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\chapter{02/10}
Assumptions are color coded: black (white on the board) means $\kappa$ regular, \textcolor{red}{red} means {\color{red}$\kappa^{<\kappa}=\kappa$} and \textcolor{blue}{blue} means {\color{blue}$\kappa$ inaccessible}.

Cardinal characteristics of the continuum have been studied a lot, but there is still work ongoing. E.g.\ it was recently shown that $\mf p=\mf t$, and there is a recent preprint with $10$ different cardinals in Chico\'n's diagram.

This course is about generalisation to higher cardinals: replace $\omega$ with $\kappa$ and finite with $<\kappa$.

We are going to start from scratch from cardinal characteristics of the continuum in a uniform approach  for what will come later.

\section{Good References}
\begin{itemize}
\item For classical cardinal characteristics of the continuum, Blass's article inside \emph{Handbook of set theory}.
\item For large cardinals, Kanamori's book.
\end{itemize}
\section{Bounding and Dominating Number}
\begin{defin}[$\kappa$ regular]
  For functions $f,g\from \kappa\to\kappa$, write $f\le^*g$ ($f$ is \emph{eventually dominated} by $g$) to mean
\[
\exists \alpha<\ka\; \forall \beta\ge\ka\; f(\beta)\le g(\beta)
\]
\end{defin}
\begin{rem}
  As $\kappa$ is regular, this is equivalent to ask that $f\le g$ on all but $<\kappa$ many points.
\end{rem}
Another reason for choosing $\kappa$ to be regular is because otherwise the increasing functions wouldn't be dense (cofinal) in this preorder.
\begin{defin}
  We define
  \begin{gather*}
    \mf b_\ka\coloneqq\min\set{\abs{\mc F}\mid \mc F\subseteq \ka^\ka\land \forall g\from \ka\to\ka\;\exists f\in\mc F\;f\centernot{\le^*}g}    \\
    \mf d_\ka\coloneqq\min\set{\abs{\mc G}\mid \mc G\subseteq \ka^\ka\land \forall f\from \ka\to\ka\;\exists g\in\mc G\;f\le^*g}    
  \end{gather*}
\end{defin}
In other words, $\mf b_\ka$ is the least size of an unbounded set, while $\mf d_\ka$ is the least size of a dominating set.
\begin{rem}
  $\centernot{\le^*}$ means $\neg (\le^*)$. Later in the course we will also consider $(\neg \le)^*$, which is a different object.
\end{rem}
\begin{rem}
  Every dominating set is unbounded. In particular, $\mf b_\ka\le\mf d_\ka$.
\end{rem}
These notions can be generalised:
\begin{defin}
  Suppose $(\mb P,\le)$ is a preorder such that\footnote{Otherwise you get boring stuff: the singleton a maximal element is a dominating set, and there are no unbounded sets.} $\forall\;p\in \mb P\;\exists q\in \mb P\; q>p$. Then $U$ is an \emph{unbounded set} iff $\forall q\in \mb P\;\exists p\in U\; p\centernot\le q$, and $D$ is a \emph{dominating set} iff $\forall p\in \mb P\;\exists q\in D\; p\le q$. We define
\[    \mf b(\mb P)\coloneqq\min\set{\abs{U}\mid U\tn{ unbounded}}\qquad
    \mf d(\mb P)\coloneqq\min\set{\abs{D}\mid D\tn{ dominating}}
\]
\end{defin}
{\color{red}
\begin{eg}[$\kappa$-meagre sets]
The \emph{generalised Baire space} is $\kappa^\kappa$ with the \emph{box topology}, generated by sets of the form
\[
[s]=\set{f\in \ka^\ka\mid f\restr \abs s=s}
\]
as $s$ varies in $\kappa^{<\kappa}$. Similarly, the \emph{generalised Cantor space} is $2^\kappa$ with the box topology.
\end{eg}
\begin{rem}In $\ka^\ka$ and $2^\ka$
  \begin{itemize}
  \item   The intersection of fewer than $\kappa$ many open sets is open\footnote{This only works because $\kappa$ is regular. Also, the box topology has a universal property similar to the one enjoyed by the product topology, but subject to this requirement.}.
  \item There is an open base of size $\ka$, because $\ka^{<\ka}=\ka$.
  \item In the $\omega$ case, \emph{the} Baire space $\omega^\omega$ is \emph{a} Baire space\footnote{Apparently people manage to avoid confusion even in languages with no articles.} (definition later).
  \end{itemize}
\end{rem}
\begin{defin}In a topological space,
  \begin{itemize}
  \item   A set $X$ is \emph{nowhere dense} iff for any open set $V$ there is an open subset $U\ssq V$ such that $U\cap X= \emptyset$.
  \item $X$ is \emph{$\kappa$-meagre} iff it is a union of $\kappa$-many nowhere dense sets. Let $\mc M_\ka$ be the set of $\ka$-meagre subsets of the topological space at hand. If $\ka$ is clear from context we may just say \emph{meagre}.
  \end{itemize}
\end{defin}
\begin{rem}
  $\mc M_\ka$ is a $\ka$-ideal, since subsets of a nowhere dense sets are nowhere dense, and the union of $\ka$-many meagre sets is $\ka$-meagre.
\end{rem}
\begin{eg}
  Consider $(\mc M_\ka, \ssq)$. What are $\mf b$ and $\mf d$ for this partial order?
\[
\mf b(\mc M_\ka, \ssq)=\min \set{
\abs {\mc U}\mid \mc U\ssq \mc M_\ka\land \forall Y\in \mc M_\ka\;\exists X\in \mc U\; X\centernot\ssq Y
}
\]
In other words, it is the least cardinality of a set of meagre sets whose union is not meagre. This is known as the \emph{additivity} $\operatorname{add}(\mc M_\ka)$ of the meagre ideal. Dually, $\mf d(\mc M_\ka, \ssq)$ is the least cardinality of a cofinal subset of $\mc M_\ka$, and is denoted with $\cof(\mc M_\ka)$. Under the ``red'' assumptions\footnote{Also we need the non-existence of maximal elements.}, $\operatorname{add}(\mc M_\ka)\le \cof(\mc M_\ka)$. 
\end{eg}
\begin{rem}
  The things above apply to both $2^\ka$ and $\ka^\ka$. But let's say\footnote{Actually, if $\ka$ is not weakly compact, the two spaces are homeomorphic.} we are working in $2^\ka$.
\end{rem}
}%end of color red
\begin{pr}
  Let $(\mb P, \le)$ be  a preorder such that $\forall p\;\exists q\; q>p$. Then
\[
\mf b(\mb P)=\cf(\mf b(\mb P))\le \cf(\mf d(\mb P))\le \mf d(\mb P)\le \abs {\mb P}
\]
\end{pr}
\begin{proof}
If $B$ is unbounded with $\abs B=\mf b(\mb P)$  but the latter is singular, then we can write $B=\bigcup_{\alpha<\cf \mf b(\mb P)}B_\alpha$, where $\forall\alpha\; \abs {B_\alpha}<\mf b$. Then we can choose $q_\alpha$ such that $p\le q_\alpha$  for all $p\in B_\alpha$, and $\set{q_\alpha\mid \alpha\in \cf(\mf b(\mb P))}$ would be unbounded, contradicting minimality of $\abs B$. 

The rest of the proof is left as an exercise.
\end{proof}
\chapter{03/10}
\section{Singular Dominating Numbers}
\begin{question}
  Can $\mf d(\mb P)$ be singular?
\end{question}
Let's elaborate on that  with an example.
\begin{eg}
  Let $\beta, \delta$ be infinite cardinals such that\footnote{E.g.\ under \tf{GCH} let $\beta=\aleph_1$ and $\delta=\aleph_{\aleph_{\omega_2}}$.}  $\cf(\beta)=\beta\le \cf(\delta)\le \delta=\delta^{<\beta}$. Consider the partial order $\mb Q$ with underlying set $\beta\times [\delta]^{<\beta}$ and $(\rho, x)\le (\sigma, y)$ iff $\rho\le \sigma$ and $x\ssq y$.
\end{eg}
\begin{claim}
  $\mf b(\mb Q)=\beta$ and $\mf d(\mb Q)=\delta$.
\end{claim}
\begin{proof}
  If $B\ssq \mb Q$ and $\abs B<\beta$, take $\sigma\coloneqq \sup\set{\rho\mid \exists x\; (\rho, x)\in B}$ and let $y\coloneqq\bigcup\set{x\mid \exists p\;(p, x)\in B}$. Then $(\sigma, y)$ is an upper bound for $B$, so $\mf b(\mb Q)\ge \beta$. To show equality, notice that $\set{(\alpha, \emptyset)\mid \alpha<\beta}$ is unbounded.

Now suppose $D\ssq \mb Q$ is a dominating set such that $\abs D<\delta$. Consider $X\coloneqq \bigcup\set{x\mid (\rho, x)\in D}$. If $\delta$ is regular, then obviously $\abs X<\delta$. Otherwise, by the previous Proposition, $\abs X\le \abs D\cdot \beta<\delta$. Take $\gamma\in\delta\setminus X$. Then $(0, \set \gamma)$ is not dominated by any element of $D$, and this shows $\mf d(\mb Q)\ge \delta$. But $\abs {\mb Q}=\beta\times \delta^{<\beta}=\delta$.
\end{proof}
\begin{defin}
  A function $f\from \mb P\to \mb Q$ is a \emph{cofinal embedding} iff
  \begin{itemize}
  \item $\forall p,p'\in\mb P\; p\le p'\iff f(p)\le_\mb Q f(p')$, and
  \item $\forall q\in \mb Q\;\exists p\in \mb P\;(q\le f(p))$.
  \end{itemize}
\end{defin}
\begin{lemma}
  If $f\from \mb P\to \mb Q$ is a cofinal embedding, then $\mf b(\mb P)=\mf b(\mb Q)$ and $\mf d(\mb P)=\mf d(\mb Q)$.
\end{lemma}
\begin{proof}
  Chase around  unbounded or dominating sets.
\end{proof}
So we may try to embed our contrived example above into a more natural object.
\begin{thm}[Hechler]
  In the case $\omega$, if $\mb P$ is such that every countable subset of $\mb P$ has an upper bound, then there is a forcing extension of the universe in which $\mb P$ cofinally embeds into $(\omega^\omega, \le^*)$.
\end{thm}
{\color{red}
\begin{thm}[Cummings, Shelah, $\ka=\ka^{<\ka}$]
    Suppose $\mb P$ is a well-founded poset with $\mf b(\mb P)\ge \ka^+$. Then there is a forcing $\mb D(\ka, \mb P)$ such that
    \begin{enumerate}
    \item  $\mb D(\ka, \mb P)$ is $\ka$-closed and $\ka^+$-c.c. In particular it preserves cardinals and cofinalities.
    \item $V^{\mb D(\ka, \mb P)}\models \mb P$ cofinally embeds into $(\ka^\ka, \le^*)$.
    \item If $V\models \mf b(\mb P)=\beta$, then $V^{\mb D(\ka, \mb P)}\models \mf b_\ka=\beta$
    \item If $V\models \mf d(\mb P)=\delta$, then $V^{\mb D(\ka, \mb P)}\models \mf d_\ka=\delta$
    \end{enumerate}
\end{thm}
}%end of color red
\begin{lemma}
  Every poset has a well-founded dominating subset.
\end{lemma}
\begin{proof}
  Just keep on choosing elements by induction.
\end{proof}
Since then the inclusion map will be a cofinal embedding, the well-foundedness hypothesis in the Theorem above is not really restrictive.
\section{Beyond Preorders: Galois-Tukey Connections}
Consider triples $\mb A=(A_-, A_+, A)$, where $A$ is a binary with domain $A_-$ and codomain $A_+$, i.e.\ $A\ssq A_-\times A_+$.
\begin{defin}
  The \emph{norm} $\norm A$ of $A$ is defined as
\[
\norm A=\min\set{\abs Y\mid Y\ssq A_+\land \forall x\in A_-\;\exists y\in Y\; (x\mathrel{A} y)}
\]
\end{defin}
So, basically, $\norm A$ is $\mf d$ for $A$. In fact, another notation is $\mf d(A)$. What about $\mf b$? The nice thing about Galois-Tukey connections is that they allow you to dualise things:
\begin{defin}
  The \emph{dual} of $\mb A$ is $\mb A^\perp\coloneqq(A_+, A_-, \neg \check A)$, where $y\mathrel{\check A} x\equiv x\mathrel{A} y$.
\end{defin}
Pictorially, the dual of $R$ is $\centernot{\reflectbox{$R$}}$. Now we have, by spelling out the definitions, 
\[
\norm{A^\perp}=\min\set{\abs Y\mid Y\ssq A_-\land \forall x\in A^+\;\exists y\in Y\; \neg (y \mathrel{A} x)}
\]
and that's exactly $\mf b(A)$. This is the sense in which  $\mf b$ and $\mf d$ are dual.

\begin{defin}
  A \emph{morphism} $\Phi\from\mb A\to \mb B$ is a pair of functions $\Phi=(\Phi_-, \Phi_+)$ such that
  \begin{itemize}
  \item $\Phi_+\from A_+\to B_+$
  \item $\Phi_-\from B_-\to A_-$
  \item $\forall a\in A_+\;\forall b\in B_-\; \Phi_-(b)\mathrel{A}a\then b\mathrel{B}\Phi_+(a)$.
  \end{itemize}
\end{defin}
Terminology of Vojt\'a\v s: a Galois-Tukey connection from $\mb B$ to $\mb A$ is a morphism\footnote{Yes, these things do form a category.} from $\mb A$ to $\mb B$.
\begin{exr}\label{exr:morphnorm}
If there is a morphism $\mb A\to \mb B$ (we write that as $\mb A\preceq \mb B$), then $\norm {\mb A}\ge \norm{\mb B}$ and $\norm{\mb A^\perp}\le \norm{\mb B^\perp}$, i.e.\ $\mf d(\mb A)\ge \mf d(\mb B)$ and $\mf b(\mb A)\le \mf b(\mb B)$.
\end{exr}
\begin{rem}
  This is easier to apply than cofinal embeddings: the condition is an ``if\ldots{} then'', not an ``if and only if''.
\end{rem}
{\color{red}
\begin{exr}\label{exr:cov}
  Express the least cardinality $\operatorname{non}(\mc M_\ka)$ of a non-meagre set  as $\mf b$ of something and the least number $\operatorname{cov}(\mc M_\ka)$ of meagre sets require to cover all of $\ka^\ka$ as $\mf d$ of something.
\end{exr}
}
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\section{Examples of Triples and Morphisms}
\begin{eg}
  $\mc D\coloneqq (\ka^\ka, \ka^\ka, \le^*)$
\end{eg}

{\color{red}
\begin{eg}
Let $\operatorname{Cof}(\mc M_\ka)\coloneqq (\mc M_\ka, \mc M_\ka, \ssq)$. Then $\mf d(\mc M_\ka)=\operatorname{cof}(\mc M_\ka)$ and $\mf b(\mc M_\ka)=\operatorname{add}(\mc M_\ka)$.
\end{eg}
\begin{proof}[Solution of Exercise~\ref{exr:cov}]
  Let $\operatorname{Cov}(\mc M_\ka)\coloneqq (2^\ka, \mc M_\ka, \in)$. Then $\mf d(\operatorname{Cov}(\mc M_\ka))$ equals
\[
\min \set{\abs{\mc U}\mid \mc U\ssq \mc M_\ka\land \forall x\in 2^\ka\;\exists X\in \mc U\; x\in X}
\]
i.e.\ the least size of a set of meagre sets that covers $2^\ka$, i.e.\ $\operatorname{cov}(\mc M_\ka)$.

On the other hand, $\mf b(\operatorname{Cov}(\mc M_\ka))$ is the least size of a non meagre set, i.e.\ $\operatorname{non}(\mc M_\ka)$, as can be seen by writing it as
\[
\min \set{
\abs Y\mid Y\ssq 2^\ka\land \forall X\in \mc M_\ka\;\exists y\in Y\; y\notin X
}\qedhere
\]
\end{proof}
\begin{pr}
There is a morphism $\Phi\from \operatorname{Cof}(\mc M_\ka)\to \operatorname{Cov}(\mc M_\ka)$ 
\end{pr}
\begin{proof}
We have to find  maps
\[
\Phi_+\from \mc M_\ka\to \mc M_\ka\qquad \Phi_-\from 2^\ka\to \mc M_\ka
\]
such that if $\Phi_-(x)  \ssq Y$ then $x\in \Phi_+(Y)$.
  Take $\Phi_+=\id_{\mc M_\ka}$ and $\Phi_-(x)=\set x$.
\end{proof}
From this and Exercise~\ref{exr:morphnorm} we immediately get  
\begin{co}
  $\mf b(\operatorname{Cof})\le \mf b(\operatorname{Cov})$ and $\mf d(\operatorname{Cof})\ge \mf d(\operatorname{Cov})$. In other words, $\operatorname{add}(\mc M_\ka)\le \operatorname{non}(\mc M_\ka)$ and $\operatorname{cof}(\mc M_\ka)\ge \operatorname{cov}(\mc M_\ka)$.
\end{co}
\begin{exr}
  Try to proof the above inequalities directly from the definitions. It should boil down to the morphism above.
\end{exr}
\begin{pr}
  There is a morphism\footnote{Recall that $\operatorname{Cov}(\mc M_\ka)^\perp=(\mc M_\ka, 2^\ka, \centernot\owns)$.} $\Psi\from\operatorname{Cof}(\mc M_\ka)\to \operatorname{Cov}(\mc M_\ka)^\perp$.
\end{pr}
\begin{proof}
We have to find maps
\[
\Psi_+\from \mc M_\ka\to 2^\ka\qquad \Psi_-\from \mc M_\ka\to \mc M_\ka
\]
such that if $\Psi_-(X)\ssq Y$ then $X\centernot\owns \Psi_+(Y)$.  Let $\Psi_-=\id_{\mc M_\ka}$ and let $\Psi_+(Y)$ be any element\footnote{Here we hare using the $\ka^{<\ka}=\ka$, because if $2^\ka$ turned out to be meagre\ldots} $y\in 2^\ka\setminus Y$.
\end{proof}
We therefore have the following picture, where arrows mean $\le$:
\begin{center}
\begin{tikzpicture}[scale=2]
\node(nw) at (0,1){$\operatorname{non}(\mc M_\ka)$};
\node(ne) at (2,1){$\operatorname{cof}(\mc M_\ka)$};
\node (sw) at (0,0) {$\operatorname{add}(\mc M_\ka)$};
\node(se) at (2,0){$\operatorname{cov}(\mc M_\ka)$};
 \node(c) at (0.75, 0.5){$\color{black} \mf b$};
 \node(d) at (1.25, 0.5){$\color{black} \mf d$};

