gimmeindie}.
\end{proof}

\begin{pr}
  Some properties of forking and dividing:
  \begin{enumerate}
  \item Dividing implies forking.
  \item If two formulas $\phi_1(x), \phi_2(x)$ fork over $A$, then $\phi_1\lor \phi_2$ forks over $A$.
  \item If $p$, $q$ are partial types, $p\proves q$ and $q$ divides (forks) over $A$, so does $p$.
  \item $\phi(x;b)$ $k$-divides over $A$ if and only if it $k$-divides over $a$ for all finite $a\in A$.
  \item $\phi(x,b)$ divides over $A$ if and only if there is an $A$-indiscernible sequence $\seq{b_i\mid i<\omega}$ such that $b_0\equiv_A b$ and $\set{\phi(x; b_i)\mid i<\omega}$ is inconsistent.
  \item A partial type $\pi(x)$ $k$-divides (forks) over $A$ if and only if there is a finite conjunction $\theta(x,c)$ of formulas in $\pi$ that $k$-divides (forks) over $A$.
  \item No $p\in S_n(A)$ divides over $A$.
  \item Let $A\subseteq B \subseteq C$. If $\tp(a/C)$ does not divide (fork) over $A$, then $\tp(a/C)$ does not divide (fork) over $B$ and $\tp(a/B)$ does not divide (fork) over $A$.
  \end{enumerate}
\end{pr}
\begin{proof}\*
  \begin{enumerate}
  \item Trivial.
  \item Trivial.
  \item Trivial.
  \item Compactness: write down ``there are infinitely many guys with the same type over $A$ such that\ldots''
  \item \bigoval{$\se$} By indiscernibility all the $b_i$ have the same type of $b$ over $A$. Let us check that there is $k$-inconsistency for some $k$. If not, for every $k<\omega$ there are $i_1<\ldots<i_k$ such that $\set{\phi(x; b_{i_k})\mid 1\le j\le k}$ is consistent.  By indiscernibility, for all $k$ we have $\models \exists x\; \phi(x, b_1),\ldots, \phi(x, b_k)$. By compactness, $\set{\phi(x, b_i)\mid i<\omega}$ is consistent.

\bigoval{$\allora$} Use the Standard Lemma to turn a sequence $I$ witnessing dividing into an indiscernible one. Since $I$ is $k$-inconsistent, this is written in $\emtype(I/A)$ and will still be true for the indiscernible one.
  \item For forking it is obvious by compactness. For dividing, proceed as follows. Assume $\pi(x)\proves \phi(x,b)$ and $\phi(x,b)$ divides over $A$. Then there is a finite conjunction $\theta(x,c)$ of formulas in $\pi$ such that $\theta(x,c)\proves \phi(x,b)$. Let $\seq{b_i\mid i<\omega}$ witness $k$-dividing over $A$ for some $k$. Since $b_i\equiv_A b$ there is $\alpha_i\in \aut(\monster/A)$ such that $\alpha_i(b)=b_i$. Consider $\set{\alpha_i(c)\mid i<\omega}$. Clearly, they all have the same type as $c$ over $A$. Suppose $\set{\theta(x, \alpha_i(c))\mid i<\omega}$ is not $k$-inconsistent, say
\[
a\models \bigwedge_{i=1}^k \theta(x,\alpha_i(c))
\]
then
\[
a\models \bigwedge_{i=1}^k \phi(x,b_i)
\]
a contradiction.

  \item If we have $\phi(x,a)$ with $a\in A$, then there is just one realisation of $\tp(a/A)$.
  \item Assume $A\subseteq B\subseteq C$. We want to prove that if $\tp(a/B)$ divides over $A$ or $\tp(a/C)$ divides over $B$, then $\tp(a/C)$ divides over $A$. If $q=\tp(a/B)$ divides over $A$, so does $p=\tp(a/C)\proves q$ by a previous point. If $\tp(a/C)$ divides over $B$, there is a formula $\phi(x,c)\in \tp(a/C)$ that divides over $B$. Then $\phi(x,c)$ divides over $A$, because every $B$-indiscernible sequence is $A$-indiscernible\footnote{Or, directly, having the same type over $B$ implies having the same type over $A$.}.
  \end{enumerate}
\end{proof}
We finish this lesson with another example.
\begin{eg}
  If $a\in \acl(Ab)\setminus \acl(A)$, then $\tp(a/Ab)$ forks over $A$. In other words, if you become algebraic you have to fork.
\end{eg}
\begin{proof}
  Pick an algebraic formula $\phi(x;b)\in \tp(a/Ab)$. Then this type implies $\bigvee_{i\le \ell} x=a_i$, where $\set{a_i\mid i\le \ell}$ is the set of realisations of $\phi(x;b)$, and each of this formulas divides.
\end{proof}

Next lessons in MALL2.
\chapter{01/12}
\section{Finitely Satisfiable Types}
\begin{defin}
  A (partial) type $p\in S(B)$ ($\pi$) is \emph{finitely satisfiable in $A$} iff for every formula $\phi(x,b)\in p$ (finite conjunction of formulas in $\pi$) there is $a\in A^{\abs x}$ such that $\models\phi(a,b)$.
\end{defin}
\begin{defin}
  Let $B\supseteq A$, $p\in S(A)$, $q\in S(B)$, and $q\supseteq p$. If $q$ is finitely satisfiable in $A$, we say that $q$ is a \emph{coheir} of $p$.
\end{defin}
\begin{eg}\label{eg:eqrelcoheir}
  Let $T_E$ be the theory an equivalence relation $E$ with infinitely many infinite classes. Let $A$ be a model $M$ with $\aleph_0$ classes of size $\aleph_0$ and $B=N\succ M$ with $\aleph_1$ classes of size $\aleph_1$.
\end{eg}
Let $p=\set{\neg x Ea\mid a\in M}\in S(M)$. Let $N\owns b\models p$ and $q'=\tp(b/N)$. Clearly, $q'\supseteq p$. Let $q=\set{\neg xE b\mid b\in N}$. We also have $q\supseteq p$. Note that $q$ is finitely satisfiable in $M$, hence a coheir of $p$, but $q'$ is not: look at the formula $xEb$ (or $x=b$).
\begin{rem}
  Note that $p$ need not be a coheir of itself, for example if $A=\emptyset$. Of course $p$ is always a coheir of itself if $A$ is a model.
\end{rem}
\begin{defin}
  Assume $p\in S(A)$ and $q\supseteq p$. We say that $q$ is a \emph{forking extension} of $p$ if $q$ forks over $A$. Otherwise, we say that $q$ is a \emph{non-forking extension} of $p$.
\end{defin}
Note that the previous definition also works if $q$ is a partial type.

In the example above, $xEb$ forks over $M$, so $q'$  is a forking extension of $p$. To see this, notice that all the stuff in $N\setminus M$ has the same type over $M$ and choose the $b_i$ in different classes. The idea is that the information in $p$ is ``I am not related to anybody''. In this sense, $q$ is the extension of $p$ that resembles it the most. Note that $T_E$ is stable, so every type is definable. $q$ has the same definition as $p$.

\begin{eg}
Let $T$ be  \textsf{DLO}. Here there are four kinds of types, over $\mb Q$, say:
\begin{itemize}
\item Realised types.
\item Types at $\pm\infty$.
\item Irrational cuts, e.g.\ $\set{x\ge q\mid q<\sqrt 2}\cup \set{x<q\mid q>\sqrt 2}$. I.e.\ a cut where there is no maximum of the left part and no minimum of the right part.
\item Infinitesimal cuts $a^+$ and $a^-$. For example $P_{a^+}=\set{x<a'\mid a'>a}\cup \set{x>a'\mid a'\le a}$. ($a^-$ will be the analogous thing on the left)
\end{itemize}
Let $p=P_{a^+}\in S_1(\mb Q)$, and consider its extensions with parameters in a bigger model $N$. These can be of the form
\begin{itemize}
\item $x=a_\epsilon$. This divides.
\item An irrational cut $\set{x>b\mid b\in S}\cup \set{x<b'\mid b'\in S'}$. This is not a coheir. Is it a forking extension? Yes: take a formula $b<x<b'$ and argue as in Example~\ref{eg:forkingdlo}.
\item $q_{a^+}=\set{x<b'\mid b'>a}\cup \set{x>b'\mid b'\le a}$. This is again not finitely satisfiable: look at $a<x<b'$.
\item An irrational cut $q=\set{x<a'\mid a'\in M, a'>a}\cup \set{x>b\mid b\in N, b<(a, +\infty)\cap M}$ (here $M=\mb Q$). This is finitely satisfiable in $M$. Note that this is not exactly what we expected: the ``idea'' behind $q$ is not the ``same'' as the idea of $p$ (being ``just on the right of $a$''). 
\end{itemize}
\end{eg}
We will see that finitely satisfiable types cannot fork, and this applies to $q$. Anyway, $q_{a^+}$ is non-forking as well, morally speaking because intervals cannot move away from $a$. So the other implication does not hold in general. It will be true in a stable theory, and that is why Example~\ref{eg:eqrelcoheir} was working so nice.

\begin{rem}
  If a partial type $\pi$ is finitely satisfiable over $A$, then it does not fork\footnote{In particular it does not divide.} over $A$.
\end{rem}
\begin{proof}
  Suppose first that $\pi$ divides over $A$. Then there is a finite conjunction $\theta(x)$ of formulas in $\pi$ such that $\theta(x)\proves \phi(x,b)$ and there is a sequence $\set{b_i\mid i<\omega}$ with $b_i\equiv_A b$ and $\set{\phi(x, b_i)\mid i<\omega}$ is $k$-inconsistent for some $k$. Since $\pi$ was finitely satisfiable in $A$, there is $a\in A$ such that $\models\theta(a)$, hence $\models \phi(a,b)$. Since $a\in A$ and $b_i\equiv_A b$, we also have  $\models\phi(a, b_i)$, and this is a contradiction. 

Now let us show that $\pi$ does not fork over $A$. Assume that $\theta(x)$ is a finite conjunction of formulas in $\pi$ such that $\theta(x)\proves \bigvee_{i=1}^n \phi_i(x, b_i)$, each $\phi(x,b_i)$ dividing over $A$. Let $a\in A$ realise $\theta$.  Then  $a\models\bigvee_{i=1}^n \phi_i(x, b_i)$, so there is $i\le n$ such that $\models \phi(a,b_i)$, and we can argue as in the previous case.
\end{proof}
\begin{thm}\label{thm:whennfextex}
  Let $A\subseteq B$ and $\pi$ a partial type over $B$. The following facts hold:
  \begin{enumerate}
  \item If $\pi$ is finitely satisfiable in $A$, then it does not fork over $A$.
  \item If $\pi$ is finitely satisfiable in $A$, then it has a completion $p\in S(B)$ which is finitely satisfiable in $A$.
  \item If $\pi$ does not fork over $A$, then it has a completion $p\in S(B)$ which does not fork over $A$.
  \end{enumerate}
\end{thm}
\begin{proof}\*
  \begin{enumerate}
  \item Done just above.
  \item Assume $\pi$ is finitely satisfiable in $A$. Let $\pi'=\pi\cup\set{\neg \phi(x,b)\mid \phi(x,b)\in L(B) \textnormal{ is not finitely satisfiable in $A$}}$. If $\pi'$ is consistent, then any completion $p$ of $\pi'$ will do. Take $\Gamma_0$ be a finite subset of $\pi'$ of the form
\[
\Gamma_0\subseteq \pi\cup \set{\neg \phi_1(x, b_1),\ldots, \neg \phi_m(x,b_m)}
\]
If it is not consistent, then for some finite conjunction $\theta(x)$ of formulas in $\pi$ we have $\theta(x) \proves \bigvee_{i\le m} \phi_i(x,b_i)$. Since $\pi$ is finitely satisfiable in $A$, there is $a\in A$ such that $\models\theta(a)$. Then for some $i\le m$ we also have $\models\phi_i(a,b_i)$, contradicting the fact that $\phi_i(x,b_i)$ is not finitely satisfiable in $A$.
\item Do the same proof as in the previous point but with $\set{\neg \phi(x,b)\mid \phi(x,b)\in L(B) \textnormal{ forks over $A$}}$.
  \end{enumerate}
\end{proof}

\begin{co}
  Every coheir is a non-forking extension.
\end{co}
\section{Some Technical Things About Forking}
\begin{pr}\label{pr:ndiviffindisccons}
  Let $\pi(x,b)$ be a partial type. Then $\pi(x,b)$ does not divide over $A$ if and only if for every $A$-indiscernible sequence $\set{b_i\mid i<\omega}$ with $b_0=b$ the set $\bigcup_{i<\omega}\pi(x,b_i)$ is consistent.
\end{pr}

\begin{proof}\*

\bigoval{$\se$} Assume $\pi(x,b)$ divides over $A$, so for a finite conjunction $\theta$ of formulas in $\pi$ we have  $\theta(x,b)\proves \phi(x,c)$ which divides over $A$. So there is an $A$-indiscernible $\seq{c_i\mid i<\omega}$ such that $\set{\phi(x, c_i)\mid i<\omega}$ is $k$-inconsistent and $c_i\equiv_A c$. Let $\alpha\in \aut(\monster/A)$ be such that $\alpha(c_0)=c$. Consider $\seq{c_i'\coloneqq\alpha(c_i)\mid i<\omega}$. For each $i$, let $\sigma_i\in \aut(\monster/A)$ be such that $\sigma_i(c)=c_i'$. Consider $\seq{b_i\coloneqq\sigma_i(b)\mid i<\omega}$. Clearly, $\sigma_i(b)\equiv_A b$. Moreover, $\set{\theta(x,b_i)\mid i<\omega}$ is $k$-inconsistent, since it implies $\seq{\phi(x, c_i)\mid i<\omega}$ which is. The indiscernible sequence is provided by the Standard Lemma, plus an automorphism to move the first guy to $b$. By construction, that union is inconsistent.


\bigoval{$\allora$} Let $\seq{b_i\mid i<\omega}$ be an $A$-indiscernible sequence with $b_0=b$ and such that $\bigcup_{i<\omega} \pi(x, b_i)$ is inconsistent.  By compactness, there are finitely many formulas $\theta_1(x, b_{i_1}),\ldots, \theta_n(x, b_{i_n})$ such that $\theta_i(x,b)\in \pi(x,b)$ and their conjunction is inconsistent. Define
\[
\theta(x,b)=\bigwedge_{i=1}^n \theta_i(x, b)
\]
(note that we replaced all the $b_{i_j}$ with $b$). We claim that $\theta(x,b)$ divides over $A$. In fact, using the sequence $\seq{b_i\mid i<\omega}$, we get inconsistency by construction.
\end{proof}
\begin{rem}
  The above even works when $b$ is an infinite (but small) tuple.
\end{rem}
Another thing that can be proven by moving things around with automorphisms is:
\begin{pr}\label{pr:divindisc}
  The following are equivalent:
  \begin{enumerate}
  \item $\tp(a/Ab)$ does not divide over $A$.
  \item For any $A$-indiscernible sequence $I$ with $b\in I$ there is $a'\equiv_{Ab} a$ such that $I$ is $Aa'$-indiscernible.
  \item For any $A$-indiscernible sequence $I$  with $b\in I$ there is an $Aa$-indiscernible sequence $J$ such that $I\equiv_{Ab} J$.
  \item For any $A$-indiscernible sequence $I$ with $b\in I$ there are $a'\equiv_{Ab} a$ and $J'\equiv_{Ab}I$ such that $J'$ is $Aa'$-indiscernible. 
  \end{enumerate}
\end{pr}

So in some sense (not) dividing detects whether you can have ``slightly more indiscernibility''.
\begin{rem}
  $I\equiv_{Ab} J$ is stronger than $\emtype(I/Ab)=\emtype(J/Ab)$. The second thing can even hold if $I$ and $J$ have different lengths.
\end{rem}
``Official hours'' go on until next Thursday.
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\section{More Technical Things About Dividing}
\begin{proof}[Proof of Proposition~\ref{pr:divindisc}]\*

\bigoval{$4\allora 3$} Pick $\alpha\in \aut(\monster/Ab)$ such that $\alpha(a')=a$ and let $J=\alpha(J')$. Then $J\equiv_{Ab}J'\equiv_{Ab}I$. Moreover, since $J'$ is $Aa'$-indiscernible,  $J$ is $Aa$-indiscernible.

\bigoval{$3\allora 2$} Pick $\alpha\in \aut(\monster/Ab)$ moving $J$ to $I$. Choose $a'=\alpha(a)$.

\bigoval{$2\allora 1$} Let $p(x,b)\coloneqq\tp(a/Ab)$. By Proposition~\ref{pr:ndiviffindisccons} it is enough to show that if $I=\seq{b_i\mid i<\omega}$ is an indiscernible sequence with $b_0=b$, then $\bigcup_{i\in I} p(x, b_i)$ is consistent. By hypothesis, there is $a'\models p(x,b)$ such that $I$ is $Aa'$-indiscernible. In particular, $a'\models p(x,b_i)$ for all $i<\omega$.

\bigoval{$1\allora 4$} Denote $p(x,b)=\tp(a/Ab)$ and let $I$ be an $A$-indiscernible sequence containing $b$. By compactness, it is sufficient to consider the case $I=\seq{b_i\mid i<\omega}$. Say $b=b_{i_0}$ (we could also assume $i_0=0$). By hypothesis, $\bigcup_{i<\omega} p(x, b_i)$ is consistent. Let $a'\models \bigcup_{i<\omega} p(x, b_i)$. Since $a'\models p(x, b_{i_0})$, we have $a'\equiv_{Ab}a$. By the Standard Lemma, there is an $Aa'$-indiscernible sequence $J''=\seq{b_i''\mid i<\omega}$ such that $\emtype(J''/Aa')\supseteq \emtype(I/Aa')$. In particular, by choice of $a'$, we have $b_{i_0}''\models p(a', y)$. Hence $b_{i_0}''\equiv_{Aa'}b_{i_0}=b$. Let $\alpha\in\aut(\monster/Aa')$ be such that $\alpha(b_{i_0}'')=b$ and define $J'\coloneqq \alpha(J'')$. Then $J'$ is still $Aa'$-indiscernible, so we just need to check that $J'\equiv_{Ab} I$. Note that both $I$ and $J'$ contain $b$. Take any $L(Ab)$-formula $\phi(x_{i_1},\ldots, x_{i_n}, b)$, with $i_1<\ldots <i_n$. Suppose $\models \phi(b_{i_1}', \ldots,b_{i_n}', b=b_{i_0}')$. Then 
\[
\phi(x_{i_1},\ldots, x_{i_n}, x_{i_0})\in \emtype(J'/A)=\emtype(J''/A)= \emtype(I/A)
\]
It follows that $\phi(x_{i_1},\ldots, x_{i_n}, x_{i_0})\in \emtype(I/A)$, and therefore $\models \phi(b_{i_1}, \ldots, b_{i_n}, b)$.
\end{proof}
\begin{pr}\label{pr:divlefttrans}
  Suppose $A\subseteq B$ and $\tp(a/B)$ does not divide over $A$ and $\tp(c/Ba)$ does not divide over $Aa$. Then $\tp(ac/B)$ does not divide over $A$.
\end{pr}
\begin{eg}
  If $a$ is transcendental over $K$  and $c$ is transcendental over $K(a)$, then $ac$ is transcendental over $K$. (Say $A=\mb Q^{\textnormal{alg}}$). Note that you cannot just assume that $\tp(c/B)$ does not divide over $A$: think of what happens when $c=a^2$, say.
\end{eg}
\begin{proof}[Proof of the Proposition]
  It is enough to show that $\tp(ac/Ab)$ does not divide over $A$ for any finite $b\subseteq B$. Let $I$ be an $A$-indiscernible sequence containing $b$. Since $\tp(a/Ab)$ does not divide over $A$, by Proposition~\ref{pr:divindisc} there is an $Aa$-indiscernible $I'$ with $I'\equiv_{Ab} I$. In particular $b\in I'$. Since $\tp(c/(Aa)b)$ does not divide over $A$, there is a $Aac$-indiscernible sequence $I''$ containing $b$ and such that $I''\equiv_{Aab} I$. In particular, $I''\equiv_{Ab} I$, and this implies that $\tp(ac/Ab)$ does not divide over $A$ again by Proposition~\ref{pr:divindisc}.
\end{proof}
\section{Simple Theories}
This time too, we define the ``bad'' behaviour first.
\begin{defin}
  A formula $\phi(x,y)$ has the \emph{$k$-tree property} iff there are elements $\seq{b_\sigma\mid \sigma\in \omega^{<\omega}}$ such that the following things hold.
  \begin{itemize}
  \item For every $\eta\in \omega^\omega$, the set $\set{\phi(x, b_{\eta\restr i})\mid i\in \omega}$ is consistent.
  \item For every $\sigma\in \omega^{<\omega}$, the set $\set{\phi(x, b_{\sigma\cat i})\mid i\in \omega}$ is $k$-inconsistent. 
  \end{itemize}
We say that $\phi(x,y)$ has the \emph{tree-property} iff it has the $k$-tree property for some $k$.
\end{defin}
The picture is a tree where every branch is consistent, but every time you pick the sons of a particular node, you have $k$-inconsistency.
\begin{defin}
  A theory $T$ is \emph{simple} if no formula has the tree property.
\end{defin}
\begin{rem} Some comments:
  \begin{enumerate}
  \item   The tree property implies the  binary tree property. Hence stable theories are simple.\footnote{Actually it is not this straightforward.}
  \item \textsf{DLO} is not simple: let $\phi(x,y)$ be $ y_1<x<y_2$. Then $\phi$ has the $2$-tree property: start with an interval $(b_1^{\Lambda}, b_{2}^{\Lambda})$. Find inside it infinitely many pairwise disjoint intervals. Iteratively, choose in  each interval in infinitely many intervals. Then branches are intersections of encapsulated intervals, hence are consistent, since a finite intersection is just the smallest interval, but sons of the same node are pairwise disjoint, so $2$-inconsistent.
  \end{enumerate}
\end{rem}

\begin{thm}The following facts hold:
  \begin{enumerate}
  \item If $T$ is simple, then $T$ is \textsf{NSOP}.
  \item $T$ is stable if and only if $T$ is simple and \textsf{NIP}.
  \end{enumerate}
\end{thm}
\begin{proof}\*
  \begin{enumerate}
  \item Exercise. Hint: extend the previous example. Get an infinite chain and then use compactness to get a dense infinite chain.
  \item We already know that $T$ is stable iff $T$ is \textsf{NSOP} and \textsf{NIP}. Use the previous point for one inclusion and the previous Remark for the other one.
  \end{enumerate}
\end{proof}
\begin{eg}
  The triangle-free generic graph is \textsf{NSOP} but is not simple.
\end{eg}
\begin{defin}[Dividing Sequence]
  Let $\Delta=\set{\psi_1(x;y_1), \ldots, \psi_\ell(x;y_\ell)}$ be a finite set of partitioned formulas. A \emph{$\Delta$-k-dividing-sequence} over $A$ is a sequence $\seq{\phi_i(x; b_i)\mid i <\delta\in\mathrm{On}}$ such that
  \begin{enumerate}
  \item each $\phi_{i}(x; b_{i})$   $k$-divides over $A\cup \seq{b_j\mid j<i}$, and
  \item $\phi_i(x; y_i)\in \Delta$, and 
  \item $\set{\phi_i(x; b_i)\mid i<\delta}$ is consistent.
  \end{enumerate}
In this case, we call $\delta$ the \emph{length} of the $\Delta$-$k$-dividing sequence.
\end{defin}
Note the analogy with the \textsf{DLO} tree example: each node of the tree $2$-divides over the previous parameters, and $\Delta$ is just $\set{y_1<x<y_2}$.
\begin{lemma}\label{lemma:trepropdivseq}The following hold:
  \begin{enumerate}
  \item If $\phi(x;y)$ has the $k$-tree property, then for every set of parameters $A$ and ordinal $\mu$ there is a $\set{\phi}$-$k$-dividing sequence over $A$ of length $\mu$.
  \item If no formula in $\Delta$ has the $k$-tree property\footnote{In particular if we are in  simple theory.} there is no infinite $\Delta$-$k$-dividing sequence.
  \end{enumerate}
\end{lemma}
\begin{proof}The idea is simple, but it gets technical.
  \begin{enumerate}
  \item By compactness, we can assume the tree property for $\phi(x;y)$ with a $\lambda$-branching tree of height $\mu$ for any $\lambda \ge \omega$. That is, there are parameters $\seq{b_\sigma\mid \sigma \in \lambda^{<\mu}}$ such that
      \begin{itemize}
      \item for all $\sigma\in \lambda^{<\mu}$ the set $\set{\phi(x_i, b_{\sigma \cat i})\mid i <\lambda}$ is $k$-inconsistent, and
      \item  for all $\eta\in \lambda^\mu$, the set $\set{\phi(x, b_{\eta\restr i})\mid i<\mu}$ is consistent.
      \end{itemize}
Let us take $\lambda=(2^{\abs T+ \abs A+ \abs{\mu}})^+$. Then, we can construct a path $\eta\in \lambda^\mu$ and tuples $\seq{c_\alpha\mid \alpha<\mu}$ as follows. The idea is that we are branching so much that we get infinitely many guys with the same type. In other words, by pigeonhole and choice of $\lambda$, we can find an infinite sequence $\seq{b_{\seq{n_i}}\mid i<\omega}$ of tuples all with the same type over $A$. Let $c_0=b_{\seq{n_0}}$. Then, by construction, $\phi(x,c_0)$ divides over $A$. Now iterate taking into account the previous parameters: if we have already constructed $\seq{c_\beta\mid \beta<\alpha}$, we have $c_\beta=b_{\eta\restr \beta}$ for some $\eta\in \lambda^\mu$. As the set $\set{\phi(x, b_{(\eta\restr \alpha)\cat i})\mid i<\lambda}$ is $k$-inconsistent, we can find by pigeonhole and choice of $\lambda$ an infinite sequence $\seq{b_{(\eta\restr \alpha)\cat i_n}\mid n<\omega}$ of tuples all with the same type over $A\cup\set{c_\beta\mid \beta<\alpha}$. Let $c_\alpha=b_{(\eta\restr \alpha)\cat i_0}$. This produces the required sequence.

  \item Since $\Delta$ is finite, one of its the formulas $\phi(x;y)$ will have been used infinitely often, and there are tuples $\seq{b_i'\mid i<\omega}$ such that $\phi(x; b_i')$ $k$-divides over $A\cup \set{b_j'\mid j<i}$. Construct $\seq{b_\sigma\mid \sigma\in \omega^{<\omega}}$ witnessing the $k$-tree property as follows. Find an $A$-indiscernible sequence $b_0'=b_0^0, b_0^1,\ldots$ such that $\set{\phi(x; b_0^j)\mid j<\omega}$ is $k$-inconsistent. This will be the first level of the tree: we set $b_{\seq j}=b_0^j$. Inductively, suppose we have $\seq{b_\sigma\mid \sigma\in \omega^{\le n}}$ such that for all $\sigma, \sigma'\in \omega^n$ we have $b_\sigma\equiv_Ab_{\sigma'}$ and such that $b_{\seq{\underbrace{0,0,\ldots, 0}_{n}}}=b_{n-1}'$. Since $\phi(x;b_n)$ $k$-divides over $Ab_{<n}'$ there is an $Ab_{\seq{0}}b_{\seq{0,0}},\ldots, b_{\seq{0,0,\ldots, 0}}$-indiscernible sequence $b_n'=b_n^0, b_n^1,\ldots$ such that $\set{\phi(x;b_n^j)\mid j<\omega}$ is $k$-inconsistent. Set $b_{\seq{0,0,\ldots,0j}}\coloneqq b_n^j$. For each $\sigma\in \omega^n$, let $\alpha\in \aut(\monster/A)$ be such that $\alpha_\sigma(b_{\seq{0,0,\ldots, 0}})=b_\sigma$. It is sufficient to set $b_{\sigma\cat j}\coloneqq\alpha_\sigma(b_{\seq{0,0,\ldots,0,j}})$.

% You can reconstruct the tree property by juggling indiscernible sequences. 

% Some more details: let $\phi$ the formula chosen infinitely often. We have that  $\phi(x, c_0)$ $k$-divides over $\emptyset$, as witnessed by $\phi(x, c_0^1), \phi(x, c_0^2),\ldots$. This set is $k$-inconsistent. So this will be the first level of our tree. Find infinitely many guys with the same type as $c_1$ over $c_0$. This will be the sons of $c_0$. To get the sons of the $c_0^j$, move $c_0$ upon them with an automorphism. Continue recursively.
  \end{enumerate}
\end{proof}
This does not generalise to the case $\Delta$  infinite. Things can go wrong  even in stable theories.
\chapter{08/12}
\section{Shelah's Local D-rank}
This will not be used later in the course, but is common in the literature. It can be defined as ``the foundational rank of $k$-dividing''. What does it mean?

\begin{defin}
  Let $\phi(x,y)$ be a formula and $k\in \mb N$. We define $D(-, \phi, k)$ on partial types inductively as follows:
  \begin{itemize}
  \item $D(\pi(x), \phi, k)\ge 0$ iff $\pi(x)$ is consistent.
  \item $D(\pi(x), \phi, k)\ge \alpha+1$ iff there is $b$ such that $D(\pi(x)\cup \set{\phi(x,b)}, \phi, k)\ge \alpha$ and $\phi(x,b)$ $k$-divides over\footnote{I.e.\ the parameters mentioned in $\pi$.} $\dom \pi(x)$.
  \item $D(\pi(x), \phi, k)\ge \alpha$, for $\alpha$ limit, iff for all $\beta <\alpha$ we have $D(\pi(x), \phi, k)\ge \beta$.
  \end{itemize}
\end{defin}
Unwinding definitions we have
\begin{pr}
  $D(\pi(x), \phi, k)\ge \alpha$ if and only if there is a $\phi$-$k$-dividing sequence of length $\alpha$ on $\dom \pi(x)$ and consistent with $\pi(x)$.
\end{pr}
From Lemma~\ref{lemma:trepropdivseq} it follows that
\begin{co}
  $T$ is simple if and only if for all $k<\omega$ and $\phi(x,y)\in L$ we have $D(x=x, \phi, k)<\omega$.
\end{co}
\section{Independence and Morley Sequences}
\begin{defin}
Let $A$, $B$, $C$ be small subsets of $\monster$. We say that \emph{$A$ is independent from $B$ over $C$}, denoted $A\forkindep_C B$ iff for every finite $a\in A$ the type $\tp(a/BC)$ does not fork over $C$.
\end{defin}
This is probably the most important definition in this course. It generalises a lot of notions of independence already used in mathematics.
\begin{eg}
  Let $C\subseteq B\models \textsf{ACF}$. Let $A$ be made of  transcendentals over $C$. Then $A\forkindep_C B$ if and only if $\trdeg (A/C)=\trdeg(A/B)$. Note that $\ge$ always holds. Compare with Example~\ref{eg:acfdiv}.
\end{eg}
The general idea is that $A{\centernot{\forkindep}}_C B$ means that $B\cup C$ has more information about $A$ than $C$ does. Like, $A$ is a criminal, $C$ is a government, and $B$ is another one.

\begin{eg}
  In vector spaces, $A\forkindep_C B$ if and only if $\dim(A/B\cup C)=\dim(A/C)$, where $\dim(A/C)=\dim(\seq{A,C})-\dim(\seq{C})$.
\end{eg}
\begin{defin}
  A \emph{Morley sequence over $A$} is an $A$-indiscernible sequence $\seq{b_i\mid i\in I}$ such that $b_i\forkindep_A \set{b_j\mid j<i}$. We denote $b_{<i}=\set{b_j\mid j<i}$.
\end{defin}
\begin{eg}
  Let $T$ be the theory of an equivalence relation with infinitely many infinite classes. An indiscernible sequence made of elements in different equivalence classes is a Morley sequence. An indiscernible sequence made of elements all in the same class is not a Morley sequence: since $x Ec_1\in \tp(c_2/Ac_1)$, we have $c_2{\centernot{\forkindep}}_A c_1$.
\end{eg}
\begin{eg}
  In vector spaces, a sequence of linearly independent vectors.
\end{eg}
\begin{eg}
  In strongly minimal theories, there is a unique non-dividing type in one variable. Morley sequences arise from it. In particular indiscernible sequences are either constant or Morley sequences.
\end{eg}
\begin{pr}\label{pr:simplelocalchar}
  Let $T$ be a complete theory. The following are equivalent:
  \begin{enumerate}
  \item $T$ is simple.
  \item (Local Character) For all $p\in S_n(B)$ there is some $A\subseteq B$ such that $\abs A\le \abs T$ and $p$ does not divide over $A$.
  \item There is some cardinal $\kappa$ such that if $p\in S_n(M)$ then there is $A\subseteq M$ of cardinality $\le \kappa$ such that $p$ does not divide over $A$.
  \end{enumerate}
\end{pr}
We will see later that in simple theories forking equals dividing. So local character means that given $a$ and $B$, there is a ``small'' $A$ (in the cardinality sense) that already contains all the information that $B$ had about $a$.

We need some preliminary lemmas.
\begin{lemma}[Finite Character]
 $A\forkindep_C B$ if and only if for any finite $A_0\subseteq A$ and finite $B_0\subseteq B$ we have $A_0\forkindep_C B_0$.
\end{lemma}
\begin{proof}
  Easy.
\end{proof}
\begin{lemma}\label{lemma:moardividing}
  Suppose $\phi(x,b)$ divides over $A$. The following hold:
  \begin{enumerate}
  \item For any small $B\supseteq A$ there is $B'\equiv_A B$ such that $\phi(x,b)$ divides over $B'$.
  \item For any small $B\supseteq A$ there is $b'\equiv_A b$ such that $\phi(x,b')$ divides over $B$.
  \end{enumerate}
\end{lemma}
\begin{proof}Of course, the proof involves automorphisms.
  \begin{enumerate}
  \item Use the other part and let $\sigma\in \aut(\monster/A)$ be such that $\sigma(b')=b$. Set $B'=\sigma(B)$.
  \item By hypothesis there is $\seq{b_i\mid i<\omega}$ such that $b=b_0$,  $b_i\equiv_A b$ and $\set{\phi(x,b_i)\mid i<\omega}$ is $k$-inconsistent. In particular, $\tp(b_i/A)$ is non-algebraic, therefore $\set{\sigma(b)\mid \sigma\in \aut(\monster/A)}$ is not small by Lemma~\ref{lemma:almostdef}, and so there is $\sigma_0$ such that $\sigma_0(b)\notin B$. Call $b_0''\coloneqq \sigma_0(b_0)$ and $I_0\coloneqq \seq{\sigma_0(b_i)\mid i<\omega}$. Since $\tp(\sigma_0(b_1)/Ab_0'')$ is  non-algebraic, there is $\sigma_1\in \aut(\monster/Ab_0'')$ such that $b_1''\coloneqq \sigma_1(\sigma_0(b))\notin B$. Let $I_1\coloneqq \seq{\sigma_1(\sigma_0(b_i))\mid i<\omega}$, and notice it starts with $b_0'', b_1''$. Iterating this argument, we get a sequence $I''=\set{b_i''\mid i<\omega}$ which is
    \begin{itemize}
    \item $A$-indiscernible,
    \item such that $\set{\phi(x, b_i'')\mid i<\omega}$ is $k$-inconsistent, and
    \item such that $I''\cap B=\emptyset$.
    \end{itemize}
By the Standard Lemma there is $J=\set{b_i'\mid i<\omega}$ which is $B$-indiscernible and such that $\emtype(J/B)\supseteq \emtype(I''/B)$.\qedhere
  \end{enumerate}
\end{proof}

\begin{proof}[Proof of Proposition~\ref{pr:simplelocalchar}]\*

\bigoval{$1\allora 2$} Suppose local character fails for $p\in S_n(B)$. Since no type over $B$ divides over $B$, we can assume that $\abs B\ge \abs T^+$. By hypothesis, there is $\phi_0(x, b_0)\in p$ that $k_0$-divides over $\emptyset$. Also, there is $\phi_1(x, b_1)\in p$ that $k_1$-divides over $b_0$, and we can iterate this for all $\alpha<\abs T^+$, getting a dividing sequence. By pigeonhole, there is $\seq{i_j\mid j<\omega}\subseteq \abs T^+$ such that $\phi_{i_j}(x,y)=\phi(x,y)$ and $k_{i_j}=k$. Therefore there is an infinite $\phi$-$k$-dividing sequence over $\emptyset$, call it $\seq{\phi(x, b_{i_j})\mid j<\omega}$. This shows that $T$ is not simple.

\bigoval{$2\allora 3$} Take $B=M$ and $\kappa=\abs T$.

\bigoval{$3\allora 1$} The idea is taking a sufficiently long $\phi$-$k$-dividing sequence and then construct $M=\bigcup_{i<\kappa^+} M_i$ and use regularity of $\kappa^+$. Let us spell out the details.

If $T$ is not simple, there is an infinite $\phi$-$k$-dividing sequence $\seq{\phi(x,b_i)\mid i<\kappa^+}$. So $\phi(x,b_i)$ $k$-divides over   $\set{b_j\mid j<i}$, and $\set{\phi(x,b_i)\mid i<\kappa^+}$ is consistent. If $\set{b_i\mid i<\kappa^+}$was a model $M_i$ and   $\set{\phi(x,b_i)\mid i<\kappa^+}\subseteq p$ for some $p$ we would be done. The second thing is of course equivalent to its consistency. The first one requires some work.
\begin{claim}
  There are tuples $\seq{b_i'\mid i<\kappa^+}$ and models $\seq{M_i\mid i<\kappa^+}$ such that
  \begin{itemize}
  \item For all $i\le j<\kappa^+$ the formula $\phi(x, b_j')$ divides over $M_i$.
  \item $\abs{M_i}\le \kappa$.
  \item $M_i\preceq M_j$ for $i<j<\kappa^+$.
  \item $\set{\phi(x, b_i)\mid i<\kappa^+}$ is consistent.
  \item $b_i'\in M_{i+1}$.
  \end{itemize}
\end{claim}
\begin{proof}[Proof of Claim] \renewcommand{\qedsymbol}{\qedclaim}  
We prove this by induction. Base case: since $\phi(x,b_0)$ divides over $\emptyset$, by Lemma~\ref{lemma:moardividing} there is a small model $M_0$ with $\abs{M_0}\le \kappa$ and $\phi(x, b_0)$ divides over $M_0$. Take $b_0'=b_0$. By L\"owenheim-Skolem, there is a model  $M_1\supseteq M_0\cup \set{b_0}$, with $M_0\prec M_1$ and $\abs{M_1}\le \abs{M_0\cup \set{b_0}'}+\abs T\le \kappa$. Now $M_1$ is small and $\phi(x,b_1)$ divides over $A=b_0'$, so there is $b_1'\equiv_A b_1$ such that $\phi(x, b_1')$ divides over $M_1$, again by Lemma~\ref{lemma:moardividing}. Let $\sigma\in \aut(\monster/Ab_0')$ move $b_1$ to $b_1'$. Let $I=\seq{\sigma_1(b_i)\mid 2\le i<\kappa^+}$. This has the same properties as the original sequence, but on top of $b_0', b_1'$.

The successor case is basically the same as the case $b_1$: we have by induction $\seq{M_i\mid i\le \alpha}$ and $\seq{b_i'\mid i\le \alpha}$ and $I'=\seq{b_0'',\ldots, b_\alpha'', b_{\alpha+1},\ldots}$. Call $I=\seq{b_{\alpha+1},\ldots, }$ By L\"owenheim-Skolem there is $M_{\alpha+1}\succ M_\alpha$ containing $b_{\alpha}$ and $\abs{M_{\alpha+1}}\le \kappa$. By the construction above, $\phi(x, b_{\alpha+1})$ divides over $M_\alpha\cup b_{\le\alpha}$, so there is $b_{\alpha+1}'\equiv_{M_\alpha\cup b_{\le \alpha}} b_{\alpha+1}$ such that $\phi(x, b_{\alpha+1}')$ divides over $M_{\alpha+1}$. If $\sigma\in \aut(\monster/ M_\alpha\cup b_{\le\alpha})$ sends $b_{\alpha+1}$ to $b_{\alpha+1}'$, rename $I$ to be $\seq{\sigma(b_i)\mid \alpha+2\le i<\kappa^+}$. 

For the limit step: let $M_\alpha=\bigcup_{\beta<\alpha}M_\beta$. This has still size $\le \kappa$. We know that $\phi(x, b_\alpha)$ divides over $A\coloneqq\set{b_i'\mid i<\alpha}$. Apply the usual Lemma, find $b_\alpha'$ and rename the sequence.

Note that moving everything every time is what gets us consistency. We can let $p$ be any completion of $\set{\phi(x, b_i)\mid i<\kappa^+}$ to $S_x(M)$. 
\end{proof}\renewcommand{\qedsymbol}{\oldqed}
Now, by hypothesis, there is $A\subseteq M$ of size $\abs A\le \kappa$ such that $p$ does not divide over $A$.  Since $\kappa^+$ is regular we have $A\subseteq M_i$ for some $i<\kappa^+$, and $\phi(x, b_{i+1})\in p$ divides over $M_i\supseteq A$ by construction, so we get a contradiction.
\end{proof}
\begin{co}\label{co:noforkoverbaseinsimple}
  If $T$ is simple, then any type $p\in S(A)$ does not fork over $A$.
\end{co}
\begin{proof}
  Suppose $p\in S(A)$ forks over $A$, as witnessed by $p\proves \bigvee_{\ell<m} \phi_\ell(x, b_\ell)$. Let $\Delta\coloneqq \set{\phi_\ell(x, y_\ell)\mid \ell<m}$. We will show that there is an infinite $\Delta$-$k$-dividing sequence. By compactness, it is enough to show that there are $\Delta$-$k$ dividing sequences of length $n$ for arbitrarily large $n<\omega$, consistent with $p(x)$.

  By induction, assume we have constructed $\seq{\psi_i(x, a_i)\mid i<n}$ which is $\Delta$-$k$-dividing and is consistent with $p(x)$. By Lemma~\ref{lemma:moardividing} we can assume that it is a $\Delta$-$k$-dividing sequence over $Ab_0\ldots b_{m-1}$. Since $p$ implies that disjunction, each extension of it must be consistent with one of the disjoints; so \textsc{wlog} $\phi_0(x, b_0)$ is consistent with $\set{\psi_i(x, a_i)\mid i<n}$. Now a $\Delta$-$k$-dividing sequence over $A$ is $\seq{\phi_0(x, b_0), \psi_0(x, a_0),\ldots, \psi_{n-1}(x, a_{n-1})}$.