\path[->, thick,  font=\scriptsize,>= angle 90]
(nw) edge node {} (ne)
(sw) edge node {} (se)
(sw) edge node {} (nw)
(se) edge node {} (ne);
{\color{black}
\path[->, thick,  font=\scriptsize,>= angle 90]
(c)  edge node {} (d);
}
\end{tikzpicture}
\end{center}
}%end of color red
\begin{eg}
  Let $\mc E=(\ka^\ka, \ka^\ka, \ne ^*)$, where for $f,g\from \ka\to \ka$ we say that $f$ is \emph{eventually different from} $g$, written $f\ne ^*g$, if $\exists \alpha<\ka\;\forall \beta\ge \alpha\; f(\beta)\ne g(\beta)$.
\end{eg}
\begin{rem}
  $\ne^*$ is symmetric, but here we are thinking of it in a ``partial order'' sense. Distinguishing left and right in this context is very important.
\end{rem}
We have
\[
\norm*{\mc E^\perp}=\mf b(\ne^*)=\min\set{
\abs {\mc F}\mid \mc F\ssq \ka^\ka\land \forall g\in \ka^\ka\;\exists f\in \mc F\; \neg f\ne^* g
}
\]
Recall that $\neg f\ne^*g$ means $\forall \alpha<\ka\;\exists \beta\ge \alpha\; f(\beta)=g(\beta)$. Also
\[
\norm {\mc E}=\mf d(\ne^*)=\min \set{
\abs{\mc G}\mid \mc G\ssq \ka^\ka\land \forall f\in \ka^\ka\; \exists g\in\mc G\; f\ne^*g
}
\]
\begin{pr}
$\mc D\preceq \mc E$.
\end{pr}
\begin{proof}
   One morphism is given by $\Phi_+\coloneqq \ka^\ka\to \ka^\ka$ defined as $d\mapsto (\Phi_+(d)(\alpha)\coloneqq d(\alpha)+1)  $ and $\Phi_-\from \ka^\ka\to \ka^\ka$ the identity. If $\Phi_-(e)\le^* d$ then $e\ne^*\Phi_+(d)$.
\end{proof}

{\color{red}
\begin{pr}
  ${\color{black}\mc D\preceq \mc E}\preceq\operatorname{Cov}(\mc M_\ka)$
\end{pr}
\begin{proof}
We want $\Phi_+\from \ka^\ka\to\mc M_\ka$ and $\Phi_-\from \ka^\ka \to \ka^\ka$ such that if $\Phi_-(x)\ne^*g$ then $x\in \Phi_+(g)$. Let $\Phi_-=\id_{\ka^\ka}$, and define
\[
\Phi_+(f)\coloneqq \set{g\mid g\ne^*f}
\]
The point is that for every $f\in \ka^\ka$ the set $\set{g\mid g\ne^*f}$ is meagre. The reason for this is that 
\[
\set{g\mid g\ne^*f}=\bigcup_{\alpha<\ka}\set{g\mid \forall \beta\ge \alpha\; g(\beta)\ne f(\beta)}
\]
And each of the sets we're taking the union of, i.e.\ for fixed $\alpha$, is nowhere dense, because if $s\in \ka^{<\ka}$ defines an open set, extend $s$ to $t\in \ka^\ka$ taking the value $f(\beta)$ on some $\beta\ge\alpha$.
\end{proof}
\begin{rem}
Pay attention to the last step in the proof above, since we are going to use similar tricks often.  
\end{rem}
As a result of the Proposition, the diagram becomes
 \begin{center}
 \begin{tikzpicture}[scale=3]
 {\color{red}
 \node(nw) at (0,1){$\operatorname{non}(\mc M_\ka)$};
 \node(ne) at (2,1){$\operatorname{cof}(\mc M_\ka)$};
 \node (sw) at (0,0) {$\operatorname{add}(\mc M_\ka)$};
 \node(se) at (2,0){$\operatorname{cov}(\mc M_\ka)$};
 \node(c) at (0.75, 0.5){$\color{black} \mf b$};
 \node(d) at (1.25, 0.5){$\color{black} \mf d$};
 \node(a) at (0.5, 0.75) {$\color{black}\mf b(\ne^*)$};
 \node(b) at (1.5, 0.25) {$\color{black}\mf d(\ne^*)$};
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (nw) edge node {} (ne)
 (sw) edge node {} (se)
 (sw) edge node {} (nw)
 (se) edge node {} (ne)
;
 {\color{black}
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (se) edge node {} (b)
 (a)  edge node {} (nw)
 (c)  edge node {} (d)
 (c)  edge node {} (a)
 (b)  edge node {} (d)
;
 }

 }%redend
 \end{tikzpicture}
 \end{center}

\begin{spoiler}
  We will show later that $(2^\ka, \mc M_\ka, \in)\equiv (\ka^\ka, \mc M_\ka, \in)$.
\end{spoiler}
}%redend
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\section{$\ka^\ka$ vs $2^\ka$}
\begin{claim}
  Meagre sets in $\ka^\ka$ are ``basically the same'' as meagre sets in $2^\ka$. More precisely, there is an homeomorphic embedding of $\ka^\ka$ into $2^\ka$ with comeagre image.
\end{claim}
\begin{proof}
  Consider the function $\phi\from \ka^\ka\to 2^\ka$ sending $f$ to $f(0)$ many $0$'s, then $1+f(1)$, many $1$'s, then $1+f(2)$ many $0$'s etc. More formally, define $\phi(f)\coloneqq \bigcup_{\alpha<\kappa} s_{f}(\alpha)$, where $s_f\from \kappa\to 2^{<\kappa}$, $s_f(\beta)\supseteq s_f(\alpha)$ for $\beta\ge \alpha$ is defined by recursion by letting $s_f(\beta)$ be $\bigcup_{\alpha<\beta}s_f(\alpha)$ followed by $1+f(\beta)$ many $0$'s if $\beta$ is even and nonzero, and $(1+f(\beta))$ many $1$'s if $\beta$ is odd, or $f(0)$ many $0$'s if $\beta=0$.

This is an homeomorphism to its range. To see this, consider that the open base set $[t]$, for $t\in \ka^\ka$ maps to $[s_t(\abs t)\cat r]$, where $r$ is $0$ if $\abs t$ is even and $1$ if $\abs t$ is odd. So our map is open. To see it is continuous, notice that anyting in $2^{<\ka}$ is of the form $s_t(\abs t)\cat r$, where $r$ is $\alpha$ many $0$'s or $1$'s. So, for $t\in \ka^{<\ka}$, this has inverse image $\bigcup_{1+\beta\ge \alpha}[t\cat \beta]$. Since, clearly, the map is injective, it's an homeomorphism to its range.

We now show that $2^\ka\setminus \operatorname{Ran}(\phi)$ is meagre; to see this, let $C$ be the set of $x\in 2^\ka$ such that $x$ eventually stops alternating. We have
\[
C=\bigcup_{\alpha<\ka}\set{x\in 2^\ka\mid \forall \beta \ge \alpha\; x(\beta)=0}\cup \bigcup_{\alpha<\ka}\set{x\in 2^\ka\mid \forall \beta \ge \alpha\; x(\beta)=1}
\]
and each of the sets we are taking the union of is nowhere dense: just extend something beyond $\alpha$ forcing it to be out of the set.

Therefore, up to a meagre set $\ka^\ka$ is the same as $2^\ka$.
\end{proof}
\begin{rem}
  There is another encoding one could use: use $1$'s as separators and put $f(\alpha)$ many $0$'s each time. This may even be easier to work with.
\end{rem}
\begin{co}
  $(2^\ka, \mc M_\ka^{2^\ka}, \in)\equiv (\ka^\ka, \mc M_\ka^{\ka^\ka}, \in)$
\end{co}
\begin{proof}
  To see $\preceq$, let $\Phi_+\from \mc M_\ka^{2^\ka}\to \mc M_\ka^{\ka^\ka}$ be $\phi^{-1}$, and let $\Phi_-\from \ka^\ka \to 2^\ka$ be $\phi$. If $\phi(f)\in X$ then $f\in \phi^{-1}(X)$, so this is a morphism.

The morphism in the other direction is given by $\Phi_+\from \mc M_\ka^{\ka^\ka}\to \mc M_\ka^{2^\ka}$ being\footnote{$C$ is the complement of the range of $\phi$.} $X\mapsto \phi"X\cup C$ and $\Phi_-\from 2^\ka\to \ka^\ka$ being $\phi^{-1}$ if defined, arbitrary otherwise. If $\Phi_-(x)\in Y$, then $x\in \Phi_+(Y)$, so we are done.
\end{proof}
The objects above were called $\operatorname{Cov}(\mc M_\ka)$. What about $\operatorname{Cof}(\mc M_\ka)$?
\begin{co}
  $ (\mc M_\ka^{2^\ka}, \mc M_\ka^{2^\ka} ,\ssq)\equiv(\mc M_\ka^{\ka^\ka}, \mc M_\ka^{\ka^\ka}, \ssq)$
\end{co}
\begin{proof}
  To see $\preceq$, let $\Phi_+$ be $\phi^{-1}$ and $\Phi_-$ be $\phi"$. Clearly, if $\phi"X\ssq Y$ then $X\ssq \phi^{-1}Y$.

For the other direction, let $\Phi_+$ be $C\cup \phi"$ and $\Phi_-\coloneqq \phi^{-1}$. If $\phi^{-1}(Y)\ssq X$, then $Y\ssq \phi"X\cup C$, so we are done.
\end{proof}
\section{Baire's Category Theorem}
We were actually tacitly using the following result, which we are now going to prove:
\begin{thm}[Baire's Category Theorem]
  Every meagre set has empty interior.
\end{thm}
\begin{proof}
  Work in\footnote{Note that to do something similar to the classical case (``complete metric spaces'') one should figure out what ``metric'' means.} $2^\ka$. Let $X$ be meagre, as witnessed by writing $X=\bigcup_{\alpha<\ka} X_\alpha$ with $X_\alpha$ nowhere dense, and let $\emptyset\ne U\ssq 2^\ka$ be open. We want to show that $U\setminus X\ne \emptyset$.

Since $X_0$ is nowhere dense, take $s_0\in 2^{<\ka}$ such that $[s_0]\ssq U\setminus X_0$. Take $s_1\in 2^{<\ka}$ strictly extending $s_0$, such that $[s_1]\ssq [s_0]\setminus X_1$. Go on like this for successor steps, and for limit $\lambda$ take $s_\lambda$ strictly extending $\bigcup_{\alpha<\lambda } s_\alpha$ such that $[s_\lambda]\ssq \l[\bigcup_{\alpha<\lambda} s_\alpha\r]\setminus X_\lambda$. Then take $x=\bigcup_{\alpha<\ka} s_\alpha$. Then $x\in U\setminus X$.
\end{proof}
%that probably works for a generalisation of "locally compact" where you have to replace the FIP with something similar to \kappa-compactness (\kappa-saturation)

\section{Interval Partitions}
\begin{defin}
  Let $(i_\alpha\mid \alpha<\ka)$ be a strictly increasing, continuous sequence of ordinals less than $\ka$. Then $([i_\alpha, i_{\alpha+1})\mid \alpha <\ka)$ is an \emph{interval partition}. Denote the set of all interval partitions by $\mathrm{IP}$.
\end{defin}
\begin{defin}
  For interval partitions $I=(I_\alpha\mid \alpha<\ka)$ and  $J=(J_\alpha\mid \alpha<\ka)$, say that $I$ \emph{dominates} $J$, written $J\le^*I$ iff for some $\gamma<\ka$ and all $\alpha\ge\gamma$ there is a $\beta\in \ka$ such that $J_\beta\ssq I_\alpha$.
\end{defin}
In other words, eventually each $I_\alpha$ is big enough to contain some $J_\beta$.
\begin{pr}
  $\mc D\equiv (\mathrm{IP}, \mathrm{IP}, \le^*)$ (recall that $\mc D\coloneqq (\ka^\ka, \ka^\ka, \le^*)$).
\end{pr}
\begin{proof}
  Consider $\Psi_1\from \mathrm{IP}\to \ka^\ka$ sending 
\[
([i_\alpha, i_{\alpha+1}))\mapsto (\gamma\mapsto i_{\alpha+2}\tn{ for the $\alpha$ such that }\gamma\in[i_\alpha, i_\alpha+1))
\]
Then let $\Psi_2\from \ka^\ka\to \mathrm{IP}$ be defined as
\[
f\mapsto \tn{some }J=([j_\alpha, j_{\alpha+1}))\tn{ such that } \gamma<j_\alpha\then f(\gamma)<j_{\alpha+1}
\]
\begin{exr}
  These work as $\Phi_+$ and $\Phi_-$ for both directions.
\end{exr}
\end{proof}
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\section{Interval Partitions and Meagreness}
\begin{defin}
  A \emph{$\kappa$-chopped function} is a pair $(x,I)$ with $x\in 2^\ka$ and $I$ an interval partition. We say that  $y\in 2^\ka$ \emph{matches} $(x,I)$ iff for cofinally many $\alpha\in\ka$ we have $y\restr I_\alpha=x\restr I_\alpha$.
\end{defin}
The idea is that matching is the negation of $\ne^*$, but in chunks.
\begin{defin}
Let 
\[
\operatorname{Match}(x,I)\coloneqq \set{y\in 2^\ka\mid y\tn{ matches }(x,I)}
\]
Call $M\ssq 2^\ka$ \emph{combinatorially meagre}  iff there is some $\ka$-chopped $(x,I)$ such that $M\cap \operatorname{Match}(x,I)=\emptyset$.
\end{defin}
Basically, we are thinking of $\operatorname{Match}(x,I)$ as the basic combinatorially comeagre sets. The reason is the following. Consider
\[
2^\ka\setminus\operatorname{Match}(x,I)=\bigcup_{\alpha<\ka}\set{y\mid \forall \beta\ge \alpha\; y\restr I_\beta\ne x\restr I_\beta}
\]
\begin{claim}
  Each set in that union is nowhere dense.
\end{claim}
\begin{proof}
  For any open set, go a little bit further and make it match some $x\restr I_\beta$.
\end{proof}
\begin{co}
  Combinatorially meagre sets are meagre.
\end{co}
\begin{question}
  Does the other implication hold?
\end{question}
{\color{blue}
\begin{pr}[Blass, Hyttinen, Zhang]
If $\ka$ is strongly inaccessible or $\ka=\omega$, then meagre implies combinatorially meagre.
\end{pr}
\begin{proof}
Suppose that $A$ is meagre, as witnessed by $A=\bigcup_{\alpha<ka} A_\alpha$, with each $A_\alpha$ nowhere dense. We can \tc{wlog} assume the union is increasing, i.e.\ $\alpha<\beta\allora A_\alpha\ssq A_\beta$, because as $\ka$ is inaccessible or $\omega$, in particular $\ka^{>\ka}=\ka$. We want to construct a $\ka$-chopped function $(x,I)$ not matched by any member of $A$. 

Construct a continuous, strictly increasing sequence of ordinals $i_\alpha$, which will give us the interval partition $I$, and a sequence $\sigma_\alpha$, for $\alpha<\ka$, such that $\sigma_\alpha\from[i_\alpha, i_{\alpha+1})\to 2$. Then the concatenation (union) of the $\sigma_\alpha$ will be our $x$.

Because $\ka$ is inaccessible or $\omega$, we can just choose $i_{\alpha+1}$ and $\sigma_\alpha$ such that for \emph{all} $\tau\in 2^{i_\alpha}$ we have $\tau\cat \sigma_\alpha\cap A_\alpha=\emptyset$. E.g.\ enumerate $2^{i_\alpha}=\set{\tau_0,\tau_1,\tau_2,\ldots}$, then extend $\tau_0$ by $\sigma_{\alpha 0}$ to avoid $A_\alpha$, extend $\tau_1\cat \sigma_{\alpha 0}$ by $\sigma_{\alpha 1}$ to avoid $A_\alpha$, etc, and let $\sigma_\alpha\coloneqq \sigma_{\alpha0}\cat\sigma_{\alpha1}\cat \sigma_{\alpha2}\cat\ldots$. By construction, $A\cap \operatorname{Match}(x,I)=\emptyset$.
\end{proof}
}%end of color blue
\begin{thm}
  If $\ka$ is regular, but not strongly inaccessible and not $\omega$, then there is a meagre set that is not combinatorially meagre.
\end{thm}
\begin{proof}
By hypothesis, there is some $\mu<\ka\le 2^\mu$. Say that $y$ \emph{repeats} at $\alpha$ if $\forall \xi<\alpha\; y(\xi)=y(\alpha+\xi)$. Recall that an ordinal $\gamma$ is \emph{indecomposable} iff $\gamma$ cannot be written as $\alpha+\beta$ for $\alpha, \beta<\gamma$. In other words, $\gamma$ is of the form $\omega^\alpha$, or $0$. Defin
\[
X\coloneqq \set{
y\in 2^\ka \mid y\tn{ repeats at an indecomposable }\alpha\in[\mu, \ka)
}
\]
We now show that $2^\ka\setminus X$ is meagre but not combinatorially meagre. In fact, $X$ is open dense: given any sequence, extend up to the next indecomposable ordinal and then repeat. To show that, for every $(x,I)$, we have $X\centernot\supseteq \operatorname{Match}(x,I)$, for every $(x,I)$ we are going to construct some $y\in \operatorname{Match}(x,I)\setminus X$. First note that if $J$ is coarser than $I$, then  $y$ matching $(x,J)$ implies that $y$ matches $(x,I)$, so \tc{wlog} we can thin out the $i_\alpha$. 

The $i_\alpha$ form a club, and the indecomposables $\ge \mu$ form another club. Therefore, \tc{wlog} every $i_\alpha$ other than $i_0=0$ is an indecomposable $\ge \mu$. Proceed by induction: for the base case, on $I_0\cup I_1$ set $y(\xi)$ to be $1$ iff $\xi=0$, and $0$ otherwise. This ensures that we do not get repetitions at indecomposables in $I_0\cup I_1$. To define $y$ on $[i_{2\beta}, i_{2\beta+1})$ and $[i_{2\beta+1}, i_{2\beta+2})$, first let $y\restr [i_{2\beta+1}, i_{\beta+2})=x\restr [i_{2\beta+1}, i_{\beta+2})$, to ensure matching. Then we use the bit on $[i_{2\beta}, i_{2\beta+1})$ to ensure there are no repetitions at indecomposables: if $\alpha\in I_{2\beta}$ is indecomposable, set $y(\alpha)=0$ to prevent repetitions at $\alpha$ (because $y(0)=1$); this takes care of the indecomposables in $[i_{2\beta}, i_{2\beta+1})$, but what about the ones in   $[i_{2\beta+1}, i_{\beta+2})$? We have not defined $y$ yet on $(i_{2\beta}, i_{2\beta}+\mu)$; by indecomposability, $i_{2\beta+\mu}$ will not be indecomposable\footnote{Recall that $i_1$ is already $\ge \mu$.}. For $\alpha$ an indecomposable in $I_{2\beta+1}$, define $f_\alpha\from \mu\to 2$ as 
\[
f_\alpha(x)=y(\alpha+i_{2\beta}+1+\xi)
\]
There are at most $\abs{i_{2\beta+2}}<\ka\le 2^\mu$ of these, so we can choose $g\from \mu \to 2$ different from every $f_\alpha$. Then define $y(i_{2\beta}+1+\xi)\coloneqq g(\xi)$, and define $y$ arbitrarily on other elements of $I_{2\beta}$.