The base step is just the above with the empty sequence.
\end{proof}

\begin{fact}
  In \textsf{DLO}, if $b_1<a<b_2$, then $a{\centernot{\forkindep}}_\emptyset b$ but $b\forkindep_\emptyset a$.
\end{fact}
\chapter{12/12}
The central thing today is this theorem. We will prove things around it. It is a characterisation of simplicity that does not mention forking (almost).
\begin{thm}[Kim-Pillay]
  Let $T$ be a complete theory and $\forkindep^0$ a ternary relation between finite tuples and sets $a\forkindep^0_A B$ satisfying:
  \begin{enumerate}\setcounter{enumi}{-1}
  \item (Invariance\footnote{This is satisfied for example by non-forking and by algebraic closure.}) If $\alpha\in\aut(M)$ then $a\forkindep^0_A B$ if and only if $\alpha(a)\forkindep^0_{\alpha(A)} \alpha(B)$.
  \item (Existence) For every $a, A, B$, there is $a'\equiv_Aa$ such that $a'\forkindep^0_A B$.
  \item (Finite Character) $a\forkindep^0_AB$ if and only if for all finite $b\subseteq B$ we have $a\forkindep^0_A b$.
  \item (Monotonicity and Transitivity\footnote{Note that $\allora$ always holds for forking independence, in any theory.}) If $A\subseteq B\subseteq C$ then $a\forkindep^0_AC$ if and only if $a\forkindep^0_AB$ and $a\forkindep^0_BC$.
  \item (Symmetry) $a\forkindep^0_A b$ if and only if $b\forkindep^0_A a$
  \item (Local Character) There is a cardinal $\kappa$ such that for all $a$ and $B$ there is $B_0\subseteq B$ of size $\abs{B_0}<\kappa$ such that $a\forkindep^0_{B_0}B$.
  \item (Independence Theorem) Let $M\models T$ such that
    \begin{itemize}
    \item $a'\equiv_M b'$,
    \item $a\forkindep^0_M a'$,
    \item $b\forkindep^0_M b'$,
    \item $a\forkindep^0_M b$.
    \end{itemize}
Then there is $c$ such that $c\equiv_{Ma}a'$, $c\equiv_{Mb} b'$ and $c\forkindep^0_M ab$
  \end{enumerate}
Then $T$ is simple and $\forkindep^0$ is the forking independence $\forkindep$. 
\end{thm}
This can be used to check that a theory is simple. For instance, in the random graph, if you put $a\forkindep^0_A B$ iff  $\acl(a)\cap \acl (B)=\acl(a)\cap \acl(A)$ (iff $a\cap B=a\cap B$, since the algebraic closure in the random graph is trivial), then all those conditions will be satisfied. This also tells us what forking independence is!

The converse holds: all those properties hold for $\forkindep$ in a simple theory. We already saw that some of those do.

About the Independence Theorem: it implies that if we have $p(x,a)\cap q(x,b)\supseteq p_0\in S(M)$ and $a\forkindep_M b$ then there is $c\models p(x,a)\cup q(x,b)$ (so you can amalgamate the types) and moreover $c\forkindep_M ab$. Here $a',b'$ are realisations of $p_0$. Also, $a\forkindep^0_M a'$ and  $b\forkindep^0_M b'$ say that $\tp(a'/Ma)$ does not fork over $M$, and similarly for $b$ and $b'$.

Proving the Equivalence Theorem for simple theories is not easy. What we are going to do is check the other properties for simple theories and $\forkindep$, then assume the Equivalence Theorem and see the Kim-Pillay one.

We start with a Corollary of Theorem~\ref{thm:whennfextex} and  Corollary~\ref{co:noforkoverbaseinsimple}.
\begin{co}[Existence]
  If $T$ is simple, every type over $A$ has a non-forking extension.
\end{co}
\begin{proof}
 If $T$ is simple and $p\in S(A)$, then by Corollary~\ref{co:noforkoverbaseinsimple} $p$ does not fork over $A$. But in any theory, by Theorem~\ref{thm:whennfextex}, if $p$ does not fork over $A$, for any $B\supseteq A$ there is $q\supseteq p$ such that $q\in S(B)$ and $q$ does not fork over $A$.
\end{proof}
\begin{lemma}
  If $p\in S(B)$ does not fork over $A$, there is an infinite Morley sequence in\footnote{I.e.\ the elements of the sequence all realise $p$} $p$ over $A$ which is $B$-indiscernible. If $T$ is simple, every $p\in S(A)$ has an infinite Morley sequence.
\end{lemma}
\begin{proof}
  Let $p_0\coloneqq p$ and take $a_0\models p_0$. Since $a_0\forkindep_A A$  there is a non-forking extension $p_1$ of $p$ over $Ba_0$. Take $a_1\models p_1$. Iterate for a very large $\lambda$, getting $\seq{a_i\mid i<\lambda}$ such that $a_i\forkindep_A Ba_{<i}$ for all $i<\lambda$. This is almost a Morley sequence, except it need not be indiscernible. By Erd\"os-Rado\footnote{The Standard Lemma does not suffice because we also want to preserve independence.}, there is a $B$-indiscernible sequence $\seq{a_i'\mid i<\omega}$  such that there are $i_1<\ldots<i_n<\lambda$ such that $\tp(a_{i_1}, \ldots, a_{i_n}/A)=\tp(a_1',\ldots, a_n'/A)$. In particular, $\seq{a_i'\mid i<\omega}$ is still independent.

If $T$ is simple, every $p$ does not fork over $A$.
\end{proof}
The following says that you can characterise dividing in simple theories by just looking at Morley sequences.
\begin{pr}[Kim's Lemma]
  Let $T$ be simple. Let $\pi(x,b)$ be a partial type. Suppose $\seq{b_i\mid i<\omega}$ is a Morley sequence over $A$  in $\tp(b/A)$ such that $\bigcup_{i<\omega}\pi(x, b_i)$ is consistent. Then $\pi(x,b)$ does not divide over $A$.
\end{pr}
So Kim's Lemma says that you can check dividing just on one indiscernible sequence, provided it is Morley. 
In general you cannot just check $\bigcup_{i<\omega}\pi(x, b_i)$ for an arbitrary indiscernible sequence:  for example, for equivalence relations, $xEb$ divides over $\emptyset$, but there is some indiscernible sequence that does not witness dividing: take everything in the same equivalence class. Anyway, if you take an indiscernible sequence with everything in different classes, it will witness dividing.

\begin{proof}[Proof of  the Lemma]
  By compactness and the previous Lemma (and possibly Erd\"os-Rado\footnote{To say ``I'm independent'' you write down the negation of all forking formulas}.), for any linear order $I$ there is a Morley sequence $\seq{b_i\mid i\in I}$ in $\tp(b/A)$. Do this with  $I=(\abs{T}^+)^*$, where the $*$ denotes taking the reverse order. Also, we can construct the sequence in such a way that $\bigcup_{i\in I}\pi(x, b_i)$ is consistent. Let $c$ realise it. By local character, there is $i_0\in I$ such that $\tp(c/A\cup \set{b_i\mid i\in I})$ does not divide over $A\cup \set{b_i\mid i>i_0}$ (by regularity of $\abs{T}^+$; you can take an end segment because if $B\supseteq A$ and you don't fork over $A$ then you don't fork over $B$). Write this as $c\forkindep^\mathrm{d}_{A b_{>i_0}}\seq{b_i\mid i\in I}$, where the ``d'' is for ``dividing''. In particular, $c\forkindep^\mathrm{d}_{A b_{>i_0}}b_{\ge i_0}$. Put $B= Ab_{i_0}$ and $a=\seq{b_i\mid i>i_0}$. Then $c\forkindep^\mathrm{d}_{Aa}Ba$. On the other hand, by $A$-independence, $a\forkindep^\mathrm{d}_AB$. Therefore, $ac\forkindep^\mathrm{d}_A B$ by Proposition~\ref{pr:divlefttrans}. Hence, $\tp(c\seq{b_i\mid i>i_0}/Ab_{i_0})$ does not divide over $A$. In particular, $\pi(x, b_{i_0})\subseteq \tp(c/b_{i_0})$ does not divide over $A$. By automorphisms, $\pi(x,b)$ does not divide over $A$.
\end{proof}
\begin{pr}
  Let $T$ be simple. Then $\pi(x,b)$ divides over $A$ if and only if $\pi(x,b)$ forks over $A$. In other words, in simple theories forking equals dividing.
\end{pr}
\begin{proof} Dividing always implies forking, so let's take care of the other implication. Suppose $\pi(x,b)$ does not divide over $A$, and suppose $\pi(x,b)\proves \psi(x,b)=\bigvee_{\ell<m} \phi_\ell(x, b)$. We will show that for some $\ell<m$ the formula $\phi_\ell(x, b)$ does not divide over $A$. Let $\seq{b_i\mid i<\omega}$ be a Morley sequence over $A$ in $\tp(b/A)$. Then $\set{\psi(x, b_i)\mid i<\omega}$ is consistent  because $\pi(x,b)\proves \psi(x,b)$ and  $\psi$ does not divide over $A$ by hypothesis. In particular, there is $\ell<m$ and an infinite $I\subseteq \omega$ such that $\set{\phi_\ell(x, b_i)\mid i\in I}$ is consistent. Since $\seq{b_i\mid i\in I}$ is still a Morley sequence over $A$ in $\tp(b/A)$, by Kim's lemma $\phi_\ell(x,b)$ does not divide over $A$.
\end{proof}
\begin{co}
  Forking in simples theories satisfies Local Character.
\end{co}
\begin{proof}
  We know it for dividing.
\end{proof}
\begin{pr}The following hold in a simple theory:
  \begin{description}
  \item[Symmetry] $A\forkindep_C B\iff B\forkindep_C A$
  \item[Monotonicity and Transitivity] Suppose $B\subseteq C\subseteq D$. Then $A\forkindep_B C$ if and only if $A\forkindep_C D$ and $A\forkindep_B C$.
  \end{description}
\end{pr}
\begin{proof}\*
  \begin{description}
  \item[Symmetry]   By finite character, it suffices to show that $a\forkindep_Cb\allora b\forkindep_C a$. Suppose $a\forkindep_C b$. By the previous results %(forking equals dividing, Kim's Lemma, possibly something else), 
there is a Morley sequence $\seq{a_i\mid i<\omega}$ over $C$ in $\tp(a/Cb)$ which is indiscernible over $Cb$. Let $p(x,y)=\tp((a,b)/C)$. We will show that $\bigcup_{i<\omega} p(a_i, y)$ is consistent, and by Kim's Lemma and forking equals dividing this suffices. But by construction $b\models \bigcup_{i<\omega}\phi(a_i, y)$.
  \item[Monotonicity and Transitivity] 
We already know one implication. We already know that $a\forkindep^\mathrm{d}_A B$ and $c\forkindep^\mathrm{d}_{Aa} Ba$ implies $ac\forkindep^\mathrm{d}_A B$ by Proposition~\ref{pr:divlefttrans}. Notice that by definition $c\forkindep^\mathrm{d}_{Aa}Ba\iff c\forkindep^\mathrm{d}_{Aa}B$. Since now we know symmetry and forking equals dividing, we also know that
\[
B\forkindep_A a \textnormal{ and } B\forkindep_{Aa}C \allora B\forkindep_A ac
\]
Replacing 
\begin{itemize}
\item $B$ by $A$
\item $A$ by $B$
\item $Aa$ by $C$
\item $Aac$ by $D$
\end{itemize}
we get (also moving things from the bottom to the right)
\[
A\forkindep_B C\textnormal{ and } A\forkindep_C D\allora A\forkindep_B D\qedhere
\]
  \end{description}
\end{proof}
The only thing left to prove for forking in simple theories is the Independence Theorem. 

The results mentioned today can be used in the homework.
\chapter{15/12}
I was not there. Proof of the Kim-Pillay theorem. See the official notes.
\end{document}                                         
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Chapter 1

21/09

1.1 Overview

We will have 4 weeks with4 hours and 6 with 2 hours.
We will work in first order logic. The contents/goals of the course will

be:

• Stable theories: definability of types, the counting types theorems, the
order property, the binary tree property,. . .

• Simple theories: the tree property, independence relations,. . .

• Nip (dependent) theories: vc-dimension, Keisler measures,. . .

1.2 Languages, Formulas, Theories, Structures,. . .

Definition 1.1. A language L is a collection of constant, function and re-
lation symbols. By abuse of notation, L will also denote the set of formulas
in the language L, i.e. of the form

ψ(x1, . . . , xn; y1, . . . , ym) ≡ ∀x1∃x2∀x3 . . . ∃xnϕ(x̄; ȳ)

where ϕ(x̄; ȳ) is a Boolean combination of basic relations (atomic formulas)
in L with variables (x̄; ȳ), of the form t1 = t2 or R(t1, . . . , tk).

Definition 1.2. An L-structure M is given by interpreting every constant
c with an element cM ∈ M , every function symbol fi of arity nfi with a
function Mnfi →M , and each relation symbol Ri of arity nRi with a subset
RMi ⊆M

nRi .

Example 1.3. L = {} = {=}. Here the terms are variables, the basic
relations are of the form x = y. If M is an infinite set, it is an L-structure.

We will use standard abuses of notation as
∧
i,j , 6=, etc.

1



2 Chapter 1. 21/09

Definition 1.4. Definable sets are solutions of formulas in M .

Example 1.5. Consider the formula ϕ(x, y) ≡ x = y. In M2 this formula
defines the diagonal:

ϕ(M2) = {(a, b) ∈M2 |M � ϕ(a, b)} = {(a, b) ∈M2 | a = b}

Definition 1.6. Given A ⊆ M we define L(A) = L ∪ {ca | a ∈ A}, where
each ca is a constant symbol.

This allows to use parameters and have formulas like1 ϕ(x, y) ≡ x = a
or ψ(x, y) ≡ y = b where a, b ∈ M . Notice that x = a does not mention
the variable y. Anyway we can pad it by rewriting as x = a ∧ y = y. In
general we will write something like ϕ(x, y) to denote that we are regarding
the defined set as a subset of M2, even if ϕ does not mention all of its free
variables.

Definition 1.7. A sentence is a formula without free variables. A theory is
a consistent set of sentences.

Example 1.8. Let L = {R}, where R is a binary relation symbol, and letM
be an infinite graph, where R is interpreted as the edge relation. Examples
of formulas here are

• xRa

• ∀x (¬xRx)

• ∀x, y (xRy → yRx)

(Models of the last two axioms will be called graphs/simple graphs/undirected
graphs/no loops, etc.)

Example 1.9. Consider {Pm,n | m,n ≥ 1}, where

Pm,n ≡ ∀x1, . . . , xm ∀y1, . . . , yn∃z
∧
i,j

xi 6= yj →
∧
i,j

zRxi ∧ ¬zRyj

These axioms, together with the graph axioms, give the theory of the random
graph. We say “the” theory of the random graph because this theory is
complete.

Definition 1.10. A theory T is complete if for every L sentence σ either
T ` σ or Tσ¬σ. Since our theories will implicitly be considered deductively
closed we will also write σ ∈ T or ¬σ ∈ T .

Example 1.11.
1We will write a instead of ca.
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• Let Lgroups = {·,−1, e}, symbols for respectively a binary function, a
unary function and a constant. We could have only used {·} but the
larger language has the following advantage: if G is a group and H is
an Lgroups-substructure of G, then H ≤ G.[

• Lrings = {+, ·, 0, 1,−}

• Lordered rings = {+, ·, 0, 1,−, <}

Notice that if M is infinite and L = {=}, the definable subsets of M1

(i.e. in one variable) are either finite or cofinite, as can be seen by proving
quantifier elimination2 via induction on formulas.

Definition 1.12. If all the definable subsets of every model of a theory are
finite or cofinite, we call the theory strongly minimal.

Fact 1.13. Let M = (C,+, ·, 0, 1,−). Then:

• M is strongly minimal

• Th(M) has quantifier elimination and is axiomatised by ACF0, the
theory of algebraically closed fields of characteristic 0.

• The definable sets are Boolean combinations of basic relations, which in
this case are of the form t0 = t1, for t0, t1 terms, i.e. an equality of two
polynomials, or wlog p(x0, . . . , xn) = 0. These are called constructible
sets.

• Notice that, even if in one variable the definable sets are the same as
the ones definable in the trivial language {=}, in higher dimensions
you have new ones.

Fact 1.14. Let M = (R,+, ·, 0, 1,−, <). Then:

• (Tarski): Th(M) has quantifier elimination.

• The definable sets are Boolean combinations of solutions of equalities
and inequalities of polynomials. These are called semialgebraic sets.

• By quantifier elimination, definable subsets of M1 are finite unions of
intervals and points.

Definition 1.15. If T has an order and is such that, in every of its models,
the 1-dimensional definable sets are finite unions of intervals and points, we
call T o-minimal.

2I.e. that every formula is equivalent to a quantifier-free one.
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Remark 1.16. Let M be an L-structure. If we enrich the language to
L′ = L ∪ {Rϕ(x̄) | ϕ(x̄) ∈ L} and interpret the new relation symbols in the
natural way, i.e. � Rϕ(ā) ⇔ M � ϕ(ā), then the L′-theory of M trivially
eliminates quantifiers. But this is basically useless, as the purpose of quan-
tifier elimination is to understand definable sets, and this construction gives
no new information. But finding an intermediate language in which we still
have quantifier elimination and understand the definable sets can be useful3.

1.3 Types

Definition 1.17. Let M � T and A ⊆ M . A (partial) n-type over A (in
M)4 is a finitely satisfiable (in M) set of formulas with n free variables in
the language L(A).

Example 1.18. Let M = R. The set {x2 = 1 + 1} is a 1-type over ∅. The
set {x = π, y2 = x} is a 2-type over {π}. A more interesting example is
{n · x < 1 | 0 6= n < ω}, which is the same as saying {x < 1/n | 0 6= n < ω}.
This is a 1-type over ∅, and it is satisfied by every nonpositive element in R.
If we instead consider

{0 < n · x < 1 | 0 6= n < ω}

this is finitely satisfiable in R (hence a type), but no element of R satisfies
the whole type.

Definition 1.19. If M ⊆ N , we say that M is an elementary substructure
of N and write M ≺ N if every L(M) formula true in M (we denote this
theory with El Diag(M))5 is true in N .

[Tarski-Vaught test]

Fact 1.20. If π(x) is a type inM over A, then there isM ′ �M that realises
π(x).

Proof. Apply compactness to the L ∪ {c} theory El Diag(M) ∪ π(c).

1.4 Saturation, Monster Models

Definition 1.21. Let κ be a cardinal. We say that M is κ-saturated if for
every A ⊆M with |a| < κ and every n-type π(x̄) over A, M realises π(x̄).

3Finding a minimal language with quantifier elimination should be called something
like Morleyzation of a theory.

4But we will omit M soon.
5But warning: in the official notes this is denoted with Diag(M). In the literature Diag

has sometimes another meaning, so I prefer to use this other notation.
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Example 1.22.

If L = {=} and T is the theory of infinite set, if |M | = κ, then M is
κ-saturated.

R with the ordered field structure is not ℵ0-saturated since we already showed
there is a non-realised ∅-type.

Theorem 1.23. Let M be a structure and κ a cardinal ≥ |L|. Then there
is a κ-saturated N �M such that |N | ≤ |M |κ.

A monster model is, ideally, a model M that embeds all models M � T
and realises all types over subsets of M (and more things). This is of course
impossible, so we need to take a different approach. Some books say that M
is κ-saturated with “big enough” κ, where “big enough” means “bigger than all
models you are interested in”. But what if you are interested in all models?
So our approach would be to consider κ to be bigger than all models you use
in a proof. For example we will say “ if M � T and6 tp(a/A) = tp(b/A) for
some A ⊆M , then there is σ ∈ Aut(M/A) such that σ(a) = b”. This is just
to avoid to say “there is N � M such that (same thing with M replaced by
N ”, which could be messy if we have a lot of different models in the same
proof. Instead, we just use a big M where to embed all we will use. This
is analogous to what you do in calculus where you first assume there is a δ
doing stuff and then estimate the size of δ. The same can be done with κ
here.

Indeed, this is not the full story. The point is that we would like to have
a |M|-saturated M. This is the best we could hope for because

Fact 1.24. M cannot be |M |+-saturated: just consider the type {x 6= m |
m ∈M}.

Anyway |M |-saturatedM do not always exist. Sometimes they do under
additional hypotheses, such as gch (try to plug it in Theorem 1.23. . . ).
Another approach is to assume the existence of a regular cardinal κ ≥ ℵ1

such that for all λ < κ 2λ < κ (a strongly inaccessible) cardinal).
Anyway, let’s see the proof of Theorem 1.23:

Proof.

Claim. There is M ′ � M such that M ′ realises all 1-types over subsets of
M of cardinality ≤ κ, and |M ′| ≤ |M |κ.

Proof of Claim. First notice that realising all 1-types is sufficient: if you
have an n-type p(x1, . . . , xn) you just need to realise first all formulas which
only involve x1, then add a realisation to the parameters and iterate.

Also, notice that |{A ⊆ M | |A| ≤ κ}| ≤ |M |κ. Given A ⊆ M , |A| ≤ κ,
then the space of complete types SM1 (A) has cardinality ≤ 2|L|+|A| = 2κ.

6tp(b/A) are all L(A)-formulas satisfied by b.
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Hence there are at most |M |κ possible types over subsets ofM of cardinality
≤ κ. Let us thus enumerate this set as {pα(x) | α < |M |κ}.

We are now going to construct a chain of models this way: we set
M0 = M , for nonzero limit α we set Mα =

⋃
β<αMβ , and Mα+1 realises

pα and Mα+1 � Mα, |Mα+1| ≤ |Mα|κ. We do this with compactness plus
Löwenheim-Skolem. Then we set M ′ =

⋂
α<|M |κMα. Since a union of an

elementary chain of models is an elementary extension of each element of
the chain, M ′ �M , and every pα is realised by construction.

claim

To complete the proof, we do another inductive construction: we let
N0 = M . Set Nα =

⋃
β<αNβ for nonzero limit α, and set Nα+1 = (Nα)′,

where the latter is given by the claim. This is again an elementary extension
of M because it is a union of an elementary chain. Let now A ⊆ N be
of cardinality < κ. The idea now would be: if A ⊆ Nα for some α then
Nα+1 ⊆ N realises every type with parameters in A. (there is some technical
problem with ensuring this, which we will fix, but modulo this the proof is
finished) The fix is that the cofinality of |M |κ is greater than κ, which can
be proved via König’s Lemma: if f : κ→ |M |κ is cofinal we have

|M |κ = κ =
∑
i<κ

f(i) <
∏
i<κ

|M |κ = (|M |κ)κ = |M |κ

which is clearly absurd.
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Next week we will receives notes, exercises, bibliography, etc.
[finished the proof or Theorem 1.23 (reported on last lesson’s notes), and

Tarski-Vaught]

2.1 Remarks on The Monster Model

The monster M has this features:

• M is κ-saturated for “very big” κ.

• M is strongly κ-homogeneous, i.e. whenever A,B ⊆ M, |A|, |B| < κ,
and f : A→ B is a partial elementary map, then f can be extended to
an automorphism σ ∈ Aut(M).

• M is κ-universal: if M � T and |M | < κ then there is an elementary
embedding f : M →M, i.e.M ∼= f(M) ≺M. This in particular means
that we cannot build a monster if T is not complete.

E.g. small subfields of C can be swapped by an automorphism. For time
reasons we will not see how to ensure this. Anyway models constructed as
in the proof of Theorem 1.231 do satisfy this properties. An idea of how you
prove homogeneity is the following.

Assume M =
⋃
i<αMi where each Mi is saturated with respect to the

cardinality of the previous ones. Suppose A,B ⊆ Mα (again, by cofinality
reasons). You extend the map f : A → B by a back-and-forth argument
using saturation.

Example 2.1. An example of ℵ0-saturated model which is not ℵ0-strongly-
homogeneous is, in the theory of discrete linear orders without endpoints,
(Z× (R tQ)) with the antilexicographical order: it is ℵ0-saturated because

1They are called special models, or something like that.

7
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you can show that ℵ0-saturated models of that theory are of the form Z× I,
for I a dense linear order. But (0, 0R) 7→ (0, 0Q) is a partial elementary map
that does not extend to an automorphism.

[details of the example above]

Definition 2.2.

• Let κ(M) be the saturation of the monster. A set is small if it has
cardinality less than κ(M).

• We will write � ϕ(ā) for M � ϕ(ā).

• Let Φ(x̄) and Ψ(x̄) be small sets of formulas. We say that Φ(x̄) ` Ψ(x̄)
to mean that for all ā ∈M such that2 � Φ(ā), then � Ψ(ā)

Fact 2.3. Let ϕ(x̄) be an L(M) formula and Φ(x̄) be a consistent small set
of L(M)-formulas. If Φ(x̄) ` ϕ(x̄), then there is a finite set Φ0(x̄) ⊆ Φ(x̄)
such that Φ0 ` Φ.

Proof. Assume otherwise, and define the type

Γ(x̄) := Φ(x̄) ∪ {¬ϕ(x̄)}

Since Φ ` ϕ, the monster M has no realisations of Γ. However, Γ is a type
over a small set of parameters, which is finitely consistent, so by compactness
and saturation it should have realisations; this is a contradiction.

Fact 2.4. Let A be a small set. Then tp(a/A) = tp(b/A) if and only if there
is3 σ ∈ Aut(M/A) such that σ(a) = b

Proof. The map being the identity on A and sending a to b is a partial
elementary map by hypothesis. By strong homogeneity it extends to an
automorphism which will be the required σ.

Lemma 2.5. Let X be a definable set. Then X is A-definable if and only
if σ(X) = X for every σ ∈ Aut(M/A).

From now one we will write x or b even if x or b are tuples, instead of,
say, x̄ and b̄.

Proof. ⇒ Let X = ϕ(M, ā), for some ϕ(x̄, ȳ) ∈ L and ā ∈ A. We have
σ(X) = ϕ(M, σ(ā)). But then

b ∈ σ(X)⇔ b = σ(b′) for some b′ ∈ X
⇔� ϕ(b′, a) and σ(b′) = b⇔� ϕ(σ(b′), σ(a))⇔� ϕ(b, σ(a))

2I.e. ā realises all formulas in Φ(x̄).
3I.e. an automorphism of M that fixes A pointwise.
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So if σ ∈ Aut(M/A) we have σ(X) = ϕ(M, σ(a)) = ϕ(M, a) = X.
⇐ Suppose X = ϕ(M, b) for some b. Consider p(y) = tp(b/A). We

want to prove that p(y) ` ∀x
(
ϕ(x, y)↔ ϕ(x, b)

)
. If b′ � p(y) then tp(b′/A) =

tp(b/A). This implies that there is σ ∈ Aut(M/A) such that σ(b) = b′ and
ϕ(M, b) = ϕ(M, b′). So b′ � ∀x(ϕ(x, y) ↔ ϕ(x, b)). Therefore there is a
finite p0(y) ⊆ ϕ(y) such that p0(y) ` ∀x

(
ϕ(x, y)↔ ϕ(x, b)

)
. Let ψ(y) be the

conjunction of p0. Consider

θ(x) := ∃y(ψ(y) ∧ ϕ(x, y))

which has parameters in A. Then

c ∈ θ(M) ⇐⇒ ∃b′ M � ψ(b′)∧ϕ(c, b′) ⇐⇒ c ∈ ϕ(M, b′) = ϕ(M, b) ⇐⇒ c ∈ X

Remark 2.6. The hypothesis that X is already definable is very important.
For example, in DLO (Dense Linear Orders), consider a monster M and
embed Q in it. Consider the set

X = {m ∈M | 0 < x < 1/n | n < ω}

This set is not definable, but it is type-definable, over Q i.e. it is an infinite
intersection of definable sets: just write X =

⋂
n<ω 0 < x < 1/n. Therefore

if σ ∈ Aut(M/Q) we have that σ(X) = X, even if X is not definable.

Definition 2.7. If X is such that for every σ ∈ Aut(M/A) we have that
σ(X) = X, we say that X is A-invariant.

The whole point is that we want to say “small” in the same spirit as we
say “finite”.

Remark 2.8. If for you “small” means “countable”, then C is a monster
model.

2.2 Almost A-definable Sets

As with completions and eliminations of quantifiers, you do not know if
your theory has elimination of quantifier, but there is also a construction
that yields a “sibling” theory which has it.

Notation 2.9. Sets of parameters will be often implicitly assumed to be
small.

Lemma 2.10. Let X ⊆Mn be definable and A be small. The following are
equivalent:
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1. X is almost A-definable, i.e. there is an A-definable equivalence relation
E with finitely many classes and X is the union of some of those.

2. The set {σ(X) | σ ∈ Aut(M/A)} is finite.

3. The set {σ(X) | σ ∈ Aut(M/A)} is small.

Proof. 1⇒ 2 Assume E(x, y; a) is the formula witnessing that X is al-
most A-definable. Then X =

⋃n
i=1E(M, bi; a), and {E(M, bj ; a) | 1 ≤ j ≤

m + n} is the full set of classes in M. Notice that if σ ∈ Aut(M/A) then
σ(E(M, bi; a)) = E(M, σ(bi); a) = E(M, bj ; a). Therefore |{σ(X) | σ ∈
Aut(M/A)}| ≤

(
n+m
n

)
.

2⇒ 3 :)
3⇒ 1 LetX = ϕ(M, b), so {σ(X) | σ ∈ Aut(M/A)} = {σ(ϕ(M, σ(b))) |

σ ∈ Aut(M/A)}. By hypothesis, there is a small number α < κ(M) of reali-
sations 〈bi | i < α〉 of tp(b/A) such that for any b′ � tp(b/A) there is i < α
such that ϕ(M, b′) = ϕ(M, bi).

Claim. 4 In fact, there are finitely many realisations b1, . . . , bk of tp(b/A)
such that

∀b′ � tp(b/A) ∃i ≤ k ϕ(M, b′) = ϕ(M, bi)

Proof of Claim. Let

Γ(y) := tp(b/A) ∪ {¬∀x
(
ϕ(x, y)↔ ϕ(x, bi)

)
| i < α}

This is the same as

Γ(y) = tp(b/A) ∪ {¬∀x
(
ϕ(M, y) 6= ϕ(M, bi)

)
| i < α}

If the Claim is not true, Γ is finitely consistent, and since Γ is a type over
a small set of parameters, it has a realisation in M. This is a contradiction.

claim

This means that tp(b/A) = p(y) `
∨k
i=1 ∀x

(
ϕ(x, y) ↔ ϕ(x, bi)

)
. There-

fore there is ψ(y) such that ψ(y) `
∨k
i=1 ∀x

(
ϕ(x, y)↔ ϕ(x, bi)

)
. Define

E(x1, x2) := ∀y
(
ψ(y)→ (ϕ(x1, y)↔ ϕ(x2, y))

)
in other words, a1Ea2 iff they agree on ϕ(x, bi) for all i = 1, . . . , k. So each
class can be codified by a function s : {1, . . . , k} → {0, 1}. Therefore

ϕ(M, b) =
⋃
{Es | s(i) = 1 whenever ϕ(M, bi) ∩ ϕ(M, b) 6= ∅}

4Which is 2, by the way.
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Definition 2.11. We say that a is algebraic over A if there is ϕ(x) ∈ L(A)
such that

• � ϕ(a), and

• ϕ(M) is finite.

We say that a is definable over A if there is ϕ(x) ∈ L(A) such that

• � ϕ(a), and

• ϕ(M) = {a}.

Example 2.12. In algebraically closed fields (say of characteristic 0) being
algebraic over A just means being algebraic over A in the algebraic sense,
and being definable over A means being in the field generated by A.

Definition 2.13. The algebraic closure acl(A) ofA is5 {b ∈M1 | b is algebraic over A}.
The definable closure acl(A) of A is {b ∈M1 | b is definable over A}.

5Remember that in our notational conventions b can be in general a tuple, so the M1

is to stress that it is a single element (in Definition 2.11 it could be a tuple.).
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Remark 3.1. In Lemma 2.10 there is another equivalent statement, namely
“X is M eq-definable. We will see the definition now.

3.1 Imaginaries and M eq

Definition 3.2. Let M be and L-structure and T = Th(M). Let ER(T ) be
the set of ∅-definable equivalence relations. We define

Leq := L ∪ {SE | E ∈ ER(T )︸ ︷︷ ︸
new sorts

} ∪ {fE | E ∈ ER(T )︸ ︷︷ ︸
functions

}

[recap on multi-sorted structure and difference between vector spaces
with a single sort and functions for scalar multiplication and vector spaces
with a separate sort for the field]

Note that equality is an ∅-definable equivalence relation, so we have a
sort S= which will, when interpreted, be isomorphic to M .

Definition 3.3. We define M eq this way: each sort SE is interpreted as

SE := {ā/E | E ∈ ER(T ) of arity n, ā ∈Mn}

Moreover we have function symbols fE interpreted as fE : Mn → SE sending
ā to ā/E.

We call S= the home sort. Its elements are called real elements. Elements
in other sorts are called imaginary.

Notice that all a/E are in acleq(a), as witnessed by the formula y = fE(a).
What we would like is not to have imaginary elements, i.e. to define them

in terms of the real ones.

Definition 3.4. We define T eq to be the Leq-theory

T eq = T∪{∀y ∈ SE ∃x̄ ∈ S= (fE(x̄) = y)}∪{∀x̄1, x̄2 (fE(x̄1) = fE(x̄2)↔ E(x̄1, x̄2))}

13
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Lemma 3.5.

1. If M = S=, then for every ϕ(x̄) ∈ L and ā ∈ M , we have M �
ϕ(ā) ⇐⇒ M eq � ϕ(ā).

2. If M � T , then M eq � T eq.

3. Every M∗ � T eq is of the form M∗ = M eq for some M � T .

4. M eq = dcleq(M).

5. Given equivalence relations E1, . . . , Ek ∈ ER(T ) and ϕ(x1, . . . , xk) ∈
Leq (with xi ∈ SEi) there is some ψ(ȳ1, . . . , ȳk) ∈ L such that

T eq ` ∀ȳ1, . . . , ȳk ∈ S=

(
ψ(ȳ1, . . . , ȳk)↔ ϕ(fE1(ȳ1), . . . , fEk(ȳk))

)
We will skip the proof for now (but the first 4 points are easy). Point

5 of the Lemma is the real reason we define T eq: the point is “eliminating
imaginaries” in the same way as the Morleyzation of a structure eliminates
quantifiers. Even in this case, the real deal is eliminating imaginaries in a
language which is understandable enough. Let us give the precise definition
of “eliminating imaginaries”.

Definition 3.6. A theory T eliminates imaginaries if for every M � T and
e ∈M eq there is d̄ ∈M such that e ∈ dcleq(d̄) and d̄ ∈ dcleq(e).

Example 3.7.

• Algebraically closed fields eliminate imaginaries.

• Infinite sets do not eliminate imaginaries.

• Vector spaces in the two-sorted language do not eliminate imaginaries:
consider

x ∈ V ∼ y ∈ V ⇐⇒ ∃λ ∈ K \ {0} (x = λ · y)

The idea here is “every definable X ⊆ Mn corresponds to an imagi-
nary”, in the following sense: Let X = ϕ(M, b̄) and consider E(ȳ1, ȳ2) :=
∀x̄
(
ϕ(x̄, ȳ1)↔ ϕ(x̄, ȳ2)

)
. We have b̄/Eϕ ∈M eq and the following properties:

1. For all1 σ ∈ Aut(M), we have σ(X) = X iff σ(b̄/Eϕ) = b̄/Eϕ. This
is because we have σ(X) = X iff M � ∀x̄ (ϕ(x̄, σ(b̄)) ↔ ϕ(x, b̄)) iff
σ(b̄)Eϕb̄ iff σ(b̄/Eϕ) = b̄/Eϕ.

1Note that automorphisms of M can be extended to automorphisms of Meq in the
natural way (it is not obvious that it is well-defined on equivalence classes, but it is).
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2. X is Leq-definable over b̄/E: consider

ψ(x̄; z) := ∃ȳ (ϕ(x̄, ȳ) ∧ fEϕ(ȳ) = z)

and plug b̄/E in place of z.

3. b̄/E is the unique element e in the sort SE such that ψ(x̄, e) defines
X. This is because if ψ(x̄, e) defines X then ϕ(x̄, b̄′) defines X and
fE(b′) = e, and this means e = b̄′/E = b̄/E.

Definition 3.8. b̄/Eϕ is called the code of X.

So the point of elimination of imaginaries is that definable sets have codes:
here a definable set is fixed setwise by an automorphism iff it fixes its code.

Example 3.9. A code of a plane is the tuple of coefficients of the equations
defining it.
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Proof of Lemma 3.5. As anticipated, we are only going to prove the last
point. The proof is by induction on ϕ. Is ϕ is atomic, then either ϕ ∈ L
(and there is nothing to do), otherwise it is of the form fE(x̄) = fE(ȳ). In
this case just let ψϕ(x̄, ȳ) := E(x̄, ȳ).

The ¬ and ∧ cases are clear, so we are left to deal with ∃. Assume ϕ(x̄)
has the form ∃z Φ(x̄, z). Modulo T eq, this is equivalent to

∃z̃
(
Φ(x̄, fE(z̃))

)
where x̄ has sort SR = (SE1 , . . . , SEk) and z has sort SE . By inductive
hypothesis there is ψΦ(ȳ, w̄) such that

T eq ` ∀ȳ, w̄
(
ψΦ(ȳ, w̄)↔ Φ(fR(x̄), fE(w̄)

)
We claim that then it is sufficient to set

ψϕ := ∃w̄ (ψΦ(ȳ, w̄))

In fact take ā in the home sort of Meq, arbitrary. Then

Meq � ϕ(fR(ā)) ⇐⇒ ∃b̄ ∈M Meq � Φ(fR(ā), fE(b̄))

⇐⇒ ∃b̄ ∈M Meq � ψΦ(ā, b̄)

⇐⇒Meq � ψϕ(ā)

Corollary 4.1. M is stably embedded in Meq (if you know the definition;
anyway we will say it later).

Remark 4.2. If T eliminates imaginaries and e, d̄ are as in the definition,
up to taking conjunctions we can assume that interdefinability is witnessed
by a single formula ϕ(x̄, y).

17
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Some comments:

• Moving from T to T eq preserves definable sets. But, for particular
theories, what is the right1 language in which you have elimination of
imaginaries?2

Example 4.3.

• Some very trivial examples of imaginaries are diagonal tuples (a, a)
or (a, a, a, . . . , a) (where the equivalence relation is “being equal as a
tuple”).

• Finite sets: you can write a formula defining the equivalence relation
E2((x1, x2), (y1, y2)) := {x1, x2} = {y1, y2}.

• Quotients: let G be a definable group and H ≤ G be ∅-definable. Con-
sider EH(g1, g2) := g1H = g2H, which can be defined with ∃h (H(h)∧
g1h = g2).

• Consider in C � ACF0 the formula ϕ(x, y, a, b) := a · x + b · y = 0.
Then consider the equivalence relation E((z1, z2), (w1, w2)) := ∃λ 6=
0 (λz1 = w1 ∧ λz2 = w2). Then (a, b)/E works as a code for the set
defined by ϕ.

Fact 4.4. The theory T∞ of infinite sets does not eliminate imaginaries: in
particular, it does not eliminate {a, b} for a 6= b.

Proof. Assume e = {a, b} is interdefinable with a real tuple d̄. In fact, if this
was to be the case, any σ ∈ Aut(M/e) would fix d̄ by Lemma 2.5. However,
no c is fixed by all these σ: if c 6= a, b, then we can just swap it with some
other c′ fixing a and b; if c = a, say3, we can exchange a and b and {a, b}
would be fixed anyway.

The trick with theories like ACF0 is that you can encode finite sets with
polynomials, and then you get elimination of imaginaries via strong mini-
mality. E.g. encode {a, b} with x2 − (a+ b)x+ ab.

Proposition 4.5. The following are equivalent:

1. T eliminates imaginaries and there are at least two ∅-definable ele-
ments.

2. For every ∅-definable equivalence relation E on Mn there are m and a
∅-definable f : Mn →Mm such that āEb̄ ⇐⇒ f(ā) = f(b̄).

1I.e. “minimal”, or “more natural”, or the like.
2Same as with elimination of quantifiers.
3The case c = b is analogous.
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Proof.
2⇒ 1 Let e = ā/E, and consider d̄ = f(ā). Let us show that they are

interdefinable. Consider

ϕ(x, y) = ∃z̄ (fE(z̄) = y ∧ f(z̄) = x)

We want to see that {d̄} = ϕ(Mn, e) and {e} = ϕ(d̄,Meq), but this is just
true by definition. To construct the two ∅-definable elements define

(x1, x2)E(y1, y2) ⇐⇒ (x1 = x2 ↔ y1 = y2)

This has exactly two equivalence classes. Codify E with some f , and note
that the image of f has exactly two elements, each of them ∅-definable by
considering f(x, x) and f(x, y) for x and y two distinct4 elements of M.

1⇒ 2 Fix an ∅-definable equivalence relation E. For every e = ā/E
there is a tuple d̄e ∈Mme and a formula ϕe(x̄, y) such that ϕe witnesses the
interdefinability5 of d̄ and e. Now consider the fact that {ϕe(x̄, y) | e ∈ SE}
covers S(M). By compactness there are formulas ϕ1(x̄1, y1), . . . , ϕk(x̄k, yk)
such that [. . . ]. We therefore find sets D1, . . . , Dk who partition Mn (the
preimages of the appropriate imaginaries). This defines a function, but it
could be not into a single Mm because the me depend on e. That’s where
you use interdefinability: we have {Di → Mmi | i ≤ k} and we amalgamate
them in Mm1+...+mk+k padding tuples with some “noise”. Anyway the noise
should be carefully chosen to avoid clashes, but his can be done up to taking
larger k. We’ll see in more detail in next lessons/the official notes of the
course.6

4We are tacitly assuming that we have at least two elements in our structure.
5Up to conjunctions: if {b} = ζ(a,M) and {a} = θ(M, b), look at ζ(x, y) ∧ θ(x, y).
6It is one of those usual coding tricks: use the two constants as 0s and 1s and look in

the last k coordinates (probably dlog2 ke suffice) to know in which coordinates to look.
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5.1 Indiscernible Sequences

This is somehow a generalisation of the behaviour of converging se-
quences.