We are now left to check that for every $\alpha$ indecomposable in $I_{2\beta+1}$ we do not have repetition at $\alpha$. Indeed, for $\xi$ with $g(\xi)\ne f_\alpha(\xi)$ we have 
\[
y(\alpha+i_{2\beta}+1+\xi)=f_\alpha(\xi)\ne g(\xi)=y(i_{2\beta}+1+\xi)\qedhere
\]
\end{proof}
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\section{Two Lemmas, One Lovely, One Not}
Recall that we had $\mc D\preceq \mc E{\color{red}\preceq \operatorname{Cov}(\mc M_\ka)}$, so
\begin{gather*}
  \mf b_\ka\le \mf b_\ka(\ne^*){\color{red}\le\operatorname{non}(\mc M_\ka)}\\
  \mf d_\ka\ge \mf d_\ka(\ne^*){\color{red}\ge\operatorname{cov}(\mc M_\ka)}\\
\end{gather*}
Also, recall that if $I,J$ are interval partitions, then $I\le^*J$ means that for all but $<\ka$ many $\alpha$ there is a $\beta$ such that $J_\alpha\supseteq I_\beta$.

Note that there is an asymmetry between $\mc D$ and interval partitions: $\le$ is a total order, $\subseteq$ is not. But we can get around that:
\begin{lemma}\label{lemma:nicelemma}
  Suppose that $I, J$ are interval partitions, and let $I'$ be the interval partition $(I_{2\beta}\cup I_{2\beta+1}\mid \beta<\ka)$. If $\neg (I'\ge^* J)$, then for cofinally many $\alpha$ there is a $\beta$ such that $I_\beta\ssq J_\alpha$.
\end{lemma}
\begin{proof}
  $\neg (I'\ge^* J)$ means that cofinally many $I'_\beta$ do \emph{not} contain a $J_\alpha$.

 \begin{center}
 \begin{tikzpicture}[scale=2.25]
 \node(a) at (0,0){$\underset{i_{2\beta}}\bullet$};
 \node(b) at (1,0){$\underset{i_{2\beta+1}}\bullet$};
 \node(c) at (2,0){$\underset{i_{2\beta+2}}\bullet$};
 \node(d) at (3,0){$\underset{i_{2\beta+3}}\bullet$};
 \node(e) at (4,0){$\underset{i_{2\beta+4}}\bullet$};
 \node(f) at (5,0){$\underset{i_{2\beta+5}}\bullet$};
{\color{green}
 \node(g) at (1.5,0.09){$\mid$};
 \node(h) at (2.5,0.09){$\mid$};
 \node(i) at (3.5,0.09){$\mid$};
 \node(j) at (4.5,0.09){$\mid$};
}
 \node(j) at (2,0.09){$\mid$};
 \node(l) at (4,0.09){$\mid$};
\draw (0,0.09)--(5,0.09);
 \end{tikzpicture}

 \end{center}
If no $j_\alpha$ is in $[i_{2, \gamma}, i_{2\gamma+2})$ we are done. If it contains one $j_\alpha$, we're done anyway (look at the picture).
\end{proof}
\begin{defin}
  Let $\operatorname{Fn}(\ka, 2,\ka)$ be the set of partial functions $\ka\to 2$ with domain of size $<\ka$ (not necessarily an initial segment).
\end{defin}
{\color{blue}
\begin{lemma}\label{lemma:uglylemma}
  There are functions $\Phi_-\from \mathrm{CF}\times \mathrm{IP}\to ((\operatorname{Fn}(\ka, 2,\ka))^{<\ka})^\ka$, where $\mathrm{CF}$ stands for ``chopped functions'', and $\Phi_+\from \mathrm{IP}\times ((\operatorname{Fn}(\ka, 2,\ka))^{<\ka})^\ka\to 2^\ka$ such that if
  \begin{itemize}
  \item $(x,I)\in \mathrm{CF}$
  \item $J\in \mathrm{IP}$
  \item $y\in ((\operatorname{Fn}(\ka, 2,\ka))^{<\ka})^\ka$
  \item cofinally many $J_\alpha$ contain an $I_\beta$, (i.e.\ $\neg (I'\ge^* J)$)
  \item $\Phi_-((x, I), J)(\beta)=y(\beta)$ for cofinally many $\beta$, i.e.\ $\neg \Phi_-((x,I), J)\ne^*y)$
  \end{itemize}
then $\Phi_+(J,y)$ matches $(x,I)$.
\end{lemma}
\begin{spoiler}
  We will use this to show that $\operatorname{non}(\mc M_\ka)\le \operatorname{\mf b}(\ne^*)$ and $\operatorname{cov}\ge \operatorname{\mf d}(\ne^*)$ (so that will be equalities, since we already know the opposite inequalities.).
\end{spoiler}

\begin{proof}
  First, construct $\Phi_-$. Suppose $I,J\in \mathrm{IP}$ are such that for cofinally many $\alpha$ we have $J_\alpha\supseteq I_\beta$ for some $\beta$. Let $A=\set{\alpha_\gamma\mid \gamma<\ka}$ be the increasing enumeration of these $\alpha$. For each $\gamma<\ka$, let $\delta_\gamma$ be such that $J_{\alpha_\gamma}\supseteq I_{\delta_{\gamma}}$. Define
\[
\Phi_-((x,I), J)(\beta)\coloneqq (
x\restr I_{\delta_\gamma}\mid \gamma<\omega_{\beta+1}
)
\]
(replace $\omega_{\beta+1}$ with $\beta+1$ in the $\omega$ case). For other $I,J$, define $\Phi_-$ arbitrarily. 

We define $\Phi_+$ recursively, defining $\Phi_+(J,y)\restr $ a subset of $J_\alpha$ for at most one $\alpha$ at every stage. At stage $\beta<\ka$:
\begin{itemize}
\item if $y(\beta)$ is a sequence of length $\omega_{\beta+1}$ (or $\beta+1$ in the $\omega$ case) of partial functions, all of whose domains are included in distinct $J_\alpha$'s, then choose such an $\alpha$ that has not been considered yet\footnote{This is ok because $\abs{\beta}\le \omega_\beta<\omega_{\beta+1}$.}; say $J_\alpha\supseteq \dom(y(\beta)(\gamma))$. Let 
\[
\Phi_+(J, y)\restr \dom(y(\beta)(\gamma))\coloneqq y(\beta)(\gamma)
\]
\item if not, do nothing.
\end{itemize}
At the end, extend $\Phi_+(J,y)$ arbitrarily to get a total function in $2^\ka$.

Let's now check that these actually work. Suppose we have $(x,I), J, y$ as in the hypotheses, and fix $\beta$ such that $\Phi_-((x,I), J)(\beta)=y(\beta)$ (by assumption, there's cofinally many of them). Then $y(\beta)$ is, by definition, a length\footnote{$\beta+1$ in the $\omega$ case.} $\omega_{\beta+1}$ of partial functions $(x\restr I_{\delta_\gamma})$ all of whose domains are contained in distinct $J_\alpha$'s. So, for some $\gamma$ dependent on $\beta$,
\[
\Phi_+(J,y)\restr I_{\delta_\gamma}=y(\beta)(\gamma)=x\restr I_{\delta_\gamma}
\]
and different $\beta$ give different $\alpha$, therefore different $\gamma$. So $\Phi_+(J,y)$ matches $(x,I)$.
\end{proof}
\begin{rem}
In the proof above, we only needed $\ka$ to be closed under the $\aleph$ function, so it also works for weakly inaccessible $\ka$. Anyway, the next Corollary requires strong inaccessibility.
\end{rem}
\begin{co}\label{co:bhzl}\*
  \begin{enumerate}
  \item   (Blass, Hyttinen, Zhang) $\operatorname{non}(\mc M_\ka)=\mf b(\ne^*)$
  \item (Landver) $\operatorname{cov}(\mc M_\ka)=\mf d(\ne^*)$
  \end{enumerate}
\end{co}
\begin{proof}\*
  \begin{enumerate}
  \item As we already know $\ge$, it suffices to show $\le$. Suppose $\mc Y\ssq((\operatorname{Fn}(\ka, 2,\ka))^{<\ka})^\ka$. By strong inaccessibility, we can identify $(\operatorname{Fn}(\ka, 2,\ka))^{<\ka}$ with $\ka$, and therefore the whole thing with $\ka^\ka$. Suppose $\abs{\mc Y}=\mf b_\ka(\ne^*)$ is unbounded with respect to $\ne^*$. We will use this to construct a non-meagre set. Suppose $\mc J$ is a $(\le^*)$-unbounded family of partitions of size $\mf b_\ka\le \mf b_\ka(\ne^*)$.
    \begin{claim}
      $M\coloneqq\set{\Phi_+(J,y)\mid J\in \mc H, y\in \mc Y}$ is non-meagre.
    \end{claim}
To prove the claim and conclude the proof of this point, if $(x,I)$ is a chopped function, since combinatorially meagre is the same as meagre (by strong inaccessibility), take $J\in \mc J$ such that $\neg (J\le^* I')$, which exists because $\mc J$ is unbounded.  By Lemma~\ref{lemma:nicelemma}    we know that $J_\alpha$ contains some $I_\beta$ for cofinally many $\alpha$. Take $y\in \mc Y$ such that $\Phi_-((x,I), J)(\beta)=y(\beta)$ for cofinally many $\beta$; this exists because $\mc Y$ is unbounded in $\ne^*$. By Lemma~\ref{lemma:uglylemma}, we know that $\Phi_+(J,y)$ matches $(x,I)$. So $M\centernot \ssq \operatorname{Match}(x,I)^\complement$. Now, this is true for any $(x,I)$, and since combinatorially meagre is the same as meagre, this tells us that $M$ is non-meagre. As $\abs M=\mf b(\ne^*)$, we have $\operatorname{non}(\mc M_\ka)\le \mf b(\ne^*)$.
\item We already know $\le$. Suppose $\mc X\ssq\mathrm{CF}$ is of size $<\mf d(\ne^*)\le \mf d(\le^*)$. In particular, we have
\[
\abs{\set{I'\mid (x,I)\in \mc X}}<\mf d(\le^*)=\mf d(\mathrm{IP}, \le^*)
\]
So we can choose $J\in \mathrm{IP}$ such that $J_\alpha$ contains an $I_\beta$ for cofinally many $\alpha$. Identify $(\operatorname{Fn}(\ka, 2,\ka))^\ka$ with $\ka$. Then, modulo this identification,
\[
\abs{\set{\Phi_-((x,I), J)\in \ka^{\ka}\mid (x,I)\in \ka}}<d(\ne^*)
\]
so pick $y\in (\operatorname{Fn}(\ka, 2,\ka)^{<\ka})^\ka$ such that for all $(x,I)\in \mc X$ we have $\Phi_-((x,I), J)(\beta)=y(\beta)$ for cofinally many $\beta$.

We are therefore in a position to apply Lemma~\ref{lemma:uglylemma}, and so $\Phi_+(J,y)\in 2^\ka$ matches $(x,I)$. In particular, $\Phi_+(J,y)\notin \bigcup_{(x,I)\in \mc X} 2^\ka\setminus \operatorname{Match}(x,I)$. This means that $\set{2^\ka\setminus \operatorname{Match}(x,I)\mid (x,I)\in \mc X}$ does not cover $2^\ka$. This shows that $\operatorname{cov}(\mc M_\ka)\ge \mf d(\ne^*)$.
  \end{enumerate}  
\end{proof}
}%endblue
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\section{$\mf b_\ka$ and $\mf b_\ka(\ne^*)$}
[Proof of the second point of  Corollary~\ref{co:bhzl}; written directly in the previous chapter]

Let's update our diagram:
 \begin{center}
 \begin{tikzpicture}[scale=3]
 {\color{red}
 \node(nw) at (0,1){$\operatorname{non}(\mc M_\ka)$};
 \node(ne) at (2,1){$\operatorname{cof}(\mc M_\ka)$};
 \node (sw) at (0,0) {$\operatorname{add}(\mc M_\ka)$};
 \node(se) at (2,0){$\operatorname{cov}(\mc M_\ka)$};
 \node(c) at (0.75, 0.5){$\color{black} \mf b$};
 \node(d) at (1.25, 0.5){$\color{black} \mf d$};
 \node(a) at (0.5, 0.75) {$\color{black}\mf b(\ne^*)$};
 \node(b) at (1.5, 0.25) {$\color{black}\mf d(\ne^*)$};
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (nw) edge node {} (ne)
 (sw) edge node {} (se)
 (sw) edge node {} (nw)
 (se) edge node {} (ne)
;
 {\color{black}
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (se) edge [bend right] node {} (b)
 (a)  edge[bend left] node {} (nw)
 (c)  edge node {} (d)
 (c)  edge node {} (a)
 (b)  edge node {} (d)
;
 }
 {\color{blue}
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (nw) edge[bend left] node {} (a)
 (b) edge[bend right] node {} (se)
;
 }
 }%redend
 \end{tikzpicture}
 \end{center}
 \begin{question}
   We have $\mf b_\ka\le \mf b_\ka(\ne^*)$ and $\mf d_\ka\ge \mf d_\ka(\ne^*)$. Can the inequality be strict?
 \end{question}
{\color{blue}
 \begin{fact} In the inequalities above,
   \begin{enumerate}
   \item If $\ka$ is $\omega$ then $<$ is consistent in both cases
   \item (Baumhauer, Goldstern, Shelah, in preparation) If $\ka$ is supercompact, consistently $\mf b_\ka<\operatorname{non}(\mc M_\ka)(=\mf b(\ne^*))$.
   \item (Shealah, preprint) If $\ka$ is supercompact, consistently, $(\mf d(\ne^*)=)\operatorname{cov}(\mc M_\ka)<\mf d_\ka$.
   \end{enumerate} 
 \end{fact}
}
On the other hand,
\begin{fact}\label{fact:hyttinen}[Hyttinen]
  If $\ka$ is a successor cardinal, then $\mf b_\ka=\mf b_\ka(\ne^*)$.
\end{fact}
Note how this could interfere with the equalities we have in the ``blue'' case and the consistency results above, in the supercompact case.
\begin{fact}[Matet, Shelah]
  If $\ka$ is a successor and $2^{<\ka}=\ka$, then $\mf d_\ka=\mf d_\ka(\ne^*)$.
\end{fact}
\begin{pr}\*\label{pr:landveretal}
  \begin{enumerate}
  \item For any $\sigma\in 2^{<\ka}$, the set $A_\sigma$ of $y\in 2^\ka$ with no occurrences of $\sigma$, i.e.\
\[
A_\sigma=\set{y\in 2^\ka\mid \forall \tau\in 2^{<\ka}\;\tau\cat \sigma\centernot\ssq y}
\]
is nowhere dense.
\item (Landver) $2^{<\ka}>\ka$ implies that $\ka^+=\operatorname{add}(\mc M_\ka)=\operatorname{cov}(\mc M_\ka)$,
\item (Blass, Hyttinen, Zhang) $\operatorname{non}(\mc M_\ka)\ge 2^{<\ka}$
  \end{enumerate}
\end{pr}
\begin{proof}\*
  \begin{enumerate}
  \item Immediate.
  \item Any $2\in 2^\ka$ has only $\ka$ many $<\ka$ substrings. If $\lambda<\ka$ is such that $2^\lambda>\ka$, take $\Sigma\ssq 2^\lambda$ with $\abs{\Sigma}=\ka^+$. Then 
\[
\set{A_\sigma\mid \sigma\in \Sigma}
\]
is a $\ka^+$-sized covering set.
\item $\operatorname{non}(\mc M_\ka)\ge \ka$ holds by definition, so we may assume $2^{<\ka}>\ka$. Let $X\ssq 2^\ka$ with $\abs{X}<2^{<\ka}$. We want to show that $X$ is meagre. Let $\lambda<\ka$ be such that $\abs{X}<2^{\lambda}$. Then $X\ssq A_\sigma$ for some $\sigma\in 2^\lambda$, which is nowhere dense.
  \end{enumerate}
\end{proof}
This allows us to consistently break the equalities seen before: using this, we can get
\begin{pr}
  Consistently, $\mf b_\ka(\ne^*)<\operatorname{non}(\mc M_\ka)$ and $\mf d_\ka(\ne^*)>\operatorname{cov}(\mc M_\ka)$.
\end{pr}
\begin{proof}
To force $\mf b_\ka(\ne^*)<\operatorname{non}(\mc M_\ka)$ start with a model of \tc{gch}, let $\ka$ be a successor and force to add $\ka^{++}$-many Cohen reals\footnote{Real reals, i.e.\ subsets of $\omega$, not $\ka$-reals.}. In $V[G]$ we have $2^{<\ka}=\ka^{++}=2^\ka$. So from the last point of the previous Proposition we get that $\operatorname{non}(\mc M_\ka)=\ka^{++}$. But by the Hyttinen result   (Fact~\ref{fact:hyttinen}), $\mf b_\ka(\ne^*)=\mf b_\ka$. Since the forcing notion has c.c.c.\ it is $\ka^\ka$-bounding, i.e.\ any $g\from \ka\to \ka$ in the extension is dominated by a $h\from\ka\to\ka$ in the ground model; to see this, if $\dot g$ is a name for a function $\ka\to \ka$, for every $\gamma\in \ka$ there is a maximal antichain of conditions $p$ such that $p\forces \dot g(\check \gamma)=\check\alpha$, so we can just define $h(\gamma)$ to be the sup of these $\alpha$'s. Then $1\forces \dot g\le \hat h$. So if $B$ is unbounded in the ground model, $B$ remains unbounded int he extension. So
\[
\mf b(\ne^*)^{V[G]}=\mf b_\ka^{V[G]}=\ka^+<\ka^{++}=\operatorname{non}(\mc M_\ka)
\qedhere
\]
\end{proof}
It is open if this can be done with  $2^{<\ka}=\ka$.
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\section{More on Combinatorially Meagre Sets}
\begin{pr}\label{pr:engulf}
  $\operatorname{Match}(x,I)\ssq \operatorname{Match}(y, J)$ if and only if for all but $<\ka$ many intervals $I_\alpha$ of $I$ there is $b\eta$ such that $J_\beta\ssq I_\alpha$ and $x\restr J_\beta=y\restr J_\beta$.
\end{pr}
\begin{rem}
  Thinking of the sets in the first statement as as the ``comeagre'' sets, the statement in terms of the ``meagre'' ones is $2^\ka \setminus \operatorname{Match}(y, J)\ssq 2^\ka \setminus \operatorname{Match}(x, I)$.
\end{rem}
\begin{proof}\*

\bigoval{$\allora$}  Suppose  there are $\ka$ many intervals $I_{\alpha_\gamma}$ such that for every $J_\beta$ contained in $I_{\alpha_\gamma}$ we have $x\restr J_\beta\ne y\restr J_\beta$. Also, assume that successive $I_{\alpha_\gamma}$'s have a $J_\beta$ in between. Define 
\[
x'(\alpha)\coloneqq \l\{
\begin{array}{ll}
  x(\alpha)&\tn{ if }\exists \gamma\; \alpha\in I_{\alpha_\gamma}\\
1-y(\alpha)&\tn{ otherwise}
\end{array}
\r.
\]
To conclude, it is sufficient to show that   $x'\in\operatorname{Match}(x,I)\setminus\operatorname{Match}(y,J)$. It is clear that $x'$ matches $x$ on $I$. For the other part, if $J_\beta$ is contained in some $I_{\alpha_\gamma}$, our assumption tells us that $x'\notin \operatorname{Match}(y,J)$. Otherwise, use the assumption above to find a $J_\beta$ between two successive $I_{\alpha_\gamma}$'s.