Definition 5.1. Let I be a linear order. A sequence 〈ai | i ∈ I〉 is A-
indiscernible (or indiscernible over A) if for every formula ϕ(x1, . . . , xn) ∈
L(A), whenever i1 < . . . < in and j1 < . . . < jn we have � ϕ(ai1 , . . . , ain) ⇐⇒
� ϕ(aj1 , . . . , ajn).

So the idea is that ordered tuples all have the same A-type.

Example 5.2. These are some examples:

1. Take 〈ai = a | i ∈ I〉.

2. Let T = T∞. Then any sequence 〈ai | i ∈ ω〉 with different elements
ai 6= aj , each not in A, is A-indiscernible.

3. If T = DLO, any increasing sequence 〈an | n ∈ ω〉 is ∅-indiscernible.
Note that here, if we permute the ai, the type changes (this was not
the case in the previous example): if ai < aj and we swap them. . .
In other words, for all m < n we have tp(a1, a2) = tp(am, an), but
tp(a1, a2) 6= tp(a2, a1). Also, if we take A = {b} with a2 < b < a3, say,
the sequence will not be A-indiscernible. In fact,

Fact 5.3. A-indiscernible sequences in DLO are monotone sequences
in a specific A-cut1.

1An A-cut S is a subset of A closed under initial segments (i.e. downwards), and saying
that something lies in S means that it’s bigger than (all the stuff in) S but smaller than
(all the stuff in) A \ S

21
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4. If A ⊆ M � ACF0, how does a non-constant indiscernible sequence
〈ai | i < ω〉 over A look like? Take a single element, say a1. Since all
the other ones must have the same A-type, and they are infinitely many
and different, we cannot have a1 ∈ acl(A). So a1 is transcendental over
A, and so are all the other ai. Take now a2 and consider tp(a2/Aa1).
By indiscernibility, this must be the same as tp(aj/Aa1) for j > 1,
and for the same reason as above it cannot be algebraic. Continuing
this way, we realise that 〈ai | i < ω〉 is a sequence of A-algebraically
independent transcendentals. In this case, we can still permute the
sequence and get another A-indiscernible one (being algebraically in-
dependent is something that does not depend on the order). [definition
of “transcendental” in fields]

Indiscernible sequences are a very useful tool: for example they come
handy in inductive arguments because if you spot a relation between, say
a1, a20, a55, you can move it to a1, a2, a3.

Theorem 5.4 (Ramsey’s Theorem). For every coloring c of the n-elements
subsets [N]n of N into k colors there is an infinite I ⊆ N such that c � [I]n is
constant. We say that I is homogeneous.

In arrow notation,
ℵ0 → (ℵ0)nk

Proof. Not here.

Theorem 5.5 (Erdös-Rado). In arrow notation,

(in(κ))+ → (κ+)n+1
κ

I.e. every time you color the n+1-elements subsets of (in(κ))+ with κ colors
there is an homogeneous subset of size κ+.

Proof. Not here.

Remark 5.6. There is the following estimate for Ramsey numbers (two
colors and 2-subets) R(k) > 2

k
2 (e.g. R(3) = 6, R(4) = 17, i.e. 6 → (3)2

2,
17→ (4)2

2 and 6, 17 are minimal.).

5.2 Expanding and Shrinking Indiscernibles

We can use these theorems for expanding and shrinking indiscernibles.

Definition 5.7. Given a sequence2 I = 〈ai | i < ω〉, the Ehrenfeucht-
Mostowski type of I over A, denoted em(I/A), is the set of formulas (in
infinitely many variables3) ϕ(x1, . . . , xn) ∈ L(A) such that for all i1 < . . . <
in we have � ϕ(ai1 , . . . , ain).

2Actually, we can give the same definition with any infinite linear order in place of ω.
3ω of them, even if I is indexed on a bigger set.
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So, if I is A-indiscernible, its Ehrenfeucht-Mostowski type is basically its
type. But if you take, for instance, 1, 2, 1, 2, 1, 2, . . . in Q, you will not get a
complete type, but you still get formulas as x > 0.

Proposition 5.8. Let ā = 〈ai | i < ω〉 be an arbitrary sequence in M and
A a small set of parameters. Then, for any small linear order I there is an
A-indiscernible sequence 〈bi | i ∈ I〉 such that whenever ∆ is a finite set of
L(A)-formulas, there are j1 < . . . < jn in ω such that for all ϕ ∈ ∆

� ϕ(b1, . . . , bn) ⇐⇒ � ϕ(aj1 , . . . , ajn)

Proof. Let L′ = L ∪ {ci | i ∈ I} and let T ′ be the L′-theory given by:

1. {ϕ(cj1 , . . . , cjn) ∈ L(A) | ∀i1 < . . . < in � ϕ(ai1 , . . . , ain)}j1<...<jn∈I

2. {ψ(ci1 , . . . , cin) ↔ ψ(cj1 , . . . , jn) | ψ ∈ L(A), i1 < . . . < in ∈ I, j1 <
. . . , jn ∈ I}

Notice that our Proposition is equivalent to the fact that T ′ is consistent:
since everything is small, a model of T ′ can be embedded in M, and the
realisations of the cjs will be our bjs. Let us do it more precisely:

Claim. T ′ consistent is enough.

Proof of Claim. Since everything is small, then there are elements 〈bj | j ∈
I〉 such that 〈bj | j ∈ I〉 = 〈cMj | j ∈ I〉. By 2 above, 〈bj | j ∈ I〉 is
A-indiscernible.

Now let ∆ ∈ Pfin(L(A)), consider ϕ∆ =
∧
ψ∈∆ ψ and assume wlog4

that � ϕ∆(b1, . . . , bn). If for all j1 < . . . < jn < ω we had � ¬ϕ∆(aj1 , . . . , ajn),
then we would have had ¬ϕ∆ ∈ em(〈ai | i < ω〉/A), so ¬ϕ∆ would have been
inn 1 above and we get the absurd � ¬ϕ∆(b1, . . . , bn).

claim

We are now going to use compactness to show that T ′ is consistent. Let
T0 ∈Pfin(T ′) and let5 {ϕ1, . . . , ϕk, ψ1, . . . , ψm} = Φ0 be the collection of all
formulas mentioned in T0, except we replace the constants cj with variables
xj . There are at most 2k+m types in the formulas from Φ0. Now consider
the coloring obtained this way: given j1 < . . . < jn in ω, define

c(j1, . . . , jn) = tpΦ0
(aj1 , . . . , ajn)

In other words, color the set of indexes {j1, . . . , jn} with the Φ0-type realised
by the corresponding ajs. By the instance ℵ0 → (ℵ0)n

2k+m
of Ramsey’s

Theorem we have an infinite subsequence of the ajs all6 with the same Φ0-
type, and this completes the compactness argument.

4Up to negating the ψs which do not hold for b1, . . . , bn.
5Clearly, we mean that the ϕs are coming from 1 and the ψ from 2
6More precisely, we should speak of the ordered n-tuples coming from them.
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Corollary 5.9. Let 〈ai | i ∈ I〉 be a small A-indiscernible sequence and
J ⊇ I another small linear order. Then, there is an A-indiscernible sequence
{bj | j ∈ J} in M extending it, i.e. such that for all j ∈ I we have aj = bj .

Proof. Use the previous Proposition together with saturation an homogene-
ity of M: first find some suitable (bj | j ∈ J) with the Proposition and then,
since tp((ai | i ∈ I)/A) = tp((bj | j ∈ I)/A) and everything is small, we can
swap them with some element of Aut(M/A).

5.3 Stable Formulas

Definition 5.10. Let T be a complete theory.

1. We say that ϕ(x̄, ȳ) has the k-order property (in T ) iff there are ele-
ments ā1, . . . , āk and b̄1, . . . , b̄k in M such that � ϕ(āi, b̄j) ⇐⇒ i < j.

2. We say that ϕ(x̄, ȳ) is unstable (has the order property) if, for all k < ω,
it has the k-order property.

3. Stable means “not unstable”.

Philosophically speaking, “ϕ(x, y) has the order property if it encodes
and infinite order”7.

Example 5.11.

• It is easy to see that in any theory, the formula x = y is stable: if
a1 = b2 and a1 = b3, then we also should have a2 6= b2 but a2 = b3,
contradicting transitivity.

• The formula x < y in DLO has the order property. Just take an
increasing sequence an = bn for all n ∈ N.

• Let T be the theory of an equivalence relation with infinitely many
infinite classes. For the same reason as in the first example, xEy is
going to be stable.

• If T is the theory of the random graph, the formula ϕ(x, y) := xRy has
the order property. Just choose the appropriate ai and bj inductively
using the random graph axiom. Anyway, we will see later that here
there is no formula defining an order with infinite chains.

Note that even unstable theories have a “stable part”: for example we
just said that x = y is stable in every theory.

7The “philosophically” is because the infinite linearly order set will not in general be
definable. But there will be something like a type-definable partial order with an infinite
chain or stuff like that. Whether the statement is true depends on how you interpret
“encodes”.
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6.1 Some Remarks On Stability

Remark 6.1. By compactness, ϕ(x̄, ȳ) is unstable (in T ) iff for someM � T
there are 〈āi, b̄i | i < ω〉 such that M � ϕ(āi, b̄j) ⇐⇒ i < j.

Exercise 6.2. You can assume (ai) and (bi) to be indiscernible.

Proposition 6.3. Assume ϕ(x̄, ȳ) is unstable. Then for every linear order I
there is M � T and 〈āi, b̄i | i ∈ I〉 ⊆ M such that M � ϕ(āi, b̄j) ⇐⇒ i < j
in I.

Proof. Compactness. Just write the set of formulas

{ϕ(x̄i, ȳj) | i < j} ∪ {¬ϕ(x̄i, ȳj) | i ≥ j}

It suffices to show that this is finitely consistent. But each finite subset of
this can easily be shown to be finitely consistent under our hypotheses. Then
any |I|+-saturated1 M � T will realise our type.

6.2 Counting Types

Definition 6.4. Given a2 theory T , for each infinite cardinal κ define the
stability function of T to be

gT (κ) := sup{|S1(M)| |M � T, |M | = κ}

(actually it all started with Shelah noticing that the behaviour of this
function is related to combinatorial patterns as the ones we saw above).

Definition 6.5. We define, for κ an infinite cardinal,

dedκ := sup{|I| | (I,<) is a linear order with a dense J ⊆ I with |J | = κ}
1Actually |I|-saturation should suffice.
2Complete, as usual.

25
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Fact 6.6. κ ≤ dedκ ≤ 2κ.

Proof. By density, every element of I is then determined by its cut in J .
The lower bound is trivial.

Example 6.7. dedℵ0 = 2ℵ0

Proposition 6.8. For all infinite cardinals κ, we have κ < dedκ.

Proof. Assume µ is minimal such that 2µ > κ. Consider the lexicographic
order on3 2≤µ. Let now I = 2≤µ and J = 2<µ. By choice of µ, we have

|J | = |2<µ| = sup{2λ | λ < µ} ≤ κ

On the other hand |I| ≥ 2µ. It only remains to show that J is dense in I,
but this is obvious: follow two functions until they coincide. At some point
they have to split, and this point is less than µ and the corresponding node
belongs to J . Then dedκ ≥ 2µ > κ.

Proposition 6.9. If T is unstable, then for all κ ≥ |T | we have gT (κ) ≥
dedκ.

Proof. Let4 ϕ(x, y) be an unstable formula in T . Let I be a dense linear
order of size5 dedκ with a dense subset J of size κ. Pick 〈ai, bi | i ∈ I〉
witnessing the order property for ϕ(x, y). Then

|Sϕ({bj | j ∈ J}︸ ︷︷ ︸
B

)| ≥ dedκ

because if ai 6= ai′ are in I there is some j ∈ J such that i < j < i′ so ϕ(x, bj)
is in tp(ai/B) \ tp(ai′/B). By Löwenheim-Skolem there is some M � T such
that B ⊆M and |M | = κ. This shows that |Sx(M)| ≥ |Sϕ(B)| ≥ dedκ.

6.3 On dedκ

Obviously, gch⇒ dedκ ≥ 2κ.

Fact 6.10 (Mitchell(1972)). If cof κ ≥ ℵ1, then there is a cardinal preserving
Cohen extension forcing dedκ < 2κ.

Fact 6.11 (Chernikov-Kaplan-Shelah). Starting with gch you can force

ℵω+ω = dedℵω < (dedℵω)ℵ0 = ℵω+ω+1 = 2ℵω

3Sequences of 0s and 1s of length ≤ µ, i.e. the functions from some ordinal λ ≤ µ to 2.
You can think of the order as projecting the relative tree on a line. For example 0 < 01.

4From now on, I will deliberately write x instead of x̄, and the like.
5Here we are cheating a bit because we did not show that the supremum is attained.

But for the purposes of this proof this is just an abuse of notation: just show the same
thing for every λ < dedκ. . .
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Open Problem 6.12. Can we have these two strict inequalities simultane-
ously?

dedκ < (dedκ)ℵ0 < 2κ

Theorem 6.13 (Keisler-Shelah6). Let T be countable. Then the function
gT (κ) coincides with one of the following six, and they correspond to prop-
erties of the theory:

1. κ, corresponding to T being ω-stable (in this case it is the same as
totally transcendental)

2. κ+ 2ℵ0 corresponding to T being superstable (but not ω-stable)

3. κℵ0 corresponding to T being stable (but not superstable)

4. dedκ [multi-order]

5. (dedκ)ℵ0 corresponding to T being nip (but none of the previous)

6. 2κ corresponding to T being none of the above (i.e. having ip)

Corollary 6.14. In an universe with gch, you cannot detect nip by count-
ing types.

Proof. In that case, (dedκ)ℵ0 = 2κ.

Lemma 6.15. Let T be a complete theory, and let ϕ(x, y), ψ(x, z) be stable
formulas. Then the following hold:

1. ϕ∗(y, x) := ϕ(x, y) is stable.

2. ¬ϕ(x, y) is stable.

3. ϕ ∧ ψ and ψ ∨ ϕ are stable.

4. If y = uv and c ∈M |v| then ϕ(x, uc) is stable.

5. If T is stable, then T eq is stable.

Proof.

1. Reverse the order.

2. Reverse the order.
6Actually mostly done by Shelah, last two functions done by Keisler.
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3. By the previous point, it suffices to prove one of the two. So assume
that θ(x; yz) := ϕ ∨ ψ is unstable, as witnessed by sequences 〈ai, bici |
i < ω〉. We have

� θ(ai; bjcj) ⇐⇒ � ϕ(ai, bj) ∨ ψ(ai, cj) ⇐⇒ i < j

Define

P := {(i, j) ∈ N2 | i < j and � ϕ(ai, bj)}
Q := {(i, j) ∈ N2 | i < j and � ψ(ai, cj)}

This is a 2-coloring of the pairs in N, and it suffices to use Ramsey’s
theorem: an infinite homogeneous set for P would say that ϕ is un-
stable, while an infinite homogeneous set for Q would say that ψ is
unstable.

4. If ϕ(x;uc) is unstable, as witnessed by 〈ai, bi〉, then 〈ai, bic〉 witnesses
that ϕ(x, uv) is unstable.

5. Painful but easy.

There will be homework between today and tomorrow, to be handed in
two weeks.
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7.1 This Week’s Goals

The goal for this week is to prove these theorems (some of the definitions
are still going to be given).

Theorem 7.1. Let T be a complete theory, and ϕ(x, y) a formula. The
following are equivalent:

1. ϕ(x, y) is stable.

2. Rϕ(x = x) < ω.

3. All ϕ-types are definable.

4. For every κ ≥ |L| and M � T of size κ, we have |Sϕ(M)| ≤ κ.

5. There is some M � T of size κ such that |Sϕ(M)| < dedκ.

This is a local statement. It can be turned in the following global one.

Theorem 7.2. Let T be a complete theory. The following are equivalent:

1. T is stable.

2. There is no indiscernible sequence 〈ai | i < ω〉 and formula ϕ(x, y)
such that � ϕ(ai, aj) ⇐⇒ i < j.

3. For all κ ≥ ℵ0 we have gT (κ) ≤ κ|T |.

4. There is some κ such that gT (κ) ≤ κ.

5. There is some κ such that gT (κ) < dedκ.

6. All formulas ϕ(x, y) with |x| = 1 are stable.

These can be used for the homework.

29
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7.2 Some Combinatorics

Lemma 7.3 (Erdös-Makkai). Suppose H is infinite and C ⊆P(H) is such
that |C| > |H|. Then, for every n ∈ N, there are h1, . . . , hn ∈ H and
C0, . . . , Cn ∈ C such that

{h1, . . . , hn} ∩ Cj = {h1, . . . , hj} (?n)

In other words hi ∈ Cj ⇐⇒ i ≤ j.

Proof. For a given n, (?n) holds for C if and only if it holds forH\C = {H\C |
C ∈ C}: just define h′1 = hn, . . . , h

′
n = h1 and C ′0 = H \Cn, . . . , C ′n = H \C0.

Then

h′i ∈ C ′j ⇐⇒ hn−i+1 /∈ Cn−j ⇐⇒ n−i+1 > n−j ⇐⇒ i < j+1 ⇐⇒ i ≤ j

Assume the result holds for n (the case n = 0 is trivial). Pick C ∈ C. Then
either

|C ∩ C| = |{X ∩ C | X ∈ C}| > κ := |H| (7.1)

or
|C ∩ C| ≤ κ (7.2)

If (7.1) holds, then there is c ∈ C such that |{Y ∈ C ∩ C | c /∈ Y }| > κ.
This is because otherwise

|{X ∩ C | X ∈ C} \ {C}| ≤

∣∣∣∣∣⋃
c∈C
{Y ∈ C ∩ C | c /∈ Y }

∣∣∣∣∣ ≤ κ · κ = κ

Take such c ∈ C and let D = {Y ∈ C ∩ C | c /∈ Y }. Then |D| > |C|
and D ⊆ P(C). By inductive hypothesis, there are Y0, . . . , Yn ∈ D and
c1, . . . , cn ∈ C such that ci ∈ Yj ⇐⇒ i ≤ j. Now by definition Yj = Cj ∩C
for some Cj ∈ C. Set hn+1 := c and Cn+1 := C.

If (7.2) then we can do the same trick with H \C in place of C, because
then1 |(H \C)∩(H \C)| > κ and we can apply what we said in the beginning.

This has the following consequence:

Proposition 7.4. Assume B is an infinite set of parameters and ϕ(x, y) is
a formula such that |Sϕ(B)| > |B|. Then ϕ(x, y) is unstable.

1The map C → (C ∩C)× ((H \C)∩ (H \C)) sending C0 7→ (C0 ∩C, (H \C0)∩ (H \C))
is injective: if C0, C1 differ by some element c, it either lies in C or in H \C, and this will
be detected by one of the two components of the map.
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Proof. Consider, for each a ∈M,

tpϕ(a/B) = {ϕ(x, b)ηb |M � ϕ(a, b)ηb}

where ηb can be 0 or 1 and we mean that ϕ0 = ϕ and ϕ1 = ¬ϕ. Then set

Sa = {b ∈ B |� ϕ(a, b)}

and
C = {Sa | a ∈M}

Since by hypothesis |C| > |B|, we can apply the Erdös-Makkai Theorem, and
we get that, for each n, there are a1, . . . , an, a0 and b1, . . . , bn such that

i ≤ j ⇐⇒ bi ∈ Saj ⇐⇒ � ϕ(aj , bi)

And this means that ϕ∗(y, x) = ϕ(x, y) is unstable, and we can conclude by
point 1 of Lemma 6.15.

7.3 Shelah’s Local Rank

Definition 7.5. We say that ϕ(x, y) has the binary tree property iff there
are tuples 〈bσ | σ ∈ 2<ω〉 such that for every η ∈ 2ω this set of formulas is
consistent:

{ϕ(x, bη�k)
η(k) | k < ω}

In other words the branches of this tree are consistent:

ϕ(x, bΛ)

ϕ(x, b0) ¬ϕ(x, b1)

ϕ(x, b00) ¬ϕ(x, b01) ϕ(x, b10) ¬ϕ(x, b11)

. . . . . . . . . . . . . . . . . . . . . . . .

Definition 7.6. Let ϕ(x, y) be a formula. The Rϕ-rank of X (a definable
set) is defined as follows:

• Rϕ(X) ≥ 0 iff X is consistent (nonempty).

• Rϕ(X) ≥ n+1 iff there is a tuple a ∈M|y| such that Rϕ(X∧ϕ(x, a)) ≥
n and Rϕ(X ∧ ¬ϕ(x, a)) ≥ n

This rank somehow measures “how stable” a formula is.

Remark 7.7. Note that in the tree generated here siblings have the same
parameters.
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Example 7.8. Let’s try with X := x = x and see what happens. First, use
ϕ(x, y) := x = y. Since both x = a and x 6= a are consistent, the rank is at
least 1. Anyway xa has rank 0, since we cannot split it anymore. (The other
one will of course continue to split on the “ 6=” branch.

Example 7.9. What if ϕ(x, y) := x < y? This has infinite rank:

x = x

x < 1
2 x ≥ 1

2

x < 1
4 x ≥ 1

4 x < 3
4 x ≥ 3

4

. . . . . . . . . . . . . . . . . . . . . . . .

Remark 7.10. Saying “rank ≥ n” is definable! We will see later in detail.

Theorem 7.11. ϕ(x, y) is stable iff Rϕ(x = x) < ω.

Proof.
⇐ Assume ϕ(x, y) is unstable, as witnessed by 〈ai, bi | i ∈ [0, 1]〉. It

then suffices to do as in Example 7.9.
⇒ Assume ϕ(x, y) has the binary tree property (it is implied by having

infinite rank). Note that if B = {bσ | σ ∈ 2<ω} then |B| = ℵ0 and |Sϕ(B)| =
2ℵ0 . Apply Proposition 7.4.

Definition 7.12. Suppose p ∈ S(A). We say that p is definable over B if
for every ϕ(x, y) there is ψϕ(y) ∈ L(B) such that ϕ(x, a) ∈ p ⇐⇒ � ψϕ(a).
We say that p ∈ Sx(A) is definable iff it is definable over A.

Example 7.13. Let T be the theory of equality. Here there are two kind of
types: the type

Pb := {x = b} ∪ {x 6= c | c 6= b}

and the type
P = {x 6= a | a ∈M}

These are both definable. For example, let us look at the formula x = y.
For the first one, notice that x = a ∈ Pb ⇐⇒ a = b. For the second one,
notice that x = a ∈ P ⇐⇒ a 6= a. Then take respectively y = b and y 6= y.

Lemma 7.14. The following facts hold:

1. For each n ∈ ω, the set {e | Rϕ(θ(x, e)) ≥ n} is definable.

2. If Rϕ(θ(x)) = n then for every a ∈M|y| either Rϕ(θ(x) ∧ ϕ(x, a)) < n
or Rϕ(θ(x) ∧ ¬ϕ(x, a)) < n.
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Proof. The second statement is basically definition. The first one is because
you can write a big, painful but easy formula: Rϕ(θ(x, e)) ≥ n iff

� ∃(yσ)σ∈2≤n∃(xη)η∈2n+1

( ∧
η∈2n

θ(xη, e) ∧
n∧
k=1

(ϕ(xη, yη�k))
η(k)
)

Theorem 7.15. If ϕ(x, y) is stable, then all ϕ-types are definable.

Proof. Let p ∈ Sϕ(A). Since ϕ is stable, there is some nϕ ∈ ω such that
Rϕ(x = x) = nϕ. Then there is p0 ∈ Pfin(p) such that Rϕ(p0) is minimal2

among the finite subtypes of p. How do you construct it? Start with any
formula, say ϕ(x, a1) ∈ p, and check if there is anything in p that brings the
rank down when conjuncted. Take conjunctions and keep doing that until
you can. Then let p0 be the resulting finite conjunction. Then we can define
p using the previous Lemma: set3

ψϕ(y) := Rϕ(p0) = Rϕ(p0 ∧ ϕ(x, y))

If ϕ(x, y) is in p, then the two ranks will be equal by choice of p0. Otherwise
the rank goes down by the second part of the Lemma. To conclude, notice
that this is an L(A)-formula.

2Of course with Rϕ(p0) we mean Rϕ(
∧
p0).

3More precisely, if Rϕ(p0) = n, let ψϕ(y) be(
Rϕ(p0 ∧ ϕ(x, y)) ≥ n

)
∧ ¬
(
Rϕ(p0 ∧ ϕ(x, y)) ≥ n+ 1

)
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8.1 More Characterisations of Stability

Proposition 8.1. The following are equivalent:

1. T is unstable.

2. There is a formula θ(x, y) and a sequence {ci | i < ω} such that
� θ(ci, cj) ⇐⇒ i < j.

Proof. 1⇒ 2 If T is unstable, there are ϕ and 〈ai, bi | i < ω〉 such that
� ϕ(ai, bi) iff i < j. Just let ci = aibi and θ(x1, x2; y1, y2) be ϕ(x1, y2).

2⇒ 1 Just let ϕ = θ and ai = bi = ci.

I will always be a linear order.

Definition 8.2. We say that a sequence 〈ai | i ∈ I〉 is totally indiscernible
if for any i1, . . . , in (pairwise different) in I and any j1, . . . , jn (pairwise
different) in I we have tp(ai1 , . . . , ain) = tp(aj1 , . . . , ajn).

Example 8.3.

• In DLO, 〈an = n | n < ω〉 is indiscernible over ∅ but not totally
indiscernible, since a1 < a2 but a2 6< a1.

• In ACF0, a sequence 〈ai = πi | i < ω〉 of algebraically independent
transcendentals is totally indiscernible.

Proposition 8.4. T is stable if and only if every indiscernible sequence is
totally indiscernible.

Proof.
⇐ Assume that T is unstable, as witnessed1 by some ϕ(x, y) and 〈ai |

i < ω〉 such that � ϕ(ai, aj) ⇐⇒ i < j. By Proposition 5.8 applied with
1Using the previous Proposition.

35
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∆ = {ϕ(x, y),¬ϕ(x, y), ϕ(y, x),¬ϕ(y, x)} there is an indiscernible sequence
〈a′i | i < ω〉 and i < j such that

� ϕ(a′1, a
′
2) ∧ ¬ϕ(a′2, a

′
1) ⇐⇒ � ϕ(ai, aj) ∧ ¬ϕ(aj , ai) ⇐⇒ i < j

So ϕ(x, y)∧¬ϕ(y, x) ∈ tp(a′1, a
′
2)\ tp(a′2, a

′
1), and our sequence is not totally

indiscernible.
⇒ Suppose 〈ai | i ∈ I〉 is an indiscernible sequence which is not totally

indiscernible. Again by Proposition 5.8 we can then get another sequence
〈a′i | i ∈ Q〉 with the same property. This means that there is a formula
ϕ(x1, . . . , xn), some r1 < . . . < rn ∈ Q, and some permutation σ of Q such
that

� ϕ(ar1 , . . . , arn) ∧ ¬ϕ(arσ(1) , . . . , arσ(n))

Since every finite permutation is a product of consecutive transpositions,
there is some j ∈ {1, . . . , n} such that

� ϕ(ar1 , . . . , arj , arj+1 , . . . , arn) ∧ ¬ϕ(ar1 , . . . , arj+1 , arj , . . . , arn)

(not really, but almost: up to another permutation of {1, . . . n}). Choose

ψ(x, y) := ϕ(ar1 , . . . , arj−1 , x, y, arj+2 , . . . , arn)∧¬ϕ(ar1 , . . . , arj−1 , y, x, arj+2 , . . . , arn)

Then ψ(x, y) has the order property: since we used Q, we have infinitely
many guys to choose from to witness it. In fact, if 〈ki | i < ω〉 is an
increasing sequence in rj , rj+1 then ψ(aki , akj ) ⇐⇒ i < j.

Proposition 8.5. Assume T is stable. Then for every ϕ(x, y) there is a
kϕ < ω such that for every indiscernible sequence 〈ai | i ∈ I〉, for all b, either
|{i ∈ I |� ϕ(ai, b)}| < kϕ or |{i ∈ I |� ¬ϕ(ai, b)}| < kϕ.

Proof. If ϕ(x, y) is stable, then ϕ(x, y) does not have the k-order property for
some k < ω. Then just let kϕ := k (or k + 1, depending on you definitions).
Indeed, if this did not work, we could find an indiscernible sequence 〈ai〉 such
that ϕ(x, b) holds for at least k-many elements and ¬ϕ(x, b) does not hold
for at least k-many elements. Using total indiscernibility we then get

� ∃y
( ∧

0≤j<k
ϕ(aj , y) ∧

∧
k≤j<2k

¬ϕ(aj , y)
)

and in particular, for each i ≤ k, again by total indiscernibility,

� ∃y
( ∧

0≤j<i
ϕ(aj , y) ∧

∧
i≤j<k

¬ϕ(aj , y)
)

And if bi is a witness to the above existential, then � ϕ(aj , bi)⇔ j < i.
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8.2 Some Examples of Stable Theories

Do not expect complete proofs here.

Theorem 8.6. Every strongly minimal theory is stable.

Proof Sketch. Basically the only 1-types over a model are the ones saying “i
am this guy” or “i am different from all these guys”, and for a model M we
have |Sn(M)| = |S1(M)| = |M |.

Recall that these theories are strongly minimal:

1. ACF0, ACFp

2. Vector spaces

3. Graphs, finite balancing with no cycle

A bigger class between “strongly minimal” and “stable” is “ω-stable”.

Definition 8.7 (Assume the language is countable). A theory is ω-stable iff
whenever |A| = ℵ0 then |Sn(A)| ≤ ℵ0 for all n < ω.

These can be understood either via Morley rank or via the (omitting of
the) binary tree property: the same one we had for stable formulas, except
you are allowed to change the formula while going down the tree.

Example 8.8. These are ω-stable but not strongly minimal:

• An equivalence relation with infinitely many infinite classes (will have
Morley rank 2).

• The theory DCF0 of differentially closed fields2 of characteristic 0.
(Robinson)

Example 8.9. Examples of stable, but not ω-stable theories are

• The theory DCFp of differentially closed fields of characteristic p. (Card
Wood)

• The theories SCFp,e (separably closed fields3).

Example 8.10. Groups:

• All abelian groups are stable.

• All algebraic groups over an ACF are stable, since they are definable
in a stable theory.

2See later.
3See later.
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• The free group Fn on n generators is stable (Sela) (not ω-stable if
n ≥ 2).

Conjecture 8.11 (Cherlin). Every simple4 group of finite Morley rank is
an algebraic group over an algebraically closed field.

This has been open since the ′70s.
What about fields?

Theorem 8.12 (Macyntire). Every ω-stable field is algebraically closed.

Conjecture 8.13. Every stable field is separably closed.

What are separably closed fields? Call an algebraic element separable if
its minimal polynomial has only simple roots. Then separably closed means
that all separable elements over the field are already in the field. The degree
of imperfection is e := [K | Kp].

Fact 8.14. SCFp,e is model complete, has quantifier elimination after you
add a base of K as a vector space over Kp, it is stable5 and not ω-stable.

The reason it is not ω-stable is that there is a descending chain K >
Kp > Kp2 > . . . and this cannot happen in an ω-stable theory.6

Differentially closed fields are differential fields (fields with a derivation)
such that for any differential polynomials f, g ∈ K{y} = K[y, ∂y, ∂2y, . . .]
such that ord(f) > ord(g) there is a such that f(a) = 0 and g(a) 6= 0.

Graphs?

Fact 8.15. Every planar graph is stable.

Remark 8.16. We did not see one of the implications (all ϕ-types are defin-
able implies few ϕ-types). This is in the official notes. The proof is basically:
count the definitions.

4In the algebraic sense.
5Delon?
6(Morley Rank, Morley Degree) goes down.
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9.1 Stable = NIP + NSOP

9.1.1 Motivation

It all started with this “classification map”. Some dividing lines (Shelah):

• Independence property

• Tree property

• Order property

The idea was that structures satisfying one of these are “bad structures”. On
the other side, not satisfying any of them brings us in the “structured side”,
e.g. in the NOP (i.e. stable) case every type is definable. The independence
property is somehow associated to “randomness”. The prototypical example
of NIP theories are the stable ones or DLO, the prototypical example of IP
theory is the random graph.

The idea is: if T is unstable, then either T is “random” or T “has1 a linear
order”. Lets start giving precise definitions.

9.1.2 Definitions

Definition 9.1. We say that ϕ(x; y) has the strict order property if there is a
sequence 〈bi | i < ω〉 such that for all i < j < ω we have ϕ(M, bi) ( ϕ(M, bj).
In other words

� ∀x (ϕ(x, bi)→ ϕ(x, bj)) ∧ ∃x (ϕ(x, bj) ∧ ¬ϕ(x, bi))

Example 9.2.

1In the sense of “defines”. Remember that an unstable formula defines and order on a
set which may not be definable.
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• The formula x < y in DLO has the strict order property, as witnessed
by any increasing sequence b1 < b2 < . . ., because then {a | a < b1} (
{a | a < b2} ( . . ..

• xRy in the random graph does not have SOP. This will be a particular
case of a more general result which we will show later.

Definition 9.3. T has SOP if some formula in T does, and T is NSOP
otherwise.

Theorem 9.4. Let T be a complete theory. The following are equivalent:

1. T has SOP.

2. There is a formula ψ(x1, x2) ∈ L defining a preorder with infinite
chains.

3. There is a formula ψ(u1, u2) ∈ Leq defining a partial order with infinite
chains.2

Definition 9.5. A preorder is a binary relation which is reflexive and tran-
sitive.

In other words, x � y ∧ y � x does not imply x = y.

Proof of the Theorem.
1⇒ 2 Assume ϕ(x; y) has the SOP, as witnessed by {bi | i < ω}.

Define
ψ(y1, y2) := ∀x (ϕ(x, y1)→ ϕ(x, y2))

This obviously defines a preorder onM|y|, and by hypothesis it has an infinite
chain: namely, 〈bi | i < ω〉.

Note that this is a formula that defines a preorder on the whole structure,
not just on the bi.

2⇒ 3 Just define the equivalence relation

E(y1, y2) = ψ(y1, y2) ∧ ψ(y2, y1)

Since ψ is a preorder, this induces a partial order on M|y|/E. The formula
will be

ψ̂(u1, u2) = ∃x1, x2 (ψ(x1, x2) ∧ fE(x1) = u1 ∧ fE(x2) = u2)

3⇒ 1 Given such a ψ(u1, u2), by Lemma 3.5 we have a formula ϕ
such that

T eq � ∀x, y (ϕ(x, y)↔ ψ(fE(x), fE(y)))

so it suffices to look at ϕ.
2Here |u1| = |u2| = 1.
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Definition 9.6. We say that ϕ(x; y) has the independence property (IP) if
there are elements 〈ai | i < ω〉 and 〈bS | S ⊆ ω〉 such that

� ϕ(ai, bS) ⇐⇒ i ∈ S

We say that T has the independence property if some formula in T has.
Otherwise we say that T is NIP, or dependent.

In other words, “ϕ has IP if it can encode the power set of N”.

Remark 9.7. This is basically the same idea as vc-dimension in statistics
and yes, there are connections.

Example 9.8.

• x = y and x < y in DLO do not have IP (are NIP). For the second
formula, the point is that we can get a configuration of the form

a1 < b{1} < a2 < b{2}

but 1 /∈ {2}.

• xRy in the random graph has IP: take any sequence of different ele-
ments 〈ai | i < ω〉, and take, for all S ⊆ ω, the partial type

PS(y) := {aiRy | i ∈ S} ∪ {¬aiRy | i /∈ S}

which is finitely consistent by the random graph axioms. Then let bS
be any realisation of PS in the monster.

Remark 9.9. By compactness, for IP, or for SOP, it is enough to show that
there are arbitrarily long finite sequences with the desired property, e.g. the
same as in the definitions but replacing ω with arbitrarily large n ∈ ω.

Example 9.10. Some examples of NIP theories:

• All stable theories.

• All o-minimal theories, e.g. DLO, RCF or Th(Rexp).

• Algebraically closed valued fields.

• Trees.

As usual, sequences witnessing “bad properties” can be assumed to be
indiscernible. For NIP, there is even a better thing:
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Definition 9.11. Given a formula ϕ(x; y) we define the alternation number
of ϕ as

alt(ϕ) = max{n | (∗n) happens}

∃ indisc. 〈ai〉i<ω and b ∈M s.t. �
n−1∧
i=0

ϕ(a2i, b) ∧ ¬ϕ(a2i+1, b) (∗n)

If there is no maximum we set alt(ϕ) =∞.

Example 9.12. In DLO, suppose that 〈ai | i < ω〉 is increasing. Then,
if b is smaller than all the ai, or bigger than all of them, there will be no
alternation on x < b. If b is “in the middle”, it will be 1. Since we are taking
the maximum on the indiscernible sequences, this means that alt(x < y) ≥ 1.

Theorem 9.13. ϕ is NIP if and only if alt(ϕ) <∞.

Proof.
⇐ This is very easy if you assume the following:

Claim. If ϕ(x, y) has IP then there are an indiscernible 〈ai | i < ω〉 and
elements 〈bS | S ⊆ ω〉 such that � ϕ(ai, bS) ⇐⇒ i ∈ S.

Given the Claim, it is sufficient to take as S the even numbers. But the
Claim follows from Proposition 5.8.
⇒ Assume alt(ϕ) =∞. By compactness there is an indiscernible 〈ai |

i < ω〉 and some b ∈M|y| such that

∀i < ω � ϕ(a2i, b) ∧ ¬ϕ(a2i+1, b)

From here we will extract the independence property for arbitrarily large
sequences. In other words, we are now going to show that, given n < ω,
there are 〈bS | S ⊆ n〉 such that for all i < n we have � ϕ(ai; bS) ⇐⇒ i ∈ S.
Given S, we can find indexes (i0, . . . , in−1) such that ij is even iff j ∈ S: just
take ij := 2j + 1− χS(j). So for all S ⊆ n we have

� ∃y
(∧
j∈S

ϕ(aij , y) ∧
∧
j /∈S

¬ϕ(aij , y)
)

this is in tp(ai0 , . . . , ain−1) which is, by indiscernibility, the same as tp(a0, . . . , an−1).
Just collect as the “true” bS a witness for this existential with respect to
them.

Theorem 9.14. T is stable if and only if it is both NIP and NSOP.

Since IP and SOP imply unstability3, this follows from the following
stronger local statement.

3For IP, just consider b{0,...,j−1}.
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Lemma 9.15. If ϕ(x, y) is unstable, then either ϕ(x, y) has IP or there is a
formula θ(x, b) such that ϕ(x, y) ∧ θ(x, b) has SOP.

Proof. Let 〈ai | i ∈ Q〉 and 〈bi | i ∈ Q〉 witness the order property with ≤
instead of < for ϕ, and assume that the second sequence is indiscernible.
Assume that ϕ(x, y) is NIP. Then there is n < ω such that the formula

ϕ(x, b0) ∧ ¬ϕ(x, b1) ∧ ϕ(x, b2) ∧ ¬ϕ(x, b3) ∧ . . . ∧ ϕ(x, b2n−2) ∧ ¬ϕ(x, b2n−1)

is inconsistent, by Theorem 9.13. On the other hand

¬ϕ(x, b0) ∧ ¬ϕ(x, b1) ∧ . . . ∧ ¬ϕ(x, bn−1) ∧ ϕ(x, bn) ∧ . . . ∧ ϕ(x, b2n−1)

is consistent, as witnessed by an because of the order property. So we have n-
many “no” and n-many “yes” . Up to a permutation given by a composition of
swapping a “yes” with a “no”, we can get to a ‘yes-no-yes-no-. . . ” sequence4.
Therefore, there is a function η : 2n→ 2 and i0 < 2n such that∧

i<i0

(ϕ(x, bi))
η(i) ∧ ¬ϕ(x, bi0) ∧ ϕ(x, bi0+1) ∧

∧
i>i0+1

(ϕ(x, bi))
η(i)

is consistent but∧
i<i0

(ϕ(x, bi))
η(i)

︸ ︷︷ ︸
1

∧ϕ(x, bi0) ∧ ¬ϕ(x, bi0+1) ∧
∧

i>i0+1

(ϕ(x, bi))
η(i)

︸ ︷︷ ︸
2

is inconsistent. This is because the swappings bring us from a consistent
thing to an inconsistent one, so at a certain point we must stop being con-
sistent. Let θ(x, b̄) := 1 ∧ 2 , where b = b0, . . . , bi0−1, bi0+2, . . . , b2n−1.

Let us show that ψ(x, y) := ϕ(x, y)∧θ(x, b) has the strict order property.
Choose an increasing sequence 〈rn | n < ω〉 in (i0, i0 + 1) and let cn = brn .
We have to check that

1. � ∀x (ψ(x, ci)→ ψ(x, ci+1))

2. � ∃x (ψ(x, ci+1) ∧ ¬ψ(x, ci))

For the second thing, just use as a witness something like a rn+rn+1
2

. For the
first part: if it does not hold there is a such that

� θ(a, b) ∧ ϕ(a, bri) ∧ ¬ϕ(a, bri+1)

but this a cannot exist by construction when ri = i0 and ri+1 = i0 + 1.
Apply indiscernibility.

4Start swapping the last “no” with the first “yes” and bring the “no” to the last position.
Bring the moved “yes” to the first position. Then iterate.
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From the next time we will follow the presentation from Simple Theories
by Frank Wagner (mostly Chapter 2), but with more details5. Other refer-
ences are Simple Theories and Elimination of Hyperimaginaries by Casanovas
and A Course in Model Theory by Tent and Ziegler.

5Actually filling the details in this book is probably the best way to learn simplicity,
but of course it requires time.
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“Map of the universe”: www.forkinganddividing.com, by G. Conant.
[various comments]

Fact 10.1. Triangle-free generic graph: it is TP2, but rosy.