\bigoval{$\se$}  Suppose $z\in \operatorname{Match}(x,I)$. Then there are $\ka$ many $I$ intervals $I{\alpha_\gamma}$ such that $z\restr I_{\alpha_\gamma}=x\restr I_{\alpha_\gamma}$. For $\ka$ many $\gamma$, \tc{wlog} for all $\gamma$ there is $\beta$ such that $J_\beta\ssq I_\alpha$ and $y\restr J_\beta=x\restr J_\beta=z\restr J_\beta$.
\end{proof}
\begin{defin}
  Say that $(x,I)$ is \emph{engulfed by $(y,J)$} iff\footnote{So the complements, the ``meagre'' sets, are engulfed.} $\operatorname{Match}(x,I)\supseteq \operatorname{Match}(y,J)$.
\end{defin}
{\color{blue}
We have seen that essentially $\operatorname{Cof}(\mc M_\ka)=(\mc M_\ka, \mc M_\ka, \ssq)$ is equivalent to $\operatorname{Cof}'(\mc M_\ka)\coloneqq(\mathrm{CF}, \mathrm{CF}, \tn{ is engulfed by})$. The morphism from the former to the latter is given by
\begin{gather*}
\Phi_+\from M\mapsto \tn{ some }(y,J)\tn{ with }M\ssq 2^\ka\setminus \operatorname{Match}(y,J)\\
\Phi_-\from (x,I)\mapsto 2^\ka\setminus \operatorname{Match}(x,I)
\end{gather*}
While the morphism in the other direction is given by $\Phi_+$ and $\Phi_-$ swapped: if $\Phi_(M)$ is less than  some ``bigger'' $(x,I)$ and  is engulfed by $(y,J)$, then $M\ssq 2^\ka\setminus \operatorname{Match}(y,J)$. This is a particular case of the following:
}%endblue
\begin{exr}
  If $D$ is cofinal in $\mb P$, then $(D,D, \le)\equiv (\mb P, \mb P, \le)$.
\end{exr}
{\color{blue}
\begin{co}
  $\operatorname{Cof}(\mc M_\ka)\preceq \mc D_\ka$.
\end{co}
\begin{proof}
We know  $\operatorname{Cof}(\mc M_\ka)\equiv  \operatorname{Cof}'(\mc M_\ka)$ and $\mc D_\ka\equiv \mathrm{IP}$. By  Proposition~\ref{pr:engulf}, if $(x,I)$ is engulfed by $(y,J)$, then $I\le^* J$. We can then take as morphism
\[
\Phi_+\from (x,J)\mapsto J\qquad \Phi_i\from I\mapsto (x,I)\tn{ (some $x$)}
\]
since what we just said say exactly that this maps give us a morphism.
\end{proof}
\begin{co}
  $\operatorname{cof}(\mc M_\ka)\ge \mf d_\ka$ and $\operatorname{add}(\mc M_\ka)\le \mf b_\ka$.
\end{co}
So we have the following picture
}%endblue
 \begin{center}
 \begin{tikzpicture}[scale=3]
 {\color{red}
 \node(nw) at (0,1){$\operatorname{non}(\mc M_\ka)$};
 \node(ne) at (2,1){$\operatorname{cof}(\mc M_\ka)$};
 \node (sw) at (0,0) {$\operatorname{add}(\mc M_\ka)$};
 \node(se) at (2,0){$\operatorname{cov}(\mc M_\ka)$};
 \node(c) at (0.75, 0.5){$\color{black} \mf b_\ka$};
 \node(d) at (1.25, 0.5){$\color{black} \mf d_\ka$};
 \node(a) at (0.5, 0.75) {$\color{black}\mf b(\ne^*)$};
 \node(b) at (1.5, 0.25) {$\color{black}\mf d(\ne^*)$};
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (nw) edge node {} (ne)
 (sw) edge node {} (se)
 (sw) edge node {} (nw)
 (se) edge node {} (ne)
;
 {\color{black}
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (se) edge [bend right] node {} (b)
 (a)  edge[bend left] node {} (nw)
 (c)  edge node {} (d)
 (c)  edge node {} (a)
 (b)  edge node {} (d)
;
 }
 {\color{blue}
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (nw) edge[bend left] node {} (a)
 (b) edge[bend right] node {} (se)
 (sw) edge node {} (c)
 (d) edge node {} (ne)
;
 }
 }%endblue
 \end{tikzpicture}
 \end{center}
Also, [someone, I missed the name] claims in a preprint that the last arrows we added to the diagram can be black, i.e.\ are true just assuming regularity.

In the $\omega$ case, Chicon's diagram also involves other posets related to the ideal of Lebesgue null sets. The problem in the $\ka$ case is, for now, that nobody has still come up with a suitable generalisation of the Lebesgue null sets.
\section{Slaloms}
\begin{defin}
  A \emph{slalom} is a function $\phi\from \ka \to [\ka]^{<\ka}$ such that $\forall \alpha\; \phi(\alpha)\in [\ka]^{\le \abs \alpha}$.  If $h\from \ka\to \ka$ is a function with $\lim_{\alpha\to \ka} h(\alpha)=\ka$, an \emph{$h$-slalom} is a function $\phi\from \ka \to [\ka]^{<\ka}$ such that  $\forall \alpha\; \phi(\alpha)\in [\ka]^{\le \abs{h(\alpha)}}$.
\end{defin}
\begin{defin}
  For $f\in \ka^\ka$, we say that \emph{$f$ is localised at $\phi$}, written $f\in^*\phi$ iff for all but $<\ka$ many $\alpha$ we have $f(\alpha)\in \phi(\alpha)$.
\end{defin}
{\color{blue}
  \begin{pr}[Bartzynski, $\ka=\omega$]
If $\mc N$ is the Lebesgue null ideal,    $\operatorname{add}(\mc N)=\mf b(\in^*)$ and $\operatorname{cof}(\mc N)=\mf d(\in^*)$.
  \end{pr}
}%endblue
\begin{defin}
  A \emph{partial $h$-slalom} is a partial function $\phi\from \ka\to [\ka]^{<\ka}$ with $\abs{\dom\phi}=\ka$ such that $\forall \alpha\in \dom\phi\;\phi(\alpha)\in [\ka]^{\le \abs{h(\alpha)}}$. We say that $f\in^*_{\mathrm p}\phi$ iff for all but $<\ka$ many $\alpha\in \dom(\phi)$ we have $f(\alpha)\in \phi(\alpha)$.
\end{defin}
{\color{blue}
  \begin{spoiler}
    In the $\omega$ case, we have $\mf b(\in^*)\to \mf b_{p}(\in^*)\to \operatorname{add}(\mc M_\omega)$. Also, $\mf p=\mf t\to \mf b_{\mathrm p}(\in^*)$.
  \end{spoiler}
}
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\section{}
The goal of today is getting the diagram here:
 \begin{center}
 \begin{tikzpicture}[scale=3]
 {\color{red}
 \node(nw) at (0,1){$\operatorname{non}(\mc M_\ka)$};
 \node(ne) at (2,1){$\operatorname{cof}(\mc M_\ka)$};
 \node (sw) at (0,0) {$\operatorname{add}(\mc M_\ka)$};
 \node(se) at (2,0){$\operatorname{cov}(\mc M_\ka)$};
 \node(c) at (0.75, 0.5){$\color{black} \mf b_\ka$};
 \node(d) at (1.25, 0.5){$\color{black} \mf d_\ka$};
 \node(a) at (0.5, 0.75) {$\color{black}\mf b(\ne^*)$};
 \node(b) at (1.5, 0.25) {$\color{black}\mf d(\ne^*)$};
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (nw) edge node {} (ne)
 (sw) edge node {} (se)
 (sw) edge node {} (nw)
 (se) edge node {} (ne)
;
 {\color{black}
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (se) edge [bend right] node {} (b)
 (a)  edge[bend left] node {} (nw)
 (c)  edge node {} (d)
 (c)  edge node {} (a)
 (b)  edge node {} (d)
;
 }
 {\color{blue}
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (nw) edge[bend left] node {} (a)
 (b) edge[bend right] node {} (se)
 (sw) edge node {} (c)
 (d) edge node {} (ne)
;
\path[thick,  font=\scriptsize,>= angle 90]
 (sw.30) edge [bend left] node [right]{$\min$} (sw.east)
 (ne.west) edge [bend right] node [left]{$\max$} (ne.210)
;
 }
 }%endblue
 \end{tikzpicture}
 \end{center}
For convenience, think of $2^\ka$ as the group with coordinatewise addition modulo $2$. Think of any $\sigma\in 2^{<\ka}$ in $2^\ka$ as $\sigma$ on its domain and $0$ elsewhere. With these conventions, $B+2^{<\ka}$ means $\set{b+\sigma\mid b\in B, \sigma\in 2^{<\ka}}$, i.e.\ $B$ modulo small differences.
{
\color{red}
\begin{lemma}[$\ka$ regular, $2^{<\ka}=\ka$]\label{lemma:otherstrangelemma}
Denote with $\mc{NWD}_\ka$ the collection of nowhere dense sets in $2^\ka$.  There are functions 
\[
\Phi_+\from 2^\ka\times \ka^\ka\tp \mc M_\ka\qquad 2^\ka\times \mc{NWD}_\ka\to \ka^\ka
\]
such that if $B\in \mc{NWD}_\ka$, $x\in 2^\ka$ and $f\in \ka^\ka$ are such that
\begin{itemize}
\item $\lim_{\alpha\to \ka}f(\alpha)=\ka$
\item $x\notin B+2^{\ka}$
\item $f\ge^* \Phi_-(x, B)$
\end{itemize}
then $B\ssq \Phi_+(x,f)$.
\end{lemma}
}%redend
Once we have the Lemma, we have
{\color{red}
\begin{co}\label{co:minmax}The following hold:
  \begin{enumerate}
{\color{black}  \item   $\operatorname{add}(\mc M_\ka)\ge \min\set{\mf b_\ka, \operatorname{cov}(\mc M_\ka)}$}
\item $\operatorname{cof}(\mc M_\ka)\le \max\set{\mf d_\ka, \operatorname{non}(\mc M_\ka)}$
  \end{enumerate}
\end{co}
\begin{proof}\*
  \begin{enumerate}
  \item {\color{black}If $2^{<\ka}>\ka$, by Proposition~\ref{pr:landveretal} we have $\operatorname{add}(\mc M_\ka)=\operatorname{cov}(\mc M_\ka)=\ka^+$. } If $2^{<\ka}=\ka$, if $\mc B\ssq \mc{NWD}_\ka$ is such that $\abs {\mc B}<\min\set{\mf b_\ka, \operatorname{cov}(\mc M_\ka)}$, we can find $x\in 2^{\ka}\setminus \l(\bigcup \mc B+2^{<\ka}\r)$ and then $f\ge^*\Phi_-(x, B)$ for all $B\in \mc B$. Then for all $B\in \mc B$ we have $B\ssq \Phi_+(x,f)$, so $\bigcup \mc B$ is meagre.
  \item Let $\mc F\ssq \ka^\ka$ be dominating, $X\ssq 2^\ka$ be non-meagre. We are now going to show that $\set{\Phi_+(x, f)\mid f\in \mc F, x\in X}$ is cofinal in $\mc M_\ka$. If $M$ is meagre, say $M=\bigcup_{\alpha<\ka} Y_\alpha$, choose $x\in X\setminus M$ and $f\ge^* \Phi_-(x, Y_\alpha)$ for all\footnote{There's only $\ka$ many of them} $\alpha$. Then $\forall \alpha\;Y_\alpha\ssq \Phi_+(x,f)$, so $M\ssq \Phi_+(x,f)$.
  \end{enumerate}
\end{proof}
\begin{rem}
  In the proof above, we used tacitly the fact that the functions in a dominating family can be chosen to be increasing.
\end{rem}
}%redend
{\color{blue}
\begin{co}
  $\operatorname{add}(\mc M_\ka)=\min\set{\mf b_\ka, \operatorname{cov}(\mc M_\ka)}$ and   $\operatorname{cof}(\mc M_\ka)=\max\set{\mf d_\ka, \operatorname{non}(\mc M_\ka)}$ and 
\end{co}
}%endblue
{\color{red}
\begin{proof}[Proof of Lemma~\ref{lemma:otherstrangelemma}]
Enumerate $2^{<\ka}$ as $\set{\sigma_\alpha\mid \alpha<\ka}$. For $f$ such that  $\lim_{\alpha\to \ka} f(\alpha)=\ka$, set
\[
\Phi_+(x,f)\coloneqq\bigcup_{\alpha<\ka}\bigcap_{\beta\ge \alpha}2^\ka\setminus [(\sigma_\beta+x)\restr f(\beta)]
\]
We are now going to show that each of those intersections is nowhere dense. If $\tau\in 2^{<\ka}$, choose $\sigma_\beta$ such that $\sigma_\beta+x\restr \abs\tau=\tau$ and $f(\beta)\ge \abs \tau$. Then $(\sigma_\beta+x)\restr f(\beta)$ is an extension of $\tau$. For other $f$'s, let $\Phi_+(x,f)$ be arbitrary.

Let now $B\in \mc{NWD}_\ka$ and $x\notin B+2^{<\ka}$. As every nowhere dense set is contained in a closed one, we may assume \tc{wlog} that $B$ is closed. For such $B$ and $x$  $\Phi_-(x,B)(\alpha)$ to be an ordinal $\gamma$ such that $B\cap [(\sigma_\alpha+x)\restr \gamma]=\emptyset$. Let $\Phi(x,B)$ be arbitrary for other $(x,B)$.

Assume $x, B, f$ satisfy the hypotheses of the Lemma. Let $y\in B$. Then $y\notin [(\sigma_\alpha+x)\restr\Phi_-(x,B)(\alpha)]$ by definition of $\Phi_-$. Since $f\ge^* \Phi_-(x,B)$, there is $\alpha$ such that for all $\beta\ge \alpha$ we have $y\in 2^\ka\setminus [(\sigma_\alpha+x)\restr f(\beta)]$. But, by definition, this means $y\in\Phi_+(x,f)$.
\end{proof}
}%redend
\chapter{06/11}
\section{On Slaloms}
We would like to deal with something similar to the ideal of Lebesgue null sets, but no one has come up with a suitable generalisation of that ideal for general $\ka$. So we talk about slaloms instead.
\begin{defin}
  Let $\mathrm{Loc}_h=\set{\phi\from \ka\to [\ka]^{<\ka}\mid \forall \alpha<\ka\; \abs{\phi(\alpha)}=\abs{h(\alpha)}}$.
\end{defin}
\begin{rem}
  In the $\omega$ case requiring $\abs{\phi(\alpha)}\le\abs{h(\alpha)}$ instead does not make a difference. But for now let us be cautious and work with the definition above.
\end{rem}
\begin{notation}
  $\forall^*\alpha<\ka$ means ``for all but $<\ka$ many''.
\end{notation}

\begin{defin}
  For $f\from \ka\to \ka$, say $f\in^*\phi$ iff $\forall^*\alpha<\ka\; f(\alpha)\in\phi(\alpha)$.
\end{defin}
We are now going to consider $\mf b_h(\in^*)$ and $\mf d_h(\in^*)$.
\begin{fact}
  In the $\omega$ case we have $\mf b_{\id_\omega}(\in^*)=\operatorname{add}(\mc N)$ and $\mf d_{\id_\omega}(\in^*)=\operatorname{cof}(\mc N)$, where $\mc N$ is the ideal of Lebesgue null sets. 
\end{fact}
{\color{blue}In the $\omega$ case, there is a famous result stating
\begin{fact}[Bartoszy\'nsky, Raissonnier, Stern]
   $\operatorname{Cof}(\mc N)\preceq \operatorname{Cof}(\mc M)$
\end{fact}
Unpacking the proof  Gives that $\operatorname{Cof}(\mc N)\equiv \operatorname{LOC}_{\id_\omega}\coloneqq(\omega^\omega, \operatorname{Loc}_{\id_\omega}, \in^*)$, and this induces a morphism from the latter to $\operatorname{Cof}(\mc M)$.}%endblue
 This \emph{does} generalise, so we are going to look at it.

\begin{defin}
  Call $\mathrm{pLoc}_h$ the set of partial $h$-slaloms, and denote $\mathrm{pLOC}_{\id_\omega}\coloneqq (\omega^\omega, \mathrm{pLoc}_{\id_\omega}, \in^*)$
\end{defin}
\begin{pr}
  $\mathrm{LOC}_h\preceq \mathrm{pLoc}_h\preceq \mc D_\ka$
\end{pr}
\begin{proof}
For the first morphism  $\Phi_+\from \mathrm{Loc}_h\to \mathrm{pLoc}_h$ is inclusion, and $\Phi_-\from \ka^\ka\to \ka^\ka$ is the identity.

For the second one, $\Phi_+\from \mathrm{pLoc}_h\to \ka^\ka$ is
\[
\Phi_+(\phi)(\alpha)\sup(\phi(\tn{least $\beta\ge \alpha$  in }\dom \phi))
\]
and $\Phi_-\from \ka^\ka\to \ka^\ka$ is the identity. To check that this works we need to see that if $\Phi_-(f)\in^*_{\mathrm p}\phi$ then $f\le^*\Phi_+(\phi)$, i.e.\ if $f\in_{\mathrm p}^*\phi$ then $f\le^*\sup(\phi(\tn{least $\beta\ge \alpha$  in }\dom \phi))$. For $f$ increasing this works. Using the fact that the increasing $f$ are dense, the proof can be completed.
\end{proof}
\begin{co}
  $\mf b_h(\in^*)\le \mf b_h(\in_{\mathrm p}^*)\le \mf b_\ka$ and   $\mf d_h(\in^*)\ge \mf d_h(\in_{\mathrm p}^*)\ge \mf d_\ka$.
\end{co}
\begin{rem}
  In the $\omega$ case, $\mf d_h(\in_{\mathrm p}^*)$ has a name too. We will come back to that.
\end{rem}
\begin{lemma}
  For $\ka=\lambda^+$ we have $\mc D_\ka\preceq \mathrm{LOC}_h$. So $\mathrm{LOC}_h\equiv \mathrm{pLOC}_h\equiv \mc D_\ka$.
\end{lemma}
\begin{proof}
  For $\ka=\lambda^+$, $\abs{h(\alpha)}$ is almost always equal to $\lambda$. Define $\Phi_+\from \ka^\ka\to \mathrm{Loc}_h$ as
\[
g\mapsto (\alpha\mapsto g(\alpha)+1\;\tn{(as a set of ordinals)})
\]
This is $\phi\from \ka\to [\ka]^\lambda=[\ka]^{\abs h(\alpha)}$. Then take $\Phi_-\coloneqq\id_{\ka^\ka}$, and we have that if $\Phi_-(f)=f\le^*g$ then $f\in^*\Phi_+(g)$ (unpacking the definitions shows that this is equivalent to $f\le^* g$).
\end{proof}
\begin{pr}
  Let $g,h\from \ka\to\ka$ be such that $\lim_{\alpha\to \ka}g(\alpha)=\ka=\lim_{\alpha\to\ka}h(\alpha)$. Then $\mathrm{pLOC}_g\equiv \mathrm{pLOC}_h$.
\end{pr}
\begin{proof}
  We will show $\mathrm{pLOC}_g\preceq \mathrm{pLOC}_h$, i.e.\ $(\ka^\ka, \mathrm{pLoc}_g, \in^*_{\mathrm p})\preceq (\ka^\ka, \mathrm{pLoc}_h, \in^*_{\mathrm p})$. Choose a strictly increasing $(\alpha_\gamma)_{\gamma\in\ka}$ subset of $\dom h=\ka$ such that $h(\alpha_\gamma)\ge g(\gamma)$. Define $\Phi_-\from \ka^\ka\to \ka^\ka$ by $\Phi_-(f)(\gamma)=f(\alpha_\gamma)$. Define $\Phi_+\from \mathrm{pLoc}_g\to \mathrm{pLoc}_h$ by
\[
\dom((\Phi_+)(\phi))\coloneqq \set{\alpha_\gamma\mid \gamma\in\dom \phi}\qquad \underbrace{\Phi_+(\phi)(\alpha_\gamma)}_{\in[\ka]^{\abs{h(\alpha_\gamma)}}}\supseteq \underbrace{\phi(\gamma)}_{\in [\ka]^{\abs{g(\gamma)}}}
\]
by extending arbitrarily the set if need be. Now assume  $\Phi_-(f)\in^*\phi$, i.e.\ $\forall^*\gamma\in\dom\phi\;\Phi_-(f)(\gamma)=f(\alpha_\gamma)\in \phi(\gamma)$. Then $\forall^*\alpha\in\dom(\Phi_+(\phi))\;f(\alpha)\in \Phi_+(\phi)(\alpha)$, and $\forall^*\gamma\in\dom\phi\; f_(\alpha_\gamma)\in\Phi_+(\phi)(\alpha_\gamma)$, as $\phi(\gamma)\ssq\Phi_+(\phi)(\alpha_\gamma)$.
\end{proof}

\chapter{07/11}
{\color{blue}
\section{Towards the $\ka$-B.R.S.~Theorem}
We are aiming towards showing that $\mathrm{pLOC}\preceq \mathrm{COF}(\mc M_\ka)$.
\begin{lemma}[Main Lemma]
Let $X\ssq 2^\ka$ be a non-empty   open set, and let $\lambda<\ka$. Then there is a family $\mc Y$ of open subsets of $X$ such that
\begin{enumerate}[label=(\roman*)]
\item $\abs{\mc Y}\le \ka$
\item Every open dense subset of $2^\ka$ includes a member of $\mc Y$ as a subset.
\item For any  $\mc Y'\ssq \mc Y$ with $\abs{\mc Y'}\le \lambda$ we have $\bigcap \mc Y'\ne \emptyset$.
\end{enumerate}
\end{lemma}
[the proof was actually started in the previous lecture, but I have preferred to keep it all in one chapter]
\begin{proof}
 Let $(\Sigma_\alpha)_{\alpha<\ka}$ enumerate subsets of $2^{<\ka}$ of size $<\ka$. This can be done because, for each $\alpha$, $\Sigma_\alpha$ is (induced by) a collection of $\sigma\in 2^{<\ka}$, and by strong inaccessibility $(2^{<\ka})^{<\ka}=\ka$, so there are $\ka$ many $\Sigma_\alpha$ at most. For each $\alpha$ let $X_\alpha=\bigcup_{\sigma\in \Sigma_\alpha}[\sigma]$, i.e.\ $(X_\alpha)_\alpha$ lists the union of basic open sets, relative to $X$. From now one, assume   \tc{wlog} $X=2^\ka$. For $\beta<\ka$, let
\[
A_\beta=\set{\alpha\mid \forall \sigma\in2^\beta\;\exists\tau\in2^{<\ka}\;\tau\supseteq \sigma\wedge \tau\in \Sigma_\alpha}
\]
Now define
\[
\mc Y=\set*{
\bigcup_{\zeta<\lambda^+}X_{\alpha_\zeta}\Biggm| \alpha_0\in\ka\wedge \alpha_\zeta\in A_{\beta_\zeta}\tn{ for }\zeta>0\tn{ where }\beta_\zeta=\bigcup_{\xi<\zeta}\bigcup_{\sigma\in \Sigma_{\alpha_{\xi}}}\dom\sigma
}
\]
To help digesting what $\mc Y$ is, think of it as a recursive construction where $\alpha\in \ka$ is arbitrary, $\alpha_\zeta\in A_{\beta_\zeta}$ for $\zeta>0$, and $\beta_\zeta=\bigcup_{\xi<\zeta}\bigcup_{\sigma\in \Sigma_{\alpha_\xi}}\dom\sigma$ (think of the $\bigcup$ as a $\sup$).

Note that $\abs{\mc Y}\le \ka^{\lambda^+}=\ka$, so we have the first point of the thesis. For the second one, let $D\ssq 2^\ka$ be open dense. Notice that, for any $\beta$,
\[
\set{\alpha\in A_\beta\mid X_\alpha\ssq D}\ne \emptyset
\]
because, for any fixed $\beta$, for all $\sigma\in 2^\beta$ we can take $\tau_\sigma\supseteq \sigma$ such that $[\tau_\sigma]\ssq D$ and then let $\alpha$ be such that $\Sigma_\alpha=\set{\tau_\sigma\mid \sigma\in 2^\beta}$. 
Note that if $\beta\le\gamma$ then $A_\beta\supseteq A_\gamma$. Recursively, construct $\alpha_\zeta$, for $\zeta<\lambda^+$, such that $\alpha_\zeta\in A_{\beta_\zeta}$ and $X_{\alpha_\zeta}\ssq D$. The member of $\mc Y$ for this construction is $\bigcup_{\zeta<\lambda^+}X_{\alpha_\zeta}$: as each $X_{\alpha_\zeta}$ is included in $D$, so is their union.

For the last point, suppose $\mc Y'=\set{Y_\delta\mid \delta<\lambda}$ is given. We find a point in the intersection through diagonalisation as follows. Suppose that
\[
Y_\delta=\bigcup_{\zeta<\lambda^+}X_{\alpha(\delta, \zeta)}
\]
as per the recursive construction above, i.e.\ $\alpha(\delta, 0)$ is arbitrary in $\ka$ and $\alpha(\delta_\zeta)\in A_{\beta(\delta, \zeta)}$.  Analogously, let
\[
\beta(\delta, \zeta)=\bigcup_{\xi<\zeta}\bigcup_{\sigma\in \Sigma_{{\alpha(\delta,\xi)}}}\dom\sigma
\]
Define a partial injective function $\eta\from \lambda^+\to \lambda$ recursively by 
\begin{align*}
\eta(0)&\coloneqq \min\set{\delta\mid \forall \epsilon<\lambda\; \beta(\delta,1)\le\beta(\epsilon,1)}\\
\eta(\zeta+1)&\coloneqq \min \set[\Big]{\delta\notin\set{\eta(\xi)\mid \xi<\zeta}\Bigm| \forall \epsilon\notin\set{\eta(\xi)\mid \xi<\zeta}\; \beta(\delta,\zeta+1)\le\beta(\epsilon,\zeta+1)}
\end{align*}
Eventually, we run out of $\delta$'s, so this is a function from a proper initial segment of $\lambda^+$ to $\lambda$. Specifically, if we let $\lambda_0$ be such that $\set{\eta(xi)\mid \xi<\lambda_0}=\lambda$, then $\eta$ a bijection\footnote{Basically, the point of the all construction is that $\lambda$ is the wrong ordering for $\mc Y'$, the correct one is $\lambda_0$.} $\lambda_0\to \lambda$. We now sow that $\bigcap Y_\delta\ne\emptyset$ by recursively constructing $(\sigma_\zeta\in2^{<\ka}\mid \zeta<\lambda_0)$ such that
\begin{itemize}
\item $\sigma_0=\seq{}$
\item if $\xi<\zeta$ then $\sigma_\xi\ssq \sigma_\zeta$
\item and $\sigma_{\zeta}=\bigcup_{\xi<\zeta} \sigma_\xi$ for limit $\zeta$
\item $\sigma_{\zeta+1}\in \Sigma_{\alpha(\eta(\zeta), \zeta)}$
\item $\dom\sigma_\xi\ssq \bigcup_{\xi<\zeta}\beta(\eta(\xi), \xi+1)$
\end{itemize}
Once this is done, just let $\sigma=\bigcup_{\zeta<\lambda_0}\sigma_\zeta$, and observe that 
\[
[\sigma]\ssq \bigcap_\zeta X_{\alpha(\eta(\zeta),\zeta)}\ssq \bigcap_\zeta Y_{\eta(\zeta)}
\]
To conclude, let's show that the construction above can actually be carried out. For this, notice that for $\xi<\zeta$ we have $\beta(\eta(\xi), \xi+1)\le \beta(\eta(\zeta), \xi+1)$ by minimality of $\eta(\xi)$. But since $\beta$ is increasing we have
\[\label{eq:etazeta}
\beta(\eta(\xi), \xi+1)\le\beta(\eta(\zeta), \xi+1)\le \beta(\eta(\zeta), \zeta)\le \beta(\eta(\zeta), \zeta+1)
\]
Let's look at the recursion defining $\sigma_\zeta$  in the case $\zeta=1$ for simplicity. Let $\sigma_1\in\Sigma_{\alpha(\eta(0), 0)}$ be arbitrary. So $\dom(\sigma_1)\ssq \beta(\eta(0), 1)$ by definition of $\beta$. In the general successor case, assume we have $\sigma_\zeta$ as required, so 
\[
\dom(\sigma_\zeta)\ssq \bigcup_{\xi<\zeta}\beta(\eta(\xi), \xi+1)
\]
\tc{rhs} is at most $\beta(\eta(\zeta), \zeta)$ by~\eqref{eq:etazeta}. By definition, $\alpha(\eta(\zeta), \zeta)\in A_{\beta(\eta(\zeta), \zeta)}$. So we can find $\sigma_{\zeta+1}\in \Sigma_{\alpha(\eta(\zeta), \zeta)}$ extending $\sigma_\zeta$. To conclude, just notice that by definition of $\beta$
\[
\dom(\sigma_{\zeta+1})\ssq \beta(\eta(\zeta), \zeta+1)
\]
and that at limit stages the conditions are trivially satisfied.
\end{proof}

}%endblue
\chapter{13/11}
\section{The $\ka$-B.R.S.~Theorem}
{\color{blue}
\begin{thm}
$\mathrm{pLOC}\preceq \operatorname{Cof}(\mc M_\ka)$, i.e.\ there are  $\Phi_-\from \mc M_\ka\to \ka^\ka$ and $\Phi_+\from\mathrm{pLoc}\to \mc M_\ka$ such that if $\Phi_-(A)\in^*\phi$ then $A\ssq \Phi_+(\phi)$.
\end{thm}
\begin{proof}
  Identify $\ka^\beta$ with $\ka$; actually work with functions $f\from \ka\to \ka^{<\ka}$ with $f(\beta)\in \ka^\beta$. So, instead of $\ka^\ka$, work with $[\ka^{<\ka}]^\ka$ and partial slaloms $\phi\from \ka\to [\ka^{<\ka}]^{<\ka}$, where $\phi(\beta)\in [\ka^\beta]^{\abs \beta}$.

Let $\seq{X_\alpha\mid\alpha<\ka}$ be a base for the topology on $2^\ka$. For $\alpha, \beta<\ka$, let $\mc Y_{\alpha, \beta}\coloneqq \set{Y_\alpha, \beta, \gamma\mid \gamma<\ka}$ be given by  the Main Lemma with $X_\alpha$ as $X$ and $\abs \beta$ as $\lambda$.

To define $\Phi_-$, suppose $A$ is meagre, as witnessed by $A=\bigcup_{\alpha<\ka}A_\alpha$, each $A_\alpha$ nowhere dense, and \tc{wlog}\footnote{Exercise: the union of $<\ka$ nowhere dense subsets of $2^\ka$ is nowhere dense.} $A_\alpha\ssq A_\beta$ for $\alpha\le \beta$. As said above, we want to define an element of $(\ka^{<\ka})^\ka$, instead of one of $\ka^\ka$. Stipulate that\footnote{$\Phi_-(A)(\beta)$ should be a $\beta$-tuple, so we just need to define it on all the $\alpha<\beta$.}
\[
A_\beta\cap Y_{\alpha, \beta, \Phi_-(A)(\beta)(\alpha)}=\emptyset
\]
Such a $Y_{\alpha, \beta, \Phi_-(A)(\beta)(\alpha)}$ exists because $\mc Y_{\alpha, \beta}$ comes from the Lemma and $A_\beta $ is nowhere dense, so its complement contains an open dense subset.

Given a partial slalom $\phi$ with $\phi(\beta)\in [\ka^\beta]^{\abs \beta}$, put 
\[
\Phi_+(\phi)\coloneqq 2^\ka\setminus\Bigl(\bigcap_{\delta<\ka}\bigcup_{\substack{\beta\ge \delta\\ \beta\in\dom\phi}}\bigcup_{\alpha<\beta}\bigcap_{\sigma\in\phi(\beta)} Y_{\alpha,\beta,\sigma(\alpha)}\Bigr)
\]
Let's show this is meagre. $\bigcap_{\sigma\in\phi(\beta)} Y_{\alpha,\beta,\sigma(\alpha)}$ is the intersection of $\abs \beta$-many $Y$'s from $\mc Y_{\alpha,\beta}$, so by the Main Lemma the intersection is a non-empty subset of $X_\alpha$. Also, it's open, because each $Y$ is and the open sets in this topology is stable under intersections of size $<\ka$. So the set \[\bigcup_{\substack{\beta\ge \delta\\ \beta\in\dom\phi}}\bigcup_{\alpha<\beta}\bigcap_{\sigma\in\phi(\beta)} Y_{\alpha,\beta,\sigma(\alpha)}\]
is open dense, as for each $\alpha$, there is $\beta\in\phi$ such that $\beta>\alpha$, and so the union meets $X_\alpha$. It follows that $\Phi_+(\phi)$ is meagre.