10.1 Dividing

Definition 10.2. Let k ∈ N. We say that a formula ϕ(x; b) k-divides over
A iff there is a sequence 〈bi | i < ω〉 such that

• for all i < ω we have tp(bi/A) = tp(b/A), and

• {ϕ(x; bi) | i < ω} is k-inconsistent, meaning that every one of its
subsets with k elements is inconsistent.

We say that a partial type π(x) k-divides over A iff π(x) ` ϕ(x; b) for some
formula ϕ(x; b) that k-divides.

We say that a formula/type divides iff it divides for some k ∈ N.

Example 10.3. The formula x = b divides over A if and only if b /∈ acl(A).

Proof. ⇐ Let {bi | i < ω} be different realisations of tp(b/A). Clearly,
{x = bi | i < ω} is 2-inconsistent.
⇒ If b ∈ acl(A), then tp(b/A) has only finitely many realisations.

Therefore, infinitely many bi will be equal, so there is no way to have k-
inconsistency: you can always find k equal guys.1

Example 10.4. Let T be the theory of an equivalence relation with infinitely
many infinite classes. Then xEb divides over ∅.

1Actually that set will be finite so k-inconsistency. . . Another way of saying it is: there
is no infinite sequence of bi.

45
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Proof. There is just one 1-type over ∅. Pick each bi in a different equivalence
class. Then {xEbi | i < ω} is 2-inconsistent.

Example 10.5. In the random graph, xRb does not divide over ∅. This
is because any attempt to have k-inconsistency will clash with the random
graph axiom.

We will see later that in the random graph the only dividing formulas
are the ones of the form x = b.

Example 10.6. In DLO, consider x < b. This does not divide over ∅ be-
cause there is no minimum. Anyway, a < x < b does; it is easy to get
2-inconsistency: just take a1 < b1 < a2 < b2 < . . .. All the (ai, bi) have the
same type over ∅ because ai < bi is the only thing to check and it always
holds.

Example 10.7 (With no proof). In ACF tp(a/B) divides over A ⊆ B if and
only if

trdeg(a/Balg) < trdeg(a/Aalg)

10.2 Forking

Definition 10.8. A formula θ(x) forks over A iff θ(x) `
∨n
i=1 ϕi(x, bi) such

that each ϕi(x, bi) divides over A.

The idea is that dividing should correspond to “small” formulas. However,
it is not true that dividing is closed under finite unions/disjunctions, and
that’s why you need forking. In other words, forking is the ideal generated
by the dividing formulas.

Clearly, dividing implies forking.

Example 10.9. Let M be the circle S1 and define R(x, y, z) to hold iff x
is different from y and z and lies in the small arc of y and z (if y and z are
opposite, then we agree that no x satisfies it). Then, if b, c are not opposite,
R(x, b, c) is consistent but divides over ∅ (there is quantifier elimination).
But x = x `

∨4
i=1R(x, bi, ci). So the ideal can be improper.

It will turn out that the above theory is NIP. Anyway, these pathologies
will not arise in simple theories.

Lemma 10.10 (Standard Lemma). For every infinite sequence I, every
small set of parameters A and any small linear order J , there is an A-
indiscernible sequence 〈bj | j ∈ J〉 realising em(I/A).

Proof. With Proposition 5.8.

Proposition 10.11. Some properties of forking and dividing:
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1. Dividing implies forking.

2. If two formulas ϕ1(x), ϕ2(x) fork over A, then ϕ1 ∨ ϕ2 forks over A.

3. If p, q are partial types, p ` q and q divides (forks) over A, so does p.

4. ϕ(x; b) k-divides over A if and only if it k-divides over a for all finite
a ∈ A.

5. ϕ(x, b) divides over A if and only if there is an A-indiscernible sequence
〈bi | i < ω〉 such that b0 ≡A b and {ϕ(x; bi) | i < ω} is inconsistent.

6. A partial type π(x) k-divides (forks) over A if and only if there is a
finite conjunction θ(x, c) of formulas in π that k-divides (forks) over
A.

7. No p ∈ Sn(A) divides over A.

8. Let A ⊆ B ⊆ C. If tp(a/C) does not divide (fork) over A, then
tp(a/C) does not divide (fork) over B and tp(a/B) does not divide
(fork) over A.

Proof.

1. Trivial.

2. Trivial.

3. Trivial.

4. Compactness: write down “there are infinitely many guys with the
same type over A such that. . . ”

5. ⇐ By indiscernibility all the bi have the same type of b over A. Let us
check that there is k-inconsistency for some k. If not, for every k < ω
there are i1 < . . . < ik such that {ϕ(x; bik) | 1 ≤ j ≤ k} is consistent.
By indiscernibility, for all k we have � ∃x ϕ(x, b1), . . . , ϕ(x, bk). By
compactness, {ϕ(x, bi) | i < ω} is consistent.
⇒ Use the Standard Lemma to turn a sequence I witnessing dividing
into an indiscernible one. Since I is k-inconsistent, this is written in
em(I/A) and will still be true for the indiscernible one.

6. For forking it is obvious by compactness. For dividing, proceed as
follows. Assume π(x) ` ϕ(x, b) and ϕ(x, b) divides over A. Then there
is a finite conjunction θ(x, c) of formulas in π such that θ(x, c) ` ϕ(x, b).
Let 〈bi | i < ω〉 witness k-dividing over A for some k. Since bi ≡A b
there is αi ∈ Aut(M/A) such that αi(b) = bi. Consider {αi(c) | i < ω}.
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Clearly, they all have the same type as c over A. Suppose {θ(x, αi(c)) |
i < ω} is not k-inconsistent, say

a �
k∧
i=1

θ(x, αi(c))

then

a �
k∧
i=1

ϕ(x, bi)

a contradiction.

7. If we have ϕ(x, a) with a ∈ A, then there is just one realisation of
tp(a/A).

8. Assume A ⊆ B ⊆ C. We want to prove that if tp(a/B) divides over A
or tp(a/C) divides over B, then tp(a/C) divides over A. If q = tp(a/B)
divides over A, so does p = tp(a/C) ` q by a previous point. If tp(a/C)
divides over B, there is a formula ϕ(x, c) ∈ tp(a/C) that divides over
B. Then ϕ(x, c) divides over A, because every B-indiscernible sequence
is A-indiscernible2.

We finish this lesson with another example.

Example 10.12. If a ∈ acl(Ab) \ acl(A), then tp(a/Ab) forks over A. In
other words, if you become algebraic you have to fork.

Proof. Pick an algebraic formula ϕ(x; b) ∈ tp(a/Ab). Then this type implies∨
i≤` x = ai, where {ai | i ≤ `} is the set of realisations of ϕ(x; b), and each

of this formulas divides.

Next lessons in MALL2.

2Or, directly, having the same type over B implies having the same type over A.
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11.1 Finitely Satisfiable Types

Definition 11.1. A (partial) type p ∈ S(B) (π) is finitely satisfiable in A
iff for every formula ϕ(x, b) ∈ p (finite conjunction of formulas in π) there is
a ∈ A|x| such that � ϕ(a, b).

Definition 11.2. Let B ⊇ A, p ∈ S(A), q ∈ S(B), and q ⊇ p. If q is finitely
satisfiable in A, we say that q is a coheir of p.

Example 11.3. Let TE be the theory an equivalence relation E with in-
finitely many infinite classes. Let A be a model M with ℵ0 classes of size ℵ0

and B = N �M with ℵ1 classes of size ℵ1.

Let p = {¬xEa | a ∈ M} ∈ S(M). Let N 3 b � p and q′ = tp(b/N).
Clearly, q′ ⊇ p. Let q = {¬xEb | b ∈ N}. We also have q ⊇ p. Note that
q is finitely satisfiable in M , hence a coheir of p, but q′ is not: look at the
formula xEb (or x = b).

Remark 11.4. Note that p need not be a coheir of itself, for example if
A = ∅. Of course p is always a coheir of itself if A is a model.

Definition 11.5. Assume p ∈ S(A) and q ⊇ p. We say that q is a forking
extension of p if q forks over A. Otherwise, we say that q is a non-forking
extension of p.

Note that the previous definition also works if q is a partial type.
In the example above, xEb forks over M , so q′ is a forking extension of

p. To see this, notice that all the stuff in N \M has the same type over M
and choose the bi in different classes. The idea is that the information in p
is “I am not related to anybody”. In this sense, q is the extension of p that
resembles it the most. Note that TE is stable, so every type is definable. q
has the same definition as p.

49
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Example 11.6. Let T be DLO. Here there are four kinds of types, over Q,
say:

• Realised types.

• Types at ±∞.

• Irrational cuts, e.g. {x ≥ q | q <
√

2} ∪ {x < q | q >
√

2}. I.e. a cut
where there is no maximum of the left part and no minimum of the
right part.

• Infinitesimal cuts a+ and a−. For example Pa+ = {x < a′ | a′ >
a} ∪ {x > a′ | a′ ≤ a}. (a− will be the analogous thing on the left)

Let p = Pa+ ∈ S1(Q), and consider its extensions with parameters in a bigger
model N . These can be of the form

• x = aε. This divides.

• An irrational cut {x > b | b ∈ S} ∪ {x < b′ | b′ ∈ S′}. This is not a
coheir. Is it a forking extension? Yes: take a formula b < x < b′ and
argue as in Example 10.6.

• qa+ = {x < b′ | b′ > a} ∪ {x > b′ | b′ ≤ a}. This is again not finitely
satisfiable: look at a < x < b′.

• An irrational cut q = {x < a′ | a′ ∈ M,a′ > a} ∪ {x > b | b ∈ N, b <
(a,+∞) ∩M} (here M = Q). This is finitely satisfiable in M . Note
that this is not exactly what we expected: the “idea” behind q is not
the “same” as the idea of p (being “just on the right of a”).

We will see that finitely satisfiable types cannot fork, and this applies to
q. Anyway, qa+ is non-forking as well, morally speaking because intervals
cannot move away from a. So the other implication does not hold in general.
It will be true in a stable theory, and that is why Example 11.3 was working
so nice.

Remark 11.7. If a partial type π is finitely satisfiable over A, then it does
not fork1 over A.

Proof. Suppose first that π divides over A. Then there is a finite conjunction
θ(x) of formulas in π such that θ(x) ` ϕ(x, b) and there is a sequence {bi |
i < ω} with bi ≡A b and {ϕ(x, bi) | i < ω} is k-inconsistent for some k.
Since π was finitely satisfiable in A, there is a ∈ A such that � θ(a), hence
� ϕ(a, b). Since a ∈ A and bi ≡A b, we also have � ϕ(a, bi), and this is a
contradiction.

1In particular it does not divide.
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Now let us show that π does not fork over A. Assume that θ(x) is a finite
conjunction of formulas in π such that θ(x) `

∨n
i=1 ϕi(x, bi), each ϕ(x, bi)

dividing over A. Let a ∈ A realise θ. Then a �
∨n
i=1 ϕi(x, bi), so there is

i ≤ n such that � ϕ(a, bi), and we can argue as in the previous case.

Theorem 11.8. Let A ⊆ B and π a partial type over B. The following
facts hold:

1. If π is finitely satisfiable in A, then it does not fork over A.

2. If π is finitely satisfiable in A, then it has a completion p ∈ S(B) which
is finitely satisfiable in A.

3. If π does not fork over A, then it has a completion p ∈ S(B) which
does not fork over A.

Proof.

1. Done just above.

2. Assume π is finitely satisfiable in A. Let π′ = π ∪ {¬ϕ(x, b) | ϕ(x, b) ∈
L(B) is not finitely satisfiable in A}. If π′ is consistent, then any com-
pletion p of π′ will do. Take Γ0 be a finite subset of π′ of the form

Γ0 ⊆ π ∪ {¬ϕ1(x, b1), . . . ,¬ϕm(x, bm)}

If it is not consistent, then for some finite conjunction θ(x) of formulas
in π we have θ(x) `

∨
i≤m ϕi(x, bi). Since π is finitely satisfiable in A,

there is a ∈ A such that � θ(a). Then for some i ≤ m we also have
� ϕi(a, bi), contradicting the fact that ϕi(x, bi) is not finitely satisfiable
in A.

3. Do the same proof as in the previous point but with {¬ϕ(x, b) | ϕ(x, b) ∈
L(B) forks over A}.

Corollary 11.9. Every coheir is a non-forking extension.

11.2 Some Technical Things About Forking

Proposition 11.10. Let π(x, b) be a partial type. Then π(x, b) does not
divide over A if and only if for every A-indiscernible sequence {bi | i < ω}
with b0 = b the set

⋃
i<ω π(x, bi) is consistent.
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Proof.
⇐ Assume π(x, b) divides over A, so for a finite conjunction θ of for-

mulas in π we have θ(x, b) ` ϕ(x, c) which divides over A. So there is an
A-indiscernible 〈ci | i < ω〉 such that {ϕ(x, ci) | i < ω} is k-inconsistent
and ci ≡A c. Let α ∈ Aut(M/A) be such that α(c0) = c. Consider
〈c′i := α(ci) | i < ω〉. For each i, let σi ∈ Aut(M/A) be such that
σi(c) = c′i. Consider 〈bi := σi(b) | i < ω〉. Clearly, σi(b) ≡A b. More-
over, {θ(x, bi) | i < ω} is k-inconsistent, since it implies 〈ϕ(x, ci) | i < ω〉
which is. The indiscernible sequence is provided by the Standard Lemma,
plus an automorphism to move the first guy to b. By construction, that
union is inconsistent.
⇒ Let 〈bi | i < ω〉 be an A-indiscernible sequence with b0 = b and

such that
⋃
i<ω π(x, bi) is inconsistent. By compactness, there are finitely

many formulas θ1(x, bi1), . . . , θn(x, bin) such that θi(x, b) ∈ π(x, b) and their
conjunction is inconsistent. Define

θ(x, b) =

n∧
i=1

θi(x, b)

(note that we replaced all the bij with b). We claim that θ(x, b) divides
over A. In fact, using the sequence 〈bi | i < ω〉, we get inconsistency by
construction.

Remark 11.11. The above even works when b is an infinite (but small)
tuple.

Another thing that can be proven by moving things around with auto-
morphisms is:

Proposition 11.12. The following are equivalent:

1. tp(a/Ab) does not divide over A.

2. For any A-indiscernible sequence I with b ∈ I there is a′ ≡Ab a such
that I is Aa′-indiscernible.

3. For anyA-indiscernible sequence I with b ∈ I there is anAa-indiscernible
sequence J such that I ≡Ab J .

4. For any A-indiscernible sequence I with b ∈ I there are a′ ≡Ab a and
J ′ ≡Ab I such that J ′ is Aa′-indiscernible.

So in some sense (not) dividing detects whether you can have “slightly
more indiscernibility”.

Remark 11.13. I ≡Ab J is stronger than em(I/Ab) = em(J/Ab). The
second thing can even hold if I and J have different lengths.

“Official hours” go on until next Thursday.
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12.1 More Technical Things About Dividing

Proof of Proposition 11.12.
4⇒ 3 Pick α ∈ Aut(M/Ab) such that α(a′) = a and let J = α(J ′).

Then J ≡Ab J ′ ≡Ab I. Moreover, since J ′ is Aa′-indiscernible, J is Aa-
indiscernible.

3⇒ 2 Pick α ∈ Aut(M/Ab) moving J to I. Choose a′ = α(a).
2⇒ 1 Let p(x, b) := tp(a/Ab). By Proposition 11.10 it is enough to

show that if I = 〈bi | i < ω〉 is an indiscernible sequence with b0 = b, then⋃
i∈I p(x, bi) is consistent. By hypothesis, there is a′ � p(x, b) such that I is

Aa′-indiscernible. In particular, a′ � p(x, bi) for all i < ω.
1⇒ 4 Denote p(x, b) = tp(a/Ab) and let I be an A-indiscernible se-

quence containing b. By compactness, it is sufficient to consider the case
I = 〈bi | i < ω〉. Say b = bi0 (we could also assume i0 = 0). By hypoth-
esis,

⋃
i<ω p(x, bi) is consistent. Let a′ �

⋃
i<ω p(x, bi). Since a′ � p(x, bi0),

we have a′ ≡Ab a. By the Standard Lemma, there is an Aa′-indiscernible
sequence J ′′ = 〈b′′i | i < ω〉 such that em(J ′′/Aa′) ⊇ em(I/Aa′). In partic-
ular, by choice of a′, we have b′′i0 � p(a

′, y). Hence b′′i0 ≡Aa′ bi0 = b. Let
α ∈ Aut(M/Aa′) be such that α(b′′i0) = b and define J ′ := α(J ′′). Then J ′

is still Aa′-indiscernible, so we just need to check that J ′ ≡Ab I. Note that
both I and J ′ contain b. Take any L(Ab)-formula ϕ(xi1 , . . . , xin , b), with
i1 < . . . < in. Suppose � ϕ(b′i1 , . . . , b

′
in
, b = b′i0). Then

ϕ(xi1 , . . . , xin , xi0) ∈ em(J ′/A) = em(J ′′/A) = em(I/A)

It follows that ϕ(xi1 , . . . , xin , xi0) ∈ em(I/A), and therefore � ϕ(bi1 , . . . , bin , b).

Proposition 12.1. Suppose A ⊆ B and tp(a/B) does not divide over A
and tp(c/Ba) does not divide over Aa. Then tp(ac/B) does not divide over
A.
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Example 12.2. If a is transcendental over K and c is transcendental over
K(a), then ac is transcendental over K. (Say A = Qalg). Note that you
cannot just assume that tp(c/B) does not divide over A: think of what
happens when c = a2, say.

Proof of the Proposition. It is enough to show that tp(ac/Ab) does not divide
over A for any finite b ⊆ B. Let I be an A-indiscernible sequence containing
b. Since tp(a/Ab) does not divide over A, by Proposition 11.12 there is an
Aa-indiscernible I ′ with I ′ ≡Ab I. In particular b ∈ I ′. Since tp(c/(Aa)b)
does not divide over A, there is a Aac-indiscernible sequence I ′′ containing
b and such that I ′′ ≡Aab I. In particular, I ′′ ≡Ab I, and this implies that
tp(ac/Ab) does not divide over A again by Proposition 11.12.

12.2 Simple Theories

This time too, we define the “bad” behaviour first.

Definition 12.3. A formula ϕ(x, y) has the k-tree property iff there are
elements 〈bσ | σ ∈ ω<ω〉 such that the following things hold.

• For every η ∈ ωω, the set {ϕ(x, bη�i) | i ∈ ω} is consistent.

• For every σ ∈ ω<ω, the set {ϕ(x, b
σai

) | i ∈ ω} is k-inconsistent.

We say that ϕ(x, y) has the tree-property iff it has the k-tree property for
some k.

The picture is a tree where every branch is consistent, but every time
you pick the sons of a particular node, you have k-inconsistency.

Definition 12.4. A theory T is simple if no formula has the tree property.

Remark 12.5. Some comments:

1. The tree property implies the binary tree property. Hence stable the-
ories are simple.1

2. DLO is not simple: let ϕ(x, y) be y1 < x < y2. Then ϕ has the 2-
tree property: start with an interval (bΛ1 , b

Λ
2 ). Find inside it infinitely

many pairwise disjoint intervals. Iteratively, choose in each interval in
infinitely many intervals. Then branches are intersections of encapsu-
lated intervals, hence are consistent, since a finite intersection is just
the smallest interval, but sons of the same node are pairwise disjoint,
so 2-inconsistent.

Theorem 12.6. The following facts hold:
1Actually it is not this straightforward.
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1. If T is simple, then T is NSOP.

2. T is stable if and only if T is simple and NIP.

Proof.

1. Exercise. Hint: extend the previous example. Get an infinite chain
and then use compactness to get a dense infinite chain.

2. We already know that T is stable iff T is NSOP and NIP. Use the
previous point for one inclusion and the previous Remark for the other
one.

Example 12.7. The triangle-free generic graph is NSOP but is not simple.

Definition 12.8 (Dividing Sequence). Let ∆ = {ψ1(x; y1), . . . , ψ`(x; y`)}
be a finite set of partitioned formulas. A ∆-k-dividing-sequence over A is a
sequence 〈ϕi(x; bi) | i < δ ∈ On〉 such that

1. each ϕi(x; bi) k-divides over A ∪ 〈bj | j < i〉, and

2. ϕi(x; yi) ∈ ∆, and

3. {ϕi(x; bi) | i < δ} is consistent.

In this case, we call δ the length of the ∆-k-dividing sequence.

Note the analogy with the DLO tree example: each node of the tree
2-divides over the previous parameters, and ∆ is just {y1 < x < y2}.

Lemma 12.9. The following hold:

1. If ϕ(x; y) has the k-tree property, then for every set of parameters A
and ordinal µ there is a {ϕ}-k-dividing sequence over A of length µ.

2. If no formula in ∆ has the k-tree property2 there is no infinite ∆-k-
dividing sequence.

Proof. The idea is simple, but it gets technical.

1. By compactness, we can assume the tree property for ϕ(x; y) with a λ-
branching tree of height µ for any λ ≥ ω. That is, there are parameters
〈bσ | σ ∈ λ<µ〉 such that

• for all σ ∈ λ<µ the set {ϕ(xi, bσai) | i < λ} is k-inconsistent, and
• for all η ∈ λµ, the set {ϕ(x, bη�i) | i < µ} is consistent.