Now, assuming  $\Phi_-(A)\in^*\phi$,  we need to show that $A\ssq \Phi_+(\phi)$. As $\Phi_-(A)\in^*\phi$, there is $\beta_0$ such that for all $\beta\ge\beta_0$ we have $\Phi_-(A)(\beta)\in\phi(\beta)$. Let $x\in A$, say $x\in A_\delta$ for some\footnote{As the union is increasing, then $x\in A_\beta$ for all $\beta\ge \delta$.} $\delta\ge\beta_0$. Fix $\beta\in\dom\phi$, $\beta\ge \delta$. For $\alpha<\beta$, we have $x\notin Y_{\alpha,\beta, \Phi_-(A)(\beta)(\alpha)}$ by choice of $\Phi_-$. In particular, $x\notin\bigcap_{\sigma\in \phi(\beta)} Y_{\alpha,\beta, \sigma(\alpha)}$. As this holds for all $\alpha<\beta$ and $\beta\ge\delta$, we have
\[
x\notin
\bigcup_{\substack{\beta\ge \delta\\ \beta\in\dom\phi}}\bigcup_{\alpha<\beta}\bigcap_{\sigma\in\phi(\beta)} Y_{\alpha,\beta,\sigma(\alpha)}
\]
So $x$ is not in the intersection as $\delta$ varies, i.e.\ $x\in \Phi_+(\phi)$.
\end{proof}
\begin{co}
  $\mf b(\in_{\mathrm{p}}^*)\le \operatorname{add}(\mc M_\ka)$ and   $\mf d(\in_{\mathrm{p}}^*)\ge \operatorname{cof}(\mc M_\ka)$.
\end{co}
So for inaccessibles we  have
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\begin{question}
  Is $\mf b(\in^*_{\mathrm{p}})<\operatorname{add}(\mc M_\ka)$ consistent? It is know to be in the case $\omega$, but the proof uses a rank argument with Heckler forcing, that does not generalise well to the inaccessible case.
\end{question}
}
\chapter{14/11 -- Stamatis Dimopoulos}
\section{Iterated Forcing -- Basic Facts}
We are going to assume familiarity with the basics of forcing.
\begin{question}
  How to force \tf{GCH} while preserving inaccessibles?
\end{question}
References:
\begin{enumerate}
\item Cummings\footnote{Check his web page.}, \emph{Iterated forcing and elementary embeddings}, inside \emph{Handbook of set theory}.
\item Baumgartner, \emph{Iterated forcing}, Surveys in Set Theory. Beware of the fact that the notation here is oldish.
\end{enumerate}
\begin{defin}
  Let $\ka$ be an infinite cardinal, and $\lambda>\ka$ an ordinal. \emph{Cohen forcing} is defined as
\[
\operatorname{Add}(\ka, \lambda)\coloneqq \set{p\mid p\tn{ partial function } \ka\times \lambda\to 2, \abs p<\ka}
\]
ordered by reverse inclusion, i.e.\ $p\le q$ iff $p\supseteq q$.
\end{defin}
Another notation for $\operatorname{Add}(\ka, \lambda)$, e.g.\ in Kunen's book, is $\operatorname{Fn}_\ka(\kappa\times \lambda, 2)$.
\begin{defin}[Closure properties]
  Let $\mb P$ be a forcing notion and $\ka$ an infinite cardinal. We say that
  \begin{enumerate}
  \item $\mb P$ is \emph{$\ka$-closed} iff every decreasing sequence of length $<\ka$ has a lower bound.
  \item $\mb P$ is \emph{$\ka$-directed closed} iff every downward directed subset of $\mb P$ of size $<\ka$ has a lower bound.
  \item $\mb P$ is \emph{$\ka$-distributive} iff for all generic filter $G$,  for all $\lambda<\ka$ every function $f\from \lambda\to V$  in $V[G]$ exists already in $V$.
  \end{enumerate}
\end{defin}
\begin{rem}
  If $\mb P$ is separative, then $\mb P$ is $\ka$-distributive if and only if the intersection of $<\ka$-many open dense subsets of $\mb P$ is open dense.
\end{rem}
\begin{rem}In this list of properties of $\mb P$, each one implies the next one:
  \begin{enumerate}
  \item   being $\ka$-directed closed
  \item  being $\ka$-closed
  \item being $\ka$-distributive
  \item preserving  cardinals $\le \ka$.
  \end{enumerate}
Moreover, the first two implications are strict.
\end{rem}

\begin{eg}
  $\operatorname{Add}(\ka, \lambda)$ is $\ka$-directed closed.
\end{eg}
\begin{pr}
  For $\ka$ infinite regular cardinal, $\operatorname{Add}(\ka^+,1)$ forces $2^\ka=\ka^+$.
\end{pr}
\begin{proof}
  $\operatorname{Add}(\ka^+,1)$ is $\ka^+$-closed, so it does not add any new subset of $\ka$. Let $G\ssq \ka^+$ be the new set added, i.e.\ the union of the generic filter. For any $A\ssq \ka$, it is dense to find a segment in $G$ that looks like $A$. More formally, for any $A$ this set is dense:
\[
D_A\coloneqq\set{p\in \mb P\mid \exists \alpha<\ka^+\; p\restr [\alpha, \alpha+\k)\tn{ codes }A}
\]
where ``codes $A$'' means that if you look at that function it is  the characteristic function of $A$ translated by $\alpha$. As $G$ intersects all of these, the function $f\from \ka^+\to \ms P(\ka)$ defined by  $f(\alpha)=G\cap [\alpha, \alpha+\ka)$ is surjective.
\end{proof}
Another way of showing this is proving that that forcing notion is isomorphic to $\operatorname{Add}(\ka^+, 2^\ka)$.
\begin{rem}
  $\operatorname{Add}(\ka, \lambda)$ is $(2^{<\ka})^+$-c.c. If $\ka^{<\ka}=\ka$, then $\operatorname{Add}(\ka, \lambda)$ has the $\ka^+$-c.c, so it preserves cardinals $\ge \ka^+$.
\end{rem}
Let's look at a two-step iteration: we want to do forcing a second time in the forcing extension; the point is that the poset we force with the second time may be in $V[G]\setminus V$, yet we want to be able to speak of this directly from the point of view of $V$.
\begin{defin}[Two-Step Iteration]
  Suppose $\mb P$ is a forcing notion, and $\forces_{\mb P}\dot{\mb Q}\tn{ is a forcing notion}$. We define
\[
\mb P*\dot{\mb Q}\coloneqq \set{(p, \dot q)\mid p\in \mb P, \forces_{\mb P} \dot q\in\dot {\mb Q}}
\]
(pre\footnote{See later.})ordered in the following way
\[
(p_1, \dot q_1)\le (p_2, \dot q_2)\iff p_1\le p_2 \land p_1\forces \dot q_1\mathrel{\dot\le}\dot q_2
\]
\end{defin}
There is a variant where you replace $\forces_{\mb P} \dot q\in\dot {\mb Q}$ with $p\forces_{\mb P} \dot q\in\dot {\mb Q}$, but they turn out the be equivalent.

There are some issues to address here, anyway:
\begin{enumerate}
\item $\mb P*\dot{\mb Q}$ can be a proper class. This is solved by choosing $\dot q$ as a representative for some equivalence class\footnote{The equivalence relation is ``$\mathds 1$ forces the conditions to be equal''}, e.g.\ the name with the least rank.
\item Actually, the $\le $ we defined is not antisymmetric. This is solved by using preorders instead of posets\footnote{Or one could take quotients.}.
\end{enumerate}
\begin{defin}\label{defin:alphait}
  $\mb P$ is an $\alpha$-iteration, also denoted $\mb P_\alpha$, iff $\mb P=((\mb P_\beta\mid \beta\le \alpha), (\mb Q_\beta\mid \beta<\alpha))$ and for all $\beta<\alpha$
  \begin{enumerate}
  \item $\mb P_\beta$ is a forcing notion whose elements are $\beta$-sequences
  \item if $p\in\mb P_\beta$ and $\gamma<\beta$, then $p\restr\gamma\in \mb P_\gamma$
  \item If $\beta<\alpha$, then $\forces_{\mb P_\beta}\dot{\mb Q}_\beta$ is a forcing notion
  \item If $p\in \mb P_{\beta}$ and $\gamma<\beta$, then $p(\gamma)$ is a ${\mb P}_\gamma$-name for an element of $\dot{\mb Q}_\gamma$
  \item $\mb P_{\beta+1}\cong \mb P_{\beta}*\dot{\mb Q}_\beta$ (the isomorphism is canonical)
  \item for all $p, q\in \mb P_\beta$ we have $p\le_{\mb P_\beta} q$ iff $\forall\gamma<\beta\; p\restr \gamma\forces_{{\mb P}_\gamma}p(\gamma)\le_{\dot{\mb Q}_{\gamma}}q(\gamma)$
  \item for all $\gamma\le \beta$ we have\footnote{In preorders we may have more equivalent maximal elements. We distinguish one.} ${\mathds 1}_{{\mb P}_{\beta}}(\gamma)=\dot{\mathds 1}_{{\mb Q}_\gamma}$
    \item if $p\in{\mb P}_\beta$, $\gamma<\beta$ and $q\le_{\mb P_\gamma} p\restr \gamma$ then $q\cat p\restr [\gamma, \beta)\in \mb P_\beta$.
  \end{enumerate}
\end{defin}
\begin{rem}
As a consequence of the definition, 
 if $G\ssq \mb P$ is a generic filter, then $G_\beta\coloneqq\set{p\restr \beta\mid p\in G}$ is a generic filter for $\mb P_\beta$ and $g_\beta\coloneqq \set{(p(\beta))_{G_\beta}\mid p\in G}$ is a generic filter for $(\dot {\mb Q}_\beta)_{G_\beta}$.
\end{rem}
\begin{defin}
  If $p\in \mb P$, the \emph{support} of $p$ is defined by
\[
\operatorname{supp}(p)\coloneqq\set{\beta<\alpha\mid p(\beta)\ne \dot{\mathds 1}_{\mb Q_\beta}}
\]
\end{defin}
\begin{defin}
  Suppose $\lambda\le\alpha$ is a limit stage.
  \begin{itemize}
  \item $\mb P_\lambda$ is the \emph{inverse limit} of $\set{\mb P_\gamma\mid \gamma<\lambda}$ iff \[\mb P_{\lambda}=\set{p\mid\ p\tn{ is a $\lambda$-sequence}, \forall \gamma<\lambda\;p\restr \gamma\in \mb P_\gamma}\]
  \item $\mb P_\lambda$ is the \emph{direct limit} of $\set{\mb P_\gamma\mid \gamma<\lambda}$ iff \[\mb P_{\lambda}=\set{p\mid\ p\tn{ is a $\lambda$-sequence}, \forall \gamma<\lambda\;p\restr \gamma\in \mb P_\gamma, \tn{ and }\exists \beta<\lambda\;\forall \gamma\ge \beta\; p(\gamma)=\dot{\mathds 1}_{\mb Q_\gamma}}
\]
  \item We say we use $<\ka$-support iff inverse limits are taken at stages of cofinality $\ka$ and direct limits at cofinality $\ge \ka$
  \item We say we use \emph{Easton support} iff inverse limits are take at singular limit stages, and direct lmits are taken at regular limit stages.
  \end{itemize}

\end{defin}
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\begin{pr}
  Suppose $\mb P_\alpha=\mb P$ is the direct limit of $\set{\mb P_\beta\mid \beta<\alpha}$, $\ka$ regular $>\omega$. If
  \begin{itemize}
  \item $\forall \beta<\alpha$, $\mb P_\beta$ has the $\ka$-c.c.
  \item if $\operatorname{cf}(\alpha)=\ka$ then direct limits are taken at a stationary subset of $\alpha$
  \end{itemize}
Then $\mb P_\alpha$ has the $\ka$-c.c.
\end{pr}
\begin{pr}
  If $\mb P$ has the $\ka$-c.c.\ and $\forces_\mb P\dot{\mb Q}$ has the $\ka$-c.c., then $\mb P* \dot{\mb Q}$ has the $\ka$-c.c.
\end{pr}
\begin{pr}
  Let $\ka$ be regular, $\ka>\omega$, $\mb P_\alpha$ as in Definition~\ref{defin:alphait}. If
  \begin{itemize}
  \item $\forall \beta<\alpha\; \forces_{\mb P_\beta} \dot{\mb Q}_\beta$ is $\ka$-directed closed
  \item all limits are either inverse or direct and inverse limits are taken at stages of cofinality $<\ka$
  \end{itemize}
then $\mb P_\alpha$ is $\ka$-directed closed.
\end{pr}
\section{Factoring an iteration}
Let $\beta<\alpha$. If $p\in \mb P_\alpha$, let $p^\beta=p\restr\set{\gamma\mid \beta\le \gamma<\alpha}$. Let $\mb P_{\beta\alpha}=\set{p^\beta\mid p\in \mb P_\alpha}$. If $G_\beta\ssq \mb P_\beta$ is $V$-generic, then $p^\beta\le q^\beta$ iff $\exists r\in G_\beta$ such that $r\cup p^\beta\le_{\mb P_\alpha} r\cup q^\beta$. Let $\dot{\mb P}_{\ge \beta}\equiv \dot{\mb P}_{\beta\alpha}\equiv \dot{\mb P}_{[\beta, \alpha)}$ be a $\mb P_\beta$-name for $\mb P_{\beta\alpha}$.
\begin{pr}
  $\mb P_\alpha\cong \mb P_\beta*\dot{\mb P}_{\ge \beta}$.
\end{pr}
\begin{pr}
  $\forces_{\mb P_\beta} \dot{\mb P}_{\ge \beta}$ is (isomorphic to) an $(\alpha-\beta)$-iteration (i.e.\ defines on $\set{\gamma\mid \beta\le \gamma<\alpha}$)
\end{pr}
\begin{pr}
  Let $\ka>\omega$ be regular. If
  \begin{itemize}
  \item every $A\ssq\mathrm{Ord}$ of size $<\ka$  in the forcing extension by $\mb P_\beta$, is covered by a set $B\ssq\mathrm{Ord}$, $B\in V$, $\abs B<\ka$
  \item $\forall \beta\le\gamma<\alpha\;\forces_{\mb P_\gamma}\dot{\mb Q}_\gamma$ is $\ka$-directed closed.
  \item inverse limits are taken at stages of cofinality $<\ka$
  \end{itemize}
then $\forces_{\mb P_\beta}\dot{\mb P}_{\beta\alpha}$ is $\ka$-directed closed (also for $\ka$-closed).
\end{pr}
\begin{pr}
  If $\ka$ is inaccessible, $\mb P_\ka$ is a $\ka$-iteration and
  \begin{itemize}
  \item $\forall\alpha<\ka\;\dot{\mb Q}_\alpha\in V_\ka$
  \item a direct imit is taken at $\ka$ and at a stationary subset of stages $<\ka$
  \end{itemize}
then $\mb P_\ka\ssq V_\ka$, $\mb P_\ka$ is $\ka$-c.c.\ and $\forall \alpha<\ka$ for $\mb P_\ka\cong\dot{\mb P}_\alpha*\dot{\mb P}_{\ge \alpha}$, $\dot{\mb P}_{\ge \alpha}$ is forced to be $\ka$-c.c.\ and to have size $\ka$.
\end{pr}
\begin{defin}
  The \emph{\tf{GCH} forcing} is the (class) iteration $\mb P=\seq{\seq{\mb P_\alpha\mid \alpha\in \mathrm{Ord}}, \seq{\dot{\mb Q}_\alpha\mid \alpha\in \mathrm{Ord}}}$ with Easton support such that
 $\forall \alpha\in\mathrm{Ord}$, if $\mb P_\alpha$ has been defined and $\forces_{\mb P_\alpha}\alpha$ is a cardinal, then let $\dot {\mb Q}_\alpha$ be a $\mb P_\alpha$-name for $\operatorname{Add}(\alpha^+, 1)$; otherwise let $\dot{\mb Q}_\alpha$ name the trivial forcing\footnote{The poset with just one element.}.
\end{defin}
\begin{thm}
  After forcing with $\mb P$, \tf{GCH} holds and all inaccessible cardinals are preserved.
\end{thm}
\begin{proof}
One should take care of the extra technicalities in class forcing;  in this case everything  works fine and we skip those details.

  Let $G\ssq \mb P$ be a $V$-generic filter. To see that \tf{GCH} holds, let $\alpha$ be a cardinal in $V[G]$. Split $\mb P\cong \mb P_\alpha*\dot{\mb P}_{\ge \alpha}$, so $V[G_\alpha]$ is a sub-universe of $V[G]$. Now, $\alpha$ is still a cardinal in $V[G_\alpha]$. But then the next step  forces \tf{GCH} at $\alpha$, i.e.\ $V[G_{\alpha+1}]\models 2^\alpha=\alpha^+$. By two of the previous propositions, $\dot{\mb P}_{\ge \alpha}$ is $\alpha^+$-directed closed, hence $\alpha^+$-distributive, so $2^{\alpha}=\alpha^+$ still holds in $V[G]$.

Now suppose $\ka$ is inaccessible in $V$. Suppose that $\ka$ is not regular in $V[G]$, and let $\lambda=\operatorname{cf}(\ka)<\ka$. Split $\mb P\cong\mb P_\lambda*\dot{\mb P}_{\ge\lambda}$. As $\mb P_\lambda$ has size $<\ka$, it cannot change $\operatorname{cof}(\ka)$, and as  $\dot{\mb P}_{\ge\lambda}$ is $\lambda^+$-closed it cannot collapse $\operatorname{cof}(\ka)$. This is a contradiction, so $\ka $ is still regular in $V[G]$. Suppose now that $\ka$ is not strong limit anymore in $V[G]$, and let $\lambda<\ka$ be such that $2^\lambda\ge \ka$. Split $\mb P\cong \mb P_{\lambda}*\dot{\mb P}_{\ge \lambda}$. Now $\mb P_\lambda$ is too small to force $2^\lambda\ge\ka$, and  $\dot{\mb P}_{\ge\lambda}$ is $\lambda^+$-closed, so it does not add any new subsets to $\lambda$, resulting in a contradiction.
\end{proof}
\begin{rem}
  As being inaccessible is downward absolute, forcing cannot create new inaccessibles.
\end{rem}
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{\color{blue}
Work with $\ka=\omega$.
Today we want to prove $\operatorname{add}(\mc N)=\mf b(\in^*)$, where $\mc N$ is the idea of Lebesgue null sets.  We need this fact:
\begin{thm}\label{thm:addnb}
  $\operatorname{add}(\mc N)\le \mf b$.
\end{thm}
\begin{defin}[{\raisebox{.4ex}{\fontencoding{U}\fontfamily{futs}\selectfont\char 66\relax}} Beware: non-standard notation {\raisebox{.4ex}{\fontencoding{U}\fontfamily{futs}\selectfont\char 66\relax}}]
  For this lecture\footnote{Usually both ``series'' and ``$\mf h$''  mean something else.}, let a \emph{converging series} be some $f\from \omega\to \mb Q^{\ge 0}$ such that $\sum_{i\in \omega} f(i)<\infty$, and let $\mf h$ be the least cardinality of a set of converging series such that no one converging series dominates (summand-wise in all but finitely often places) all of them.
\end{defin}
\begin{pr}
  $\operatorname{add}(\mc N)\ge\mf h$.
\end{pr}
\begin{proof}
Take a family $\set{G_\xi\mid \xi<\lambda<  \mf h}$ of Lebesgue null sets. We want to show that $\bigcup_{\xi<\lambda} G_\xi$ is Lebesgue null. As  $G_\xi$ is Lebesgue null, it as a  subset of
\[
\bigcap_{n\in\omega}\bigcup_{m>n} I_m^\xi
\]
where the $I_m^\xi$ are some intervals with rational endpoints such that $\sum_{m=1}^\infty \mu(I_m^\xi)<\infty$. Fix an enumeration $(I_n)_{n\in\omega}$ of the intervals with rational endpoints and define 
\[
f_\xi(n)\coloneqq\l\{
\begin{array}{ll}
  1&\tn{ if } \exists m\; I_n=I^\xi_n\\
0&\tn{ otherwise}
\end{array}
\r.
\]
So we have
\[
\sum_{n\in\omega} f_\xi(n)\cdot \mu(I_n)<\infty
\]
As these are converging series and there are $\lambda<\mf h$ of them,  we can dominate (summand-wise, all but finite) all of these, and clearly we can assume that the dominating series is the product of a $\set{0,1}$-function, say $f\in 2^\omega$, with $\mu(I_n)$. Take
\[
G\coloneqq \bigcap_{n\in\omega} \bigcup_{\substack{m>n\\ f(m)=1}} I_m
\]
Then we have
\[
G_\xi\ssq\bigcap_n\bigcup_{m>n} I_n^\xi\ssq G
\]
and this shows $\mf h\le \operatorname{add}(\mc N)$.
\end{proof}
}
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[what follows was actually started in the previous lecture, but I have preferred to keep it all in one chapter]

{\color{blue}
 We now want to show that   $\mf h\ge \operatorname{add}(\mc N)$. We need the following fact.
\begin{pr}\label{pr:oprhanimplication}
The following are equivalent:
\begin{enumerate}
\item $\ka<\mf h$
\item Any set of $\ka$ many functions $f\from \omega\to \omega$ is localised by an $n\mapsto n^2$-slalom.
\item $\ka<\mf b$ and for any set of $\ka$ many functions $\omega\to\omega$ and any $g\from\omega\to\omega$ such that $\sum_{n}\frac 1{g(n)}<\infty$ dominating them all there is a slalom $\phi$ localising them all with $\sum_{n\in\omega} \frac{\abs {\phi(n)}}{g(n)}<\infty$.
\end{enumerate}
\end{pr}
\begin{proof}\*

\bigoval{$2\allora 1$} Let $F=\set{f_\xi\mid \xi<\ka}$ be a set of converging series of size $\ka$, i.e.\ for all $\xi<\ka$ we have $f_\xi\from \omega\to \mb Q^{>0}$ and $\sum_{n\in\omega} f_\xi(n)<\infty$. Define, for each $\xi$, a sequence $\seq{n^\xi_k\mid k\in\omega}$ such that 
\[
\forall k\;\sum_{i>{n^\xi_k}}^\infty f_\xi(i)<2^{-k}
\]
By assumption, there is $w\from \omega\to \omega$ that dominates all of these sequences $k\mapsto n^\xi_k$. Define $f_\xi'(k)\coloneqq f_\xi\restr[w(k), w(k+1))\in \omega^{<\omega}$. Identify $\omega^{<\omega}$ with $\omega$, and use the hypothesis again to get  a slalom $\phi$ such that for all $k$ we have $\abs{\phi(k)}\le k^2$ and for all $\xi<\ka$ we have $f_\xi'\in^*\phi$. Define $f\from\omega\to\mb Q^{\ge 0}$ by 
\[
f(n)\coloneqq \sup\set*{
s(n)\Biggm| s\in \phi(k)\tn{ for the $k$ s.t.\ } n\in[w(k), w(k+1))\tn{ and } \sum_{i=w(k)}^{w(k+1)-1}s(i)<2^{-k}
}
\]
(the idea is keeping track of the fact that $n$ is in $[w(k), w(k+1))$). So
\[
\sum_{n\in\omega} f(n)\le \sum_{k\in\omega} \tn{values in the $k$-inteval}
\le  \sum_{k\in\omega}k^22^{-k}<\infty
\]


\bigoval{$1\allora 2$}
Suppose we have $\ka<\mf h$ many functions $\omega\to \omega$, say $f_\xi$ for $\xi<\ka$. Define $a_\xi\from \omega\to \mb Q^{\ge 0}$ as
\[
a_\xi(n)=
\l\{\begin{array}{ll}
\max \set{1/k^2\mid f_\xi(k)=n}&\tn{ if }\ne \emptyset\\
0&\tn{ otherwise}  
\end{array}\r.
\]
Since $\ka<\mf h$, by definition there is  $a(n)$ such that $\sum_na(n)<\infty$ that eventually dominates every $a_\xi$. Assume \tc{wlog} that $\sum_n a(n)<1$, and let $\phi(k)=\set{n\mid a(n)\ge k^{-2}}$. As $\sum_n a(n)<1$, for every $k$ we have $\abs{\phi(k)}<k^2$, and so where $a_\xi$ is dominated by $a$, $f_\xi$ is guessed by $\phi$.

\bigoval{$3\allora 2$}
Take any set $F$ of $\ka$ many functions $\omega\to \omega$. As $\ka<\mf b$ by hypothesis, there is $f\from \omega\to \omega$ dominating everything in $F$. Let $(k_n)_{n\in\omega}$ be such that $\forall n\; k_n/f(n)=n^{-2}$. For $g\in\omega^\omega$, define $g'\in\omega^\omega$ by repeating  $g(k_i)$ times the value $g(i)$: start with\footnote{We do not start with $0$ because of $k_n/f(n)=n^{-2}$.} $k_1$ times $g(1)$, then $k_2$ times $g(2)$, etc. As the elements of $\set{e'\mid e\in F}$ are all dominated by $f'$ and $\sum_n 1/f(n)=\sum_{m\in\omega\setminus\set0} 1/m^2<\infty$ we can apply our hypothesis and get a slalom $\phi$ with those properties. Take $\psi_m=\phi(\ell)$ of least cardinality amongst those for $\ell$ in the $k_m$ interval. Then we have 
\[
\infty>\sum_n \frac{\abs{\phi(n)}}{f'(n)}\ge \sum_n\frac{ k_n\abs{\psi_n}}{f(n)}=\sum_n \frac{\abs{\psi_n}}{n^2}
\]
In particular, we almost always have $\abs{\psi_n}/{n^2}<1$.

\bigoval{$1\allora 3$} We will not see the proof of this part, as we are not going to need it in what follows.
\end{proof}
\begin{co}
  $\mf h=\mf b_{n\mapsto n^2}(\in^*)$.
\end{co}
\begin{proof}
  This is $1\sse 2$ in Proposition~\ref{pr:oprhanimplication}.
\end{proof}
\begin{pr}
If  $\ka<\operatorname{add}(\mc N)$ then condition 3  in  Proposition~\ref{pr:oprhanimplication}    holds.
\end{pr}
\begin{proof}
  By Theorem~\ref{thm:addnb}, we know $\ka<\mf b$. Take $F\ssq \omega^\omega$ with $\abs F=\ka$ and $f$ dominating everything in $F$ with$\sum_n 1/f(n)<\infty$. Consider $X\coloneqq\prod_{n\in\omega} f(n)$, where we think of $f(n)$ as the set of ordinals less than $f(n)$. Every $g\in X$ is by definition dominated by $f$, so we can define $H_g\coloneqq\set{x\in X\mid \exists^\infty n\; x(n)=g(n)}$. Equip each $f(n)$ with the equidistributed probability measure and let $\mu$ be the induced product measure on $X$. We have
\begin{multline*}
\mu(H_g)=\mu\Biggl(\bigcap_n\bigcup_{m> n}\set{x\in X\mid x(m)=g(m)}\Biggr)\\\le \mu\Biggl(\bigcup_{m> n}\set{x\in X\mid x(m)=g(m)}\Biggr)\le \sum_{m>n} \frac1{f(m)}\xrightarrow{n\to\infty}0
\end{multline*}
Therefore\footnote{It is an instance of Borel-Cantelli.} $\mu(H_g)=0$. As $\bigcup_{e\in F} H_e$ is null, we can take a tree\footnote{In $X$.} $T$ such that 
\begin{equation}
  \label{eq:pmen}
\tn{its set of branches $[T]$ has positive measure above every node}
\end{equation}
and $[T]\cap \bigcup_{e\in F} H_e=\emptyset$. Define $T(n)\coloneqq \set{x(n)\mid x\in [T]}$ and $T_s\coloneqq \set{t\in T\mid s\le t}$.
\begin{claim}
  $\forall e\in F\;\exists s\in T\;\forall n>h(s)\; e(n)\notin T_s(n)$
\end{claim}
Suppose the Claim was false, as witnessed by $e$. Then there is $x\in [T]$ such that $\exists^\infty n\; x(n)=e(n)$. But then $x\in [T]\cap H_e$, contradicting the choice of $T$ and proving the Claim.

For each $e\in F$, let $s\in T$ be given by the Claim. List the $s$'s as $s_1,s_2,\ldots$, and denote $\phi_n(m)=T_{s_n}(m)$. Then, by~\eqref{eq:pmen},
\[
\prod_{m=1}^\infty \frac{\abs{\phi_n(m)}}{f(m)}>0
\]
Modify the first few $\phi_n(m)$'s if necessary, to get
\[
\prod_{m=1}^\infty \frac{\abs{\phi_n(m)}}{f(m)}>1-2^{-n-1}
\]
and let $\phi(m)\coloneqq \bigcap_n\phi_n(m)$. We now have 
\[
\prod_{m=1}^\infty \frac{\abs{\phi(m)}}{f(m)}>0
\]
and $\psi_n\coloneqq f(n)\setminus \phi(n)$ is the slalom we were looking for.
\end{proof}

\begin{co}
   $\operatorname{add}(\mc N)\le \mf h$.
\end{co}
\begin{proof}
  By $3\allora 1$ in Proposition~\ref{pr:oprhanimplication}.
\end{proof}
}
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{\color{red}Remember that Chicon's diagram, without assuming inaccessibility, is
 \begin{center}
 \begin{tikzpicture}[scale=3]
 \node(nw) at (0,1){$\operatorname{non}(\mc M_\ka)$};
 \node(ne) at (2,1){$\operatorname{cof}(\mc M_\ka)$};
 \node (sw) at (0,0) {$\operatorname{add}(\mc M_\ka)$};
 \node(se) at (2,0){$\operatorname{cov}(\mc M_\ka)$};
 \node(c) at (0.75, 0.5){$\mf b$};
 \node(d) at (1.25, 0.5){$\mf d$};
 \node(a) at (0.5, 0.75) {$\mf b(\ne^*)$};
 \node(b) at (1.5, 0.25) {$\mf d(\ne^*)$};
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (nw) edge node {} (ne)
 (sw) edge node {} (se)
 (sw) edge node {} (nw)
 (se) edge node {} (ne)
;

 \path[->, thick,  font=\scriptsize,>= angle 90]
 (se) edge node {} (b)
 (a)  edge node {} (nw)
 (c)  edge node {} (d)
 (c)  edge node {} (a)
 (b)  edge node {} (d)
;
\end{tikzpicture}
\end{center}
Today we want to see what happens to Chicon's diagram after Cohen forcing.
\begin{thm}[$\ka=\ka^{<\ka}$]\label{thm:cohensplits}
If $\lambda>\ka^+$ is such that  $\lambda^\ka=\ka$, the poset $\operatorname{Add}(\ka, \lambda)$ forces $\operatorname{non}(\mc M_\ka)=\ka^+$ and $\operatorname{cov}(\mc M_\ka)=2^\ka=\lambda$. In particular, Chicon's diagram splits as follows, where everything in the left part is $\ka^+$ and everything in the right part is $\lambda=2^\ka$
 \begin{center}
 \begin{tikzpicture}[scale=3]
 \node(nw) at (0,1){$\operatorname{non}(\mc M_\ka)$};
 \node(ne) at (2,1){$\operatorname{cof}(\mc M_\ka)$};
 \node (sw) at (0,0) {$\operatorname{add}(\mc M_\ka)$};
 \node(se) at (2,0){$\operatorname{cov}(\mc M_\ka)$};
 \node(c) at (0.75, 0.5){$\mf b$};
 \node(d) at (1.25, 0.5){$\mf d$};
 \node(a) at (0.5, 0.75) {$\mf b(\ne^*)$};
 \node(b) at (1.5, 0.25) {$\mf d(\ne^*)$};
 \node (dps) at (2.75,1) {$\mf{d}(\in^*_{\mathrm{p}})$};
 \node (dp) at (2.75,0.5) {$\mf{d}(\in^*)$};
 \node (bps) at (-0.75,0) {$\mf{b}(\in^*_{\mathrm{p}})$};
 \node (bp) at (-0.75,0.5) {$\mf{b}(\in^*)$};
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (nw) edge node {} (ne)
 (sw) edge node {} (se)
 (sw) edge node {} (nw)
 (se) edge node {} (ne)
 (ne) edge node {} (dps)
 (dps) edge node {} (dp)
 (bp) edge node {} (bps)
 (bps) edge node {} (sw)
;

 \path[->, thick,  font=\scriptsize,>= angle 90]
 (se) edge node {} (b)
 (a)  edge node {} (nw)
 (c)  edge node {} (d)
 (c)  edge node {} (a)
 (b)  edge node {} (d)
;

\draw(1, 1.25)--(1, -0.25);
\end{tikzpicture}
\end{center}
\end{thm}
Before the proof, we need some preliminaries.


  Recall that $\operatorname{Add}(\ka, \lambda)$ is the poset of partial functions from $\ka\times\lambda$ to $\ka$ with $\abs{\dom}<\ka$. Equivalently, it is a $\lambda$-fold product of $\operatorname{Add}(\ka, 1)$ with $<\ka$ support. As $\operatorname{Add}(\ka,1)$ is $\ka$-directed-closed, it adds no new subsets of ordinals $<\ka$. Equivalently it is, up to forcing equivalence, a $\lambda$-length iteration of $\operatorname{Add}(\ka, 1)$ with $<\ka$ support.
\begin{fact}
$\operatorname{Add}(\ka, \lambda)$ has the $\ka^+$-c.c. (This uses $\ka^{<\ka}=\ka$).    
\end{fact}
\begin{proof}
  Exercise: re-read the $\Delta$-system Lemma from Kunen (II-.1.6.\ in the original edition, $49$ in some other one).
\end{proof}
\begin{lemma}
  If $\mu<\lambda$ and $X\ssq \mu$ in the $\operatorname{Add}(\ka, \lambda)$-generic extension, then there is a subset $B$ of $\lambda$ of size at most $\mu$ such that $X$ is already added by $\operatorname{Add}(\ka, B)$.
\end{lemma}
\begin{proof}
  Every such $X$ has a ``nice name'' of the form 
\[
\bigcup_{\alpha<\mu}\set{(\check \alpha, p)\mid p\in A_\alpha}
\]
where each $A_\alpha$ is an antichain. Each $p$ has $\abs{\operatorname{dom}(p)}<\ka$, and $\operatorname{Add}(\ka, \lambda)$ has the $\ka^+$-c.c, so letting 
\[
B\coloneqq \bigcup_{\alpha<\mu}\bigcup_{p\in A_\alpha}\dom (p)
\]
we have $\abs B\le\mu$, and $X$ is completely determined by the $B$ coordinates of the forcing.
\end{proof}
\begin{rem}
  If $\mu=\ka$, since $\lambda^\ka=\lambda$ there are only $\lambda$ many such nice names, so $(2^\ka)^{\operatorname{Add}(\ka, \lambda)}\le \lambda$. Also, each coordinate gives a different subset of $\ka$, so $(2^\ka)^{\operatorname{Add}(\ka, \lambda)}\ge \lambda$.
\end{rem}
\begin{proof}[Proof of Theorem~\ref{thm:cohensplits}]
For any nowhere dense set $X\ssq 2^\ka$ there is $f\from 2^{<\ka}\to 2^{<\ka}$ such that $\forall \sigma\in 2^{<ka}\; f(\sigma)\supseteq \sigma$ and 
\[
X\ssq \set{s\in2^\ka\mid \forall \sigma\in 2^{<\ka}\; \underbrace{f(\sigma)\centernot\ssq x}_{x\notin [f(\sigma)]}}\eqqcolon A_f
\]
Let $f\from 2^{<\ka}\to2^{<\ka}$ be such that $\forall \sigma\; f(\sigma)\supseteq \sigma$ in the $\operatorname{Add}(\ka, \lambda)$-generic extension\footnote{Note that $2^{<\ka}$ is unchanged in the generic extension.}. By our assumptions $\abs{2^{<\ka}}=\ka$, so by the previous Lemma there is a set $B_f$ of size $\ka$ such that $f$ is added by $\operatorname{Add}(\ka, B_f)$. Moreover, for $\beta\notin B_f$, the $\beta$ coordinate Cohen subset  $c_\beta$  of $\ka$ is \emph{not} in $A_f$ in the extension, by a genericity argument. Namely, split the poset as a product of $B_f$ with all the rest and think of it as a two-step extension, and notice that it is dense for $c_\beta$ to include some $f(\sigma)$. So now if we have $\mc X$ a set of nowhere dense sets of the form $A_f$ in the $\operatorname{Add}(\ka, \lambda)$-generic extension with\footnote{One can also show (exercise) that it is possible to find a name for $\mc X$ of cardinality $<\lambda$.} $\abs{\mc X}<\lambda$, then 
\[
\abs[\Bigg]{\underbrace{\bigcup_{f\in \mc X} B_f}_{\eqqcolon \mc B}}<\lambda
\]
and therefore any $\beta\notin \mc B$ has $c_\beta\notin \bigcup_{f\in \mc X} A_f$. This shows that in the extension $\operatorname{cov}(\mc M_\ka)\ge \lambda$, and as $2^\ka=\lambda$ we have equality.

To conclude, we need to show that $\operatorname{non}(\mc M_\ka)\le \ka^+$. We explicitly give a non-meagre set of size $\ka^+$, namely\footnote{Or any $\ka^+$-size subset of the $\lambda$-many Cohen reals we added.}
\[
\set{c_\beta\mid \beta<\ka^+}
\]
To see this is non-meagre, consider any $\ka$ many nowhere dense sets $A_f$ in the extension. By the previous Lemma there is $B\ssq \lambda$ adding all of them and with $\abs B=\ka$. Take $\beta\in \ka^+\setminus B$. Then $c_\beta\notin \bigcup A_f$, and so $\set{c_\beta\mid \beta<\ka^+}$ is not contained in any (extension) meagre set.
\end{proof}
}%redend
\chapter{04/11}
\section{Hechler Forcing}
\begin{defin}[1-step version]
The conditions of  $(\mb H, \le)$ are pairs $(s,f)$ such that
\begin{itemize}
\item $s\in \ka^{<\ka}$
\item $f\in\ka^\ka$
\item $s$ is an initial segment of $f$; we denote this with $s\sqsubseteq f$
\end{itemize}
The order is $(s,f)\ge (t,g)$ iff\footnote{Again, this means that $t$ is an initial segment of $s$.} $t\sqsupseteq s$ and $\forall\alpha\;g(\alpha)\ge f(\alpha)$.
\end{defin}
\begin{rem}
  Note that in particular $t$ dominates $s$ on $\dom s$.
\end{rem}
We can think of conditions as a ``stem'' $s$ and a ``promise'' $f$.
\begin{defin}
  A partial order $\mb P$ is
  \begin{itemize}
  \item \emph{$(1, <\ka)$-centred} iff every $<\ka$ many conditions have a common extension;
  \item \emph{$(\lambda, <\ka)$-centred} iff $\mb P=\bigcup_{\alpha<\lambda} P_\alpha$, where each $P_\alpha$ is $(1,<\ka)$-centred;
  \item \emph{$\ka$-centred} iff it is $(\ka, <\ka)$-centred.
  \end{itemize}
\end{defin}
{\color{red}
\begin{eg}
  Hechler  forcing at $\ka$ is $\ka$-centred.
\end{eg}
\begin{proof}
  Each ``stem'' defined a $P_\alpha$, i.e.\ for all $s\in \ka^{<\ka}$ the set $\set{(s,f)\mid f\in \ka^\ka}$ is $(1,<\ka)$-centred: just take the supremum of the $f$'s, which can be done as we have $<\ka$ of them.
\end{proof}
}%redend
\begin{rem}
  If $\mb P$ is $\ka$-centred, then $\mb P$ is $\ka^+$-c.c.
\end{rem}
The following notion is not needed in the $\omega$ case, but it is necessary in general to deal with small cofinality limit stages.
\begin{defin}
  Assume $\mb P$ is ($<$)$\ka$ closed and $\ka$-centred, say $\mb P=\bigcup_{\gamma<\ka} P_\gamma$, where each $P_\gamma$ is $(1,<ka)$-centred. We say that $\mb P$ is \emph{$\ka$-centred with canonical lower bounds} iff there is $f_{\mb P}\from \ka^{<\ka}\to \ka$ such that whenever $\lambda<\ka$ and $(p_\alpha\mid \alpha<\lambda)$ is a decreasing sequence from $\mb P$ with $p_\alpha\in P_{\gamma_\alpha}$, there is $p\in P_{f_{\mb P}(\gamma_\alpha\mid \alpha<\lambda)}$ such that for all $\alpha<\lambda$ we have $p\le p_\alpha$.
\end{defin}
{\color{red}
\begin{eg}
  For Hechler forcing, if $p_\alpha=(s_\alpha, f_\alpha)$ and $p_\beta\le p_\alpha$, then $s_\beta\sqsupseteq s_\alpha$, so we can take
\[
f_{\mb H}\from (s_0, s_1,s_2,\ldots,s_\alpha, \ldots \mid \alpha<\lambda)\mapsto \bigcup_{\alpha<\lambda} s_\alpha
\]
\end{eg}
\begin{fact}
  Hechler forcing adds a function $h\ka\to \ka$ eventually dominating all ground model functions: it is dense for $(s,f)$ to have $f\ge^* g$ for any given $g$, so we can just take $h=\bigcup_{(s,f)\in G} s$.
\end{fact}
}%redend
\section{Slalom Forcing}
\begin{defin}
  Define $(\mb S_h, \le)$ to as have conditions pairs $(s, \mc F)$ such that
  \begin{itemize}
  \item there is $\lambda<\ka$ such that $s\from \lambda [\ka]^{<\ka}$ and $\abs{s(\alpha)}\le h(\alpha)$
  \item $\mc F$ is a  set of functions $\ka\to\ka$ of size $h(\lambda)$
  \end{itemize}
The order is $(s,\mc F)\ge (t,\mc G)$ iff
\begin{itemize}
\item $t\supseteq s$, $\mc G\supseteq \mc F$, and
\item $\forall \alpha \in   \dom t\setminus \dom s\;\forall f\in\ mc F\; f(\alpha)\in t(\alpha)$.
\end{itemize}
\end{defin}
Think of $\mc F$ as a ``promise to localise all $f$ in $\mc F$ hereafter''. And in fact,
\begin{fact}
  $\bigcup_{(s, \mc F)\in G} s$ is a slalom localising all ground model functions.
\end{fact}
Note that the requirement of $\mc F$ gets in the way of $\ka$-centredness: the point is that the domain of a common extension of a family actually depends on the stems, and not just on their domains. This is where partial slaloms are more handy to manage.
\begin{defin}
  \emph{Partial $h$-slalom forcing} is defined analogously, except $s$ can be partial and $\mc F$ can have any size $<\ka$.
\end{defin}
\begin{pr}
  This is $\ka$-centred with canonical lower bounds.
\end{pr}
\begin{proof}
  You can now take the union of the promises and just keep the same stem: we can extend that later.
\end{proof}
\begin{lemma}\label{lemma:densestems}
Suppose $(\mb P_\alpha, \mb Q_\alpha\mid \alpha <\mu)$ is an iteration of $\ka$-closed,  $\ka$-centred with canonical lower bounds forcings $\mb Q_\alpha$ with $<\ka$ support and such that for each $\alpha$ the function $f_{\dot{\mb Q}_\alpha}$ is in the ground model\footnote{The original ground model.} and $\mathds 1_{\mb P_\alpha}\forces {\dot{\mb Q}}_\alpha=\bigcup_{\gamma<\ka}{\dot {\mb Q}}_{\alpha, \gamma}$. Then the set of conditions $p\in \mb P_\mu$ such that for all $\beta\in\operatorname{supp}(p)$ there is $\gamma <\ka$ such that $p\restr \beta\forces p(\beta)\in \mb Q_{\beta,\check\gamma}$ is dense.
\end{lemma}
In other words, it is dense that for everything in the support the stem lives in the ground model (or: it is dense to choose a stem).
\begin{proof}[Proof Sketch]
  Given $p\in \mb P$, list $\operatorname{supp}(p)$ as $(\beta_\delta\mid \delta<\abs{\operatorname{supp}(p)})$ such that each $\beta\in\operatorname{supp}(p)$ appears cofinally often\footnote{Here we are assuming that the support is infinite. If it is not, extend arbitrarily. In the $\omega$ case,   conditions have finite support, so take the maximum $\beta$ in the support, [extend that?] and go backwards.}. Go through, at stage $\delta$, extending to get $p_\delta(\beta_\delta)$ in a specific $Q_{\beta_\delta, \gamma}$.
\end{proof}
\chapter{05/12}
{\color{red}
\section{Iterations of Centred Forcings}
\begin{lemma}\label{lemma:itercentr}
  Let $\mu<(2^\ka)^+$ be an ordinal. Assume $(\mb P_\alpha, {\dot{\mb Q}}_\alpha$ is an iteration of length $\mu$ with $<\ka$ supports of ($<\ka$-closed) $\ka$-centred with canonical lower bounds forcings $\mb Q_\alpha$ such that the functions $f_{{\dot{\mb Q}}_\alpha}$ are in the ground model. Then $\mb P_\mu$ is $<\ka$-closed and (forcing equivalent to something) $\ka$-centred (so, in particular, $\ka^+$-c.c.).
\end{lemma}
\begin{proof}
  $\ka$-closure is standard. To see it is $\ka$-centred, take an injection $f\from \mu\to 2^\ka$. Let $\mc F$ be the collection of all functions $F$ such that there is $\delta_F<\ka$ such that
  \begin{itemize}
  \item  $\dom F\ssq 2^\delta_F$
  \item $\abs{\dom F}<\ka$
  \item $\operatorname{codomain}F=\ka$
  \end{itemize}
These will correspond to the ``stems'', and partition our iteration. Since $\ka^{<\ka}=\ka$, we have\footnote{use that then $2^{\delta_F}\le \ka$.} $\abs{\mc F}=\ka$. Define the partition piece for $F$ as
\[
P_F\coloneqq \set{p\in\mb P_\mu\mid \forall \beta\in\operatorname{supp}(p)\;f(\beta)\restr \delta_F\in \dom F\wedge p\restr \beta\forces p(\beta)\in {\dot{\mb Q}}_{\beta, F(f(\beta)\restr \delta_F)}}
\]
  We now just need to  show that
  \begin{enumerate}
  \item each $P_F$ is $(1,<\ka)$-centred, and
  \item $\bigcup_{F\in \mc F} P_F$ is dense\footnote{Which is enough up to forcing equivalence.} in $\mb P_\mu$
\end{enumerate}
For the first part, assume we have $\lambda<\ka$ many elements $p_\xi$ of $P_F$. We find a common extension $p\restr \beta$ by recursion in $\beta<\mu$. If $\forall \xi<\lambda\;\beta\notin \operatorname{supp}(p_\xi)$, then take $p(\beta)=\mathds 1$. If $\beta\in \operatorname{supp}(p_\xi)$, then\footnote{It is forced by $p_\xi$, and $p\restr \beta$ is a common extension of all of them.}
\[
p\restr \beta\forces p_\xi(\beta)\in \dot{\mb Q}_{\beta, F(f(\beta)\restr \delta_F)}
\]
Since $\dot{\mb Q}_{\beta, F(f(\beta)\restr \delta_F)}$ is $(1, <\ka)$-centred, there is a (forced by $p\restr \beta$ to be)   common extension, call it $p(\beta)$. As we only had $\lambda<\ka$ many $p_\xi$ to consider and each had size $<\ka$, the support of $p$ has size $<\ka$.

For the second part, let $p\in \mb P_\mu$; up to extending it, assume it \tc{wlog} to be as  per Lemma~\ref{lemma:densestems}. Since $\abs{\operatorname{supp}(p)}<\ka$. By the identification given by $f$, think of this as $<\ka$ many $\ka$-length bit strings, all different, and find $\delta<\ka$ such that $\forall \beta, \gamma\in \operatorname{supp}(p)\;f(\beta)\restr \delta\ne f(\gamma)\restr \delta$. This is our $\delta_F$. Let $F\in \mc F$ be the function with domain $\set{f(\beta)\restr \delta\mid \beta\in \operatorname{supp}(p)}$ such that $\forall\beta\in \operatorname{supp}(p)\; F(f(\beta)\restr \delta)\coloneqq \iota_\beta$, where $p\restr\beta\forces p(\beta)\in {\dot{\mb Q}}_{\beta, \iota_\beta}$. Then $p\in P_F$.
\end{proof}
\section{Iterations of Hechler Forcing}
We saw that $\ka$-Hechler forcing is $<\ka$-closed and $\ka$-centred with canonical lower bounds. We want to do a long iteration of it.

Let $\lambda\ge \ka^+$ be regular, and consider a $\lambda$-length iteration of $\ka$-Hechler forcing. If $\lambda$ is big enough, it will not be $\ka$-centred anymore, but it will still be $\ka^+$-c.c: use Lemma~\ref{lemma:densestems} and a $\Delta$ system argument.
\begin{exr}[Prove this by the 12th of January as second part of the assessment for this course.]
  Prove this.
\end{exr}
}%redend
\chapter{11/12}
\section{Iterations of Hechler Forcing, continued}
{\color{red}
Take $\lambda\ge \ka^+$ regular. Take  a $<\ka$-support iteration of Hechler forcing of length $\lambda$. We already said that this is $\ka$-closed and $\ka^+$-c.c. 

Start with \tf{GCH} and have $\lambda>\ka^+$.
\begin{pr}
  This forcing makes $\operatorname{add}(\mc M_\ka)=2^\ka=\lambda$.
\end{pr}
\begin{proof}
  We showed (Corollary~\ref{co:minmax}) that $\operatorname{add}(\mc M_\ka)\ge\min\set{\operatorname{cov}(\mc M_\ka), \mf b_\ka}$.  Notice that the $\alpha$th Hechler $\ka$-real, mod $2$ componentwise, is a Cohen $\ka$-real. So in the forcing we (cofinally) add $\lambda$ many Cohens, so in the extension we have, by previous resulst,  $\operatorname{cov}(\mc M_\ka)=2^\ka$. 

The point of Hechler forcing is dealing with the $\mf b_\ka$ part, i.e.\ we want to show that $\mf b_\ka^{V[G]}=(2^\ka)^{V[G]}=\lambda$. If $B$ is a subset of $\ka^\ka$ in $V[G]$ of size $<\lambda$ then, by what we saw in the previous lectures,  $B$ occurs after some initial segment of the forcing, and the next Hechler real dominates it. So $\mf b_\ka^{V[G]}=\lambda$.
\end{proof}
}%redend
{\color{blue}
Let now $\ka$ be inaccessible and $\lambda=\ka^{++}$, and recall Lemma~\ref{lemma:itercentr}. We want to show that
\begin{pr}\label{pr:inacchecler}
For any $h$ in $V[G]$ we have $b(\in^*_h)^{V[G]}=\ka^+$.
\end{pr}
\begin{question}[Open]
  What happens with $\mf b(\in^*_{\mathrm p})$?
\end{question}
\begin{lemma}
  Let $\ka$ be strongly inaccessible, $\mb P$ be $\ka$-centred and $<\ka$-closed, and $h\in \ka^\ka$. Assume $\dot \phi$ is a $\mb P$-name for an $h$-slalom. Then there are $h$-slaloms $\phi_\alpha$, for $\alpha<\ka$, in the ground model such that  if $f\in (\ka^\ka)^V$ is not localised by any $\phi_\alpha$, then 
\[
\forces_{\mb P} \dot\phi\tn{ does not localise }\check f
\]
\end{lemma}
\begin{proof}
  Let $\mb P=\bigcup_{\alpha<\ka} P_\alpha$; where each $P_\alpha$ is $(1,<\ka)$-centred. Suppose $\dot \phi$ is a $\mb P$-name for an $h$-slalom, and for $\alpha<\ka$ define
\[
\phi_\alpha(\beta)\coloneqq \set{\gamma\in \ka\mid \exists p\in P_\alpha\; p\forces \check \gamma\in\dot\phi(\check\beta)}
\]
We claim that for every $\alpha, \beta$ we have $\abs{\phi_\alpha(\beta)}\le h(\beta)$. In fact, if this does not happen we can take $h(\beta)^+$ many $\gamma$ in $\phi_\alpha(\beta)$ such that $p_\delta\in P_\alpha$ and $p_\delta\forces \check\gamma_\delta\in \dot\phi(\check\beta)$. But then\footnote{As $\ka$ is inaccessible, $h(\beta)^+<\ka$. Also, $h(\beta)^+$ is still a cardinal in the generic extension by $<\ka$-closure (the only thing we need is that $\ka$ does not collapse to $h(\beta)$).} $\set{p_\delta\mid \delta<h(\beta)^+}\ssq P_\alpha$ has cardinality $<\ka$, so those conditions have a common extension $q$. By definition of $\phi_\alpha(\beta)$, we have $q\forces \abs{\dot\phi(\check\beta)}>\check h(\check \beta)$. This contradicts the definition of $\phi$, which was supposed to be a name for an $h$-slalom. Therefore every $\phi_\alpha$ is an $h$-slalom.

If $f\in (\ka^\ka)^V$ is such that $\forall\alpha<\ka\;\exists^\ka \beta\;f(\beta)\notin \phi_\alpha(\beta)$, fix $p\in\mb P$ and $\beta_0<\ka$. Let $\alpha$ be such that $p\in P_\alpha$. Take $\beta>\beta_0$ such that $f(\beta)\notin \phi_\alpha(\beta)$, i.e.\ there is no $p'\in P_\alpha$ such that $p'\forces \check f(\check \beta)\in \dot\phi(\check\beta)$. In particular, $p\centernot\forces \check f(\check \beta)\in \dot\phi(\check\beta)$, and therefore there is $q\le p$ such that $q\forces \neg \check f(\check \beta)\in \dot\phi(\check\beta)$.
\end{proof}
\begin{proof}[Proof of Proposition~\ref{pr:inacchecler}]
For any $h$ in $V[G]$, we know that $h$ appears in an initial segment of the forcing say by stage $\alpha_0$. Consider stage $\alpha_1\coloneqq\alpha_0+\ka^+$. Then we have added $\ka^+$ many Hechler\footnote{Maybe a similar argument works with Cohen $\ka$-reals as well.} $\ka$-reals  ``since'' $V[G_{\alpha_0}]$, and a Hechler is not localised by any ground model slalom.  These $\ka^+$ many Hechlers are $\in^*$-unbounded in $V[G_{\alpha_1}]$, and by the previous Lemma they remain so in $V[G]$: any $\phi$ in $V[G]$ fails to localise them all because any $\phi$ in $V[G_{\alpha_1}]$ fails to localise more than $\ka$ many of them. To see why the last sentece is true, encode a slalom as a subset of $\ka$, look at the stage where it appears and then consider the next Hechler.
\end{proof}
Dual arguments [with the same forcing?] apply to  $\operatorname{cof}(\mc M_\ka)$  and $\mf d(\in^*)$.
}
\end{document}
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Assumptions are color coded: black (white on the board) means κ regu-
lar, red means κ<κ = κ and blue means κ inaccessible.

Cardinal characteristics of the continuum have been studied a lot, but
there is still work ongoing. E.g. it was recently shown that p = t, and there
is a recent preprint with 10 different cardinals in Chicoń’s diagram.

This course is about generalisation to higher cardinals: replace ω with κ
and finite with < κ.

We are going to start from scratch from cardinal characteristics of the
continuum in a uniform approach for what will come later.

1.1 Good References

• For classical cardinal characteristics of the continuum, Blass’s article
inside Handbook of set theory.

• For large cardinals, Kanamori’s book.

1.2 Bounding and Dominating Number

Definition 1.1 (κ regular). For functions f, g : κ → κ, write f ≤∗ g (f is
eventually dominated by g) to mean

∃α < κ ∀β ≥ κ f(β) ≤ g(β)

Remark 1.2. As κ is regular, this is equivalent to ask that f ≤ g on all but
< κ many points.

Another reason for choosing κ to be regular is because otherwise the
increasing functions wouldn’t be dense (cofinal) in this preorder.

1
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Definition 1.3. We define

bκ := min{|F| | F ⊆ κκ ∧ ∀g : κ→ κ ∃f ∈ F f 6≤∗ g}
dκ := min{|G| | G ⊆ κκ ∧ ∀f : κ→ κ ∃g ∈ G f ≤∗ g}

In other words, bκ is the least size of an unbounded set, while dκ is the
least size of a dominating set.

Remark 1.4. 6≤∗ means ¬(≤∗). Later in the course we will also consider
(¬ ≤)∗, which is a different object.

Remark 1.5. Every dominating set is unbounded. In particular, bκ ≤ dκ.

These notions can be generalised:

Definition 1.6. Suppose (P,≤) is a preorder such that1 ∀ p ∈ P ∃q ∈ P q >
p. Then U is an unbounded set iff ∀q ∈ P ∃p ∈ U p 6≤ q, and D is a
dominating set iff ∀p ∈ P ∃q ∈ D p ≤ q. We define

b(P) := min{|U | | U unbounded} d(P) := min{|D| | D dominating}

Example 1.7 (κ-meagre sets). The generalised Baire space is κκ with the
box topology, generated by sets of the form

[s] = {f ∈ κκ | f � |s| = s}

as s varies in κ<κ. Similarly, the generalised Cantor space is 2κ with the box
topology.

Remark 1.8. In κκ and 2κ

• The intersection of fewer than κ many open sets is open2.

• There is an open base of size κ, because κ<κ = κ.

• In the ω case, the Baire space ωω is a Baire space3 (definition later).

Definition 1.9. In a topological space,

• A set X is nowhere dense iff for any open set V there is an open subset
U ⊆ V such that U ∩X = ∅.

• X is κ-meagre iff it is a union of κ-many nowhere dense sets. LetMκ

be the set of κ-meagre subsets of the topological space at hand. If κ is
clear from context we may just say meagre.

1Otherwise you get boring stuff: the singleton a maximal element is a dominating set,
and there are no unbounded sets.

2This only works because κ is regular. Also, the box topology has a universal property
similar to the one enjoyed by the product topology, but subject to this requirement.

3Apparently people manage to avoid confusion even in languages with no articles.
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Remark 1.10. Mκ is a κ-ideal, since subsets of a nowhere dense sets are
nowhere dense, and the union of κ-many meagre sets