2In particular if we are in simple theory.
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Let us take λ = (2|T |+|A|+|µ|)+. Then, we can construct a path η ∈ λµ
and tuples 〈cα | α < µ〉 as follows. The idea is that we are branching
so much that we get infinitely many guys with the same type. In other
words, by pigeonhole and choice of λ, we can find an infinite sequence
〈b〈ni〉 | i < ω〉 of tuples all with the same type over A. Let c0 = b〈n0〉.
Then, by construction, ϕ(x, c0) divides over A. Now iterate taking into
account the previous parameters: if we have already constructed 〈cβ |
β < α〉, we have cβ = bη�β for some η ∈ λµ. As the set {ϕ(x, b

(η�α)ai
) |

i < λ} is k-inconsistent, we can find by pigeonhole and choice of λ an
infinite sequence 〈b

(η�α)ain
| n < ω〉 of tuples all with the same type

over A ∪ {cβ | β < α}. Let cα = b
(η�α)ai0

. This produces the required
sequence.

2. Since ∆ is finite, one of its the formulas ϕ(x; y) will have been used
infinitely often, and there are tuples 〈b′i | i < ω〉 such that ϕ(x; b′i)
k-divides over A ∪ {b′j | j < i}. Construct 〈bσ | σ ∈ ω<ω〉 witnessing
the k-tree property as follows. Find an A-indiscernible sequence b′0 =
b00, b

1
0, . . . such that {ϕ(x; bj0) | j < ω} is k-inconsistent. This will be

the first level of the tree: we set b〈j〉 = bj0. Inductively, suppose we have
〈bσ | σ ∈ ω≤n〉 such that for all σ, σ′ ∈ ωn we have bσ ≡A bσ′ and such
that b〈0, 0, . . . , 0︸ ︷︷ ︸

n

〉 = b′n−1. Since ϕ(x; bn) k-divides over Ab′<n there is

an Ab〈0〉b〈0,0〉, . . . , b〈0,0,...,0〉-indiscernible sequence b′n = b0n, b
1
n, . . . such

that {ϕ(x; bjn) | j < ω} is k-inconsistent. Set b〈0,0,...,0j〉 := bjn. For
each σ ∈ ωn, let α ∈ Aut(M/A) be such that ασ(b〈0,0,...,0〉) = bσ. It is
sufficient to set b

σaj
:= ασ(b〈0,0,...,0,j〉).

This does not generalise to the case ∆ infinite. Things can go wrong even
in stable theories.
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13.1 Shelah’s Local D-rank

This will not be used later in the course, but is common in the literature.
It can be defined as “the foundational rank of k-dividing”. What does it
mean?

Definition 13.1. Let ϕ(x, y) be a formula and k ∈ N. We define D(−, ϕ, k)
on partial types inductively as follows:

• D(π(x), ϕ, k) ≥ 0 iff π(x) is consistent.

• D(π(x), ϕ, k) ≥ α+1 iff there is b such that D(π(x)∪{ϕ(x, b)}, ϕ, k) ≥
α and ϕ(x, b) k-divides over1 domπ(x).

• D(π(x), ϕ, k) ≥ α, for α limit, iff for all β < α we have D(π(x), ϕ, k) ≥
β.

Unwinding definitions we have

Proposition 13.2. D(π(x), ϕ, k) ≥ α if and only if there is a ϕ-k-dividing
sequence of length α on domπ(x) and consistent with π(x).

From Lemma 12.9 it follows that

Corollary 13.3. T is simple if and only if for all k < ω and ϕ(x, y) ∈ L we
have D(x = x, ϕ, k) < ω.

13.2 Independence and Morley Sequences

Definition 13.4. Let A, B, C be small subsets of M. We say that A is
independent from B over C, denoted A |̂

C B iff for every finite a ∈ A the
type tp(a/BC) does not fork over C.

1I.e. the parameters mentioned in π.
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This is probably the most important definition in this course. It gener-
alises a lot of notions of independence already used in mathematics.

Example 13.5. Let C ⊆ B � ACF. Let A be made of transcendentals over
C. Then A |̂

C B if and only if trdeg(A/C) = trdeg(A/B). Note that ≥
always holds. Compare with Example 10.7.

The general idea is that A 6 |̂ CB means that B ∪C has more information
about A than C does. Like, A is a criminal, C is a government, and B is
another one.

Example 13.6. In vector spaces, A |̂
C B if and only if dim(A/B ∪ C) =

dim(A/C), where dim(A/C) = dim(〈A,C〉)− dim(〈C〉).

Definition 13.7. A Morley sequence over A is an A-indiscernible sequence
〈bi | i ∈ I〉 such that bi |̂ A {bj | j < i}. We denote b<i = {bj | j < i}.

Example 13.8. Let T be the theory of an equivalence relation with infinitely
many infinite classes. An indiscernible sequence made of elements in different
equivalence classes is a Morley sequence. An indiscernible sequence made
of elements all in the same class is not a Morley sequence: since xEc1 ∈
tp(c2/Ac1), we have c2 6 |̂ Ac1.

Example 13.9. In vector spaces, a sequence of linearly independent vectors.

Example 13.10. In strongly minimal theories, there is a unique non-dividing
type in one variable. Morley sequences arise from it. In particular indis-
cernible sequences are either constant or Morley sequences.

Proposition 13.11. Let T be a complete theory. The following are equiv-
alent:

1. T is simple.

2. (Local Character) For all p ∈ Sn(B) there is some A ⊆ B such that
|A| ≤ |T | and p does not divide over A.

3. There is some cardinal κ such that if p ∈ Sn(M) then there is A ⊆M
of cardinality ≤ κ such that p does not divide over A.

We will see later that in simple theories forking equals dividing. So local
character means that given a and B, there is a “small” A (in the cardinality
sense) that already contains all the information that B had about a.

We need some preliminary lemmas.

Lemma 13.12 (Finite Character). A |̂
C B if and only if for any finite

A0 ⊆ A and finite B0 ⊆ B we have A0 |̂ C B0.

Proof. Easy.
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Lemma 13.13. Suppose ϕ(x, b) divides over A. The following hold:

1. For any small B ⊇ A there is B′ ≡A B such that ϕ(x, b) divides over
B′.

2. For any small B ⊇ A there is b′ ≡A b such that ϕ(x, b′) divides over B.

Proof. Of course, the proof involves automorphisms.

1. Use the other part and let σ ∈ Aut(M/A) be such that σ(b′) = b. Set
B′ = σ(B).

2. By hypothesis there is 〈bi | i < ω〉 such that b = b0, bi ≡A b and
{ϕ(x, bi) | i < ω} is k-inconsistent. In particular, tp(bi/A) is non-
algebraic, therefore {σ(b) | σ ∈ Aut(M/A)} is not small by Lemma 2.10,
and so there is σ0 such that σ0(b) /∈ B. Call b′′0 := σ0(b0) and
I0 := 〈σ0(bi) | i < ω〉. Since tp(σ0(b1)/Ab′′0) is non-algebraic, there
is σ1 ∈ Aut(M/Ab′′0) such that b′′1 := σ1(σ0(b)) /∈ B. Let I1 :=
〈σ1(σ0(bi)) | i < ω〉, and notice it starts with b′′0, b

′′
1. Iterating this

argument, we get a sequence I ′′ = {b′′i | i < ω} which is

• A-indiscernible,
• such that {ϕ(x, b′′i ) | i < ω} is k-inconsistent, and
• such that I ′′ ∩B = ∅.

By the Standard Lemma there is J = {b′i | i < ω} which is B-
indiscernible and such that em(J/B) ⊇ em(I ′′/B).

Proof of Proposition 13.11.
1⇒ 2 Suppose local character fails for p ∈ Sn(B). Since no type

over B divides over B, we can assume that |B| ≥ |T |+. By hypothesis,
there is ϕ0(x, b0) ∈ p that k0-divides over ∅. Also, there is ϕ1(x, b1) ∈ p
that k1-divides over b0, and we can iterate this for all α < |T |+, getting a
dividing sequence. By pigeonhole, there is 〈ij | j < ω〉 ⊆ |T |+ such that
ϕij (x, y) = ϕ(x, y) and kij = k. Therefore there is an infinite ϕ-k-dividing
sequence over ∅, call it 〈ϕ(x, bij ) | j < ω〉. This shows that T is not simple.

2⇒ 3 Take B = M and κ = |T |.
3⇒ 1 The idea is taking a sufficiently long ϕ-k-dividing sequence and

then construct M =
⋃
i<κ+ Mi and use regularity of κ+. Let us spell out the

details.
If T is not simple, there is an infinite ϕ-k-dividing sequence 〈ϕ(x, bi) |

i < κ+〉. So ϕ(x, bi) k-divides over {bj | j < i}, and {ϕ(x, bi) | i < κ+} is
consistent. If {bi | i < κ+}was a model Mi and {ϕ(x, bi) | i < κ+} ⊆ p for
some p we would be done. The second thing is of course equivalent to its
consistency. The first one requires some work.

Claim. There are tuples 〈b′i | i < κ+〉 and models 〈Mi | i < κ+〉 such that
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• For all i ≤ j < κ+ the formula ϕ(x, b′j) divides over Mi.

• |Mi| ≤ κ.

• Mi �Mj for i < j < κ+.

• {ϕ(x, bi) | i < κ+} is consistent.

• b′i ∈Mi+1.

Proof of Claim. We prove this by induction. Base case: since ϕ(x, b0) divides
over ∅, by Lemma 13.13 there is a small modelM0 with |M0| ≤ κ and ϕ(x, b0)
divides over M0. Take b′0 = b0. By Löwenheim-Skolem, there is a model
M1 ⊇ M0 ∪ {b0}, with M0 ≺ M1 and |M1| ≤ |M0 ∪ {b0}′| + |T | ≤ κ. Now
M1 is small and ϕ(x, b1) divides over A = b′0, so there is b′1 ≡A b1 such that
ϕ(x, b′1) divides overM1, again by Lemma 13.13. Let σ ∈ Aut(M/Ab′0) move
b1 to b′1. Let I = 〈σ1(bi) | 2 ≤ i < κ+〉. This has the same properties as the
original sequence, but on top of b′0, b′1.

The successor case is basically the same as the case b1: we have by
induction 〈Mi | i ≤ α〉 and 〈b′i | i ≤ α〉 and I ′ = 〈b′′0, . . . , b′′α, bα+1, . . .〉.
Call I = 〈bα+1, . . . , 〉 By Löwenheim-Skolem there is Mα+1 �Mα containing
bα and |Mα+1| ≤ κ. By the construction above, ϕ(x, bα+1) divides over
Mα ∪ b≤α, so there is b′α+1 ≡Mα∪b≤α bα+1 such that ϕ(x, b′α+1) divides over
Mα+1. If σ ∈ Aut(M/Mα ∪ b≤α) sends bα+1 to b′α+1, rename I to be 〈σ(bi) |
α+ 2 ≤ i < κ+〉.

For the limit step: let Mα =
⋃
β<αMβ . This has still size ≤ κ. We know

that ϕ(x, bα) divides over A := {b′i | i < α}. Apply the usual Lemma, find
b′α and rename the sequence.

Note that moving everything every time is what gets us consistency. We
can let p be any completion of {ϕ(x, bi) | i < κ+} to Sx(M).

claim

Now, by hypothesis, there is A ⊆ M of size |A| ≤ κ such that p does
not divide over A. Since κ+ is regular we have A ⊆ Mi for some i <
κ+, and ϕ(x, bi+1) ∈ p divides over Mi ⊇ A by construction, so we get a
contradiction.

Corollary 13.14. If T is simple, then any type p ∈ S(A) does not fork over
A.

Proof. Suppose p ∈ S(A) forks over A, as witnessed by p `
∨
`<m ϕ`(x, b`).

Let ∆ := {ϕ`(x, y`) | ` < m}. We will show that there is an infinite ∆-k-
dividing sequence. By compactness, it is enough to show that there are ∆-k
dividing sequences of length n for arbitrarily large n < ω, consistent with
p(x).

By induction, assume we have constructed 〈ψi(x, ai) | i < n〉 which is
∆-k-dividing and is consistent with p(x). By Lemma 13.13 we can assume
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that it is a ∆-k-dividing sequence over Ab0 . . . bm−1. Since p implies that
disjunction, each extension of it must be consistent with one of the disjoints;
so wlog ϕ0(x, b0) is consistent with {ψi(x, ai) | i < n}. Now a ∆-k-dividing
sequence over A is 〈ϕ0(x, b0), ψ0(x, a0), . . . , ψn−1(x, an−1)〉.

The base step is just the above with the empty sequence.

Fact 13.15. In DLO, if b1 < a < b2, then a 6 |̂ ∅b but b |̂ ∅ a.
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The central thing today is this theorem. We will prove things around it.
It is a characterisation of simplicity that does not mention forking (almost).

Theorem 14.1 (Kim-Pillay). Let T be a complete theory and |̂ 0 a ternary
relation between finite tuples and sets a |̂ 0

A B satisfying:

0. (Invariance1) If α ∈ Aut(M) then a |̂ 0
A B if and only if α(a) |̂ 0

α(A)

α(B).

1. (Existence) For every a,A,B, there is a′ ≡A a such that a′ |̂ 0
A B.

2. (Finite Character) a |̂ 0
A B if and only if for all finite b ⊆ B we have

a |̂ 0
A b.

3. (Monotonicity and Transitivity2) If A ⊆ B ⊆ C then a |̂ 0
A C if and

only if a |̂ 0
A B and a |̂ 0

B C.

4. (Symmetry) a |̂ 0
A b if and only if b |̂ 0

A a

5. (Local Character) There is a cardinal κ such that for all a and B there
is B0 ⊆ B of size |B0| < κ such that a |̂ 0

B0
B.

6. (Independence Theorem) Let M � T such that

• a′ ≡M b′,

• a |̂ 0
M a′,

• b |̂ 0
M b′,

• a |̂ 0
M b.

1This is satisfied for example by non-forking and by algebraic closure.
2Note that ⇒ always holds for forking independence, in any theory.
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Then there is c such that c ≡Ma a
′, c ≡Mb b

′ and c |̂ 0
M ab

Then T is simple and |̂ 0 is the forking independence |̂ .

This can be used to check that a theory is simple. For instance, in the
random graph, if you put a |̂ 0

A B iff acl(a) ∩ acl(B) = acl(a) ∩ acl(A) (iff
a ∩ B = a ∩ B, since the algebraic closure in the random graph is trivial),
then all those conditions will be satisfied. This also tells us what forking
independence is!

The converse holds: all those properties hold for |̂ in a simple theory.
We already saw that some of those do.

About the Independence Theorem: it implies that if we have p(x, a) ∩
q(x, b) ⊇ p0 ∈ S(M) and a |̂ M b then there is c � p(x, a)∪q(x, b) (so you can
amalgamate the types) and moreover c |̂ M ab. Here a′, b′ are realisations
of p0. Also, a |̂ 0

M a′ and b |̂ 0
M b′ say that tp(a′/Ma) does not fork over

M , and similarly for b and b′.
Proving the Equivalence Theorem for simple theories is not easy. What

we are going to do is check the other properties for simple theories and |̂ ,
then assume the Equivalence Theorem and see the Kim-Pillay one.

We start with a Corollary of Theorem 11.8 and Corollary 13.14.

Corollary 14.2 (Existence). If T is simple, every type over A has a non-
forking extension.

Proof. If T is simple and p ∈ S(A), then by Corollary 13.14 p does not fork
over A. But in any theory, by Theorem 11.8, if p does not fork over A, for
any B ⊇ A there is q ⊇ p such that q ∈ S(B) and q does not fork over A.

Lemma 14.3. If p ∈ S(B) does not fork over A, there is an infinite Morley
sequence in3 p over A which is B-indiscernible. If T is simple, every p ∈ S(A)
has an infinite Morley sequence.

Proof. Let p0 := p and take a0 � p0. Since a0 |̂ A A there is a non-forking
extension p1 of p over Ba0. Take a1 � p1. Iterate for a very large λ, getting
〈ai | i < λ〉 such that ai |̂ A Ba<i for all i < λ. This is almost a Morley
sequence, except it need not be indiscernible. By Erdös-Rado4, there is a
B-indiscernible sequence 〈a′i | i < ω〉 such that there are i1 < . . . < in < λ
such that tp(ai1 , . . . , ain/A) = tp(a′1, . . . , a

′
n/A). In particular, 〈a′i | i < ω〉

is still independent.
If T is simple, every p does not fork over A.

The following says that you can characterise dividing in simple theories
by just looking at Morley sequences.

3I.e. the elements of the sequence all realise p
4The Standard Lemma does not suffice because we also want to preserve independence.
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Proposition 14.4 (Kim’s Lemma). Let T be simple. Let π(x, b) be a partial
type. Suppose 〈bi | i < ω〉 is a Morley sequence over A in tp(b/A) such that⋃
i<ω π(x, bi) is consistent. Then π(x, b) does not divide over A.

So Kim’s Lemma says that you can check dividing just on one indis-
cernible sequence, provided it is Morley. In general you cannot just check⋃
i<ω π(x, bi) for an arbitrary indiscernible sequence: for example, for equiv-

alence relations, xEb divides over ∅, but there is some indiscernible sequence
that does not witness dividing: take everything in the same equivalence class.
Anyway, if you take an indiscernible sequence with everything in different
classes, it will witness dividing.

Proof of the Lemma. By compactness and the previous Lemma (and possi-
bly Erdös-Rado5.), for any linear order I there is a Morley sequence 〈bi |
i ∈ I〉 in tp(b/A). Do this with I = (|T |+)∗, where the ∗ denotes tak-
ing the reverse order. Also, we can construct the sequence in such a way
that

⋃
i∈I π(x, bi) is consistent. Let c realise it. By local character, there

is i0 ∈ I such that tp(c/A ∪ {bi | i ∈ I}) does not divide over A ∪ {bi |
i > i0} (by regularity of |T |+; you can take an end segment because if
B ⊇ A and you don’t fork over A then you don’t fork over B). Write this
as c |̂ d

Ab>i0
〈bi | i ∈ I〉, where the “d” is for “dividing”. In particular,

c |̂ d
Ab>i0

b≥i0 . Put B = Abi0 and a = 〈bi | i > i0〉. Then c |̂ d
Aa Ba.

On the other hand, by A-independence, a |̂ d
A B. Therefore, ac |̂ d

A B by
Proposition 12.1. Hence, tp(c〈bi | i > i0〉/Abi0) does not divide over A. In
particular, π(x, bi0) ⊆ tp(c/bi0) does not divide over A. By automorphisms,
π(x, b) does not divide over A.

Proposition 14.5. Let T be simple. Then π(x, b) divides over A if and
only if π(x, b) forks over A. In other words, in simple theories forking equals
dividing.

Proof. Dividing always implies forking, so let’s take care of the other im-
plication. Suppose π(x, b) does not divide over A, and suppose π(x, b) `
ψ(x, b) =

∨
`<m ϕ`(x, b). We will show that for some ` < m the formula

ϕ`(x, b) does not divide over A. Let 〈bi | i < ω〉 be a Morley sequence over
A in tp(b/A). Then {ψ(x, bi) | i < ω} is consistent because π(x, b) ` ψ(x, b)
and ψ does not divide over A by hypothesis. In particular, there is ` < m and
an infinite I ⊆ ω such that {ϕ`(x, bi) | i ∈ I} is consistent. Since 〈bi | i ∈ I〉
is still a Morley sequence over A in tp(b/A), by Kim’s lemma ϕ`(x, b) does
not divide over A.

Corollary 14.6. Forking in simples theories satisfies Local Character.

Proof. We know it for dividing.
5To say “I’m independent” you write down the negation of all forking formulas
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Proposition 14.7. The following hold in a simple theory:

Symmetry A |̂ C B ⇐⇒ B |̂
C A

Monotonicity and Transitivity Suppose B ⊆ C ⊆ D. Then A |̂
B C if and

only if A |̂ C D and A |̂ B C.

Proof.

Symmetry By finite character, it suffices to show that a |̂ C b ⇒ b |̂ C a.
Suppose a |̂ C b. By the previous results there is a Morley sequence
〈ai | i < ω〉 over C in tp(a/Cb) which is indiscernible over Cb. Let
p(x, y) = tp((a, b)/C). We will show that

⋃
i<ω p(ai, y) is consistent,

and by Kim’s Lemma and forking equals dividing this suffices. But by
construction b �

⋃
i<ω ϕ(ai, y).

Monotonicity and Transitivity We already know one implication. We al-
ready know that a |̂ d

A B and c |̂ d
Aa Ba implies ac |̂ d

A B by Propo-
sition 12.1. Notice that by definition c |̂ d

Aa Ba ⇐⇒ c |̂ d
Aa B. Since

now we know symmetry and forking equals dividing, we also know that

B |̂
A a and B |̂

Aa C ⇒ B |̂
A ac

Replacing

• B by A

• A by B

• Aa by C

• Aac by D

we get (also moving things from the bottom to the right)

A |̂ B C and A |̂ C D ⇒ A |̂ B D

The only thing left to prove for forking in simple theories is the Indepen-
dence Theorem.

The results mentioned today can be used in the homework.
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I was not there. Proof of the Kim-Pillay theorem. See the official notes.
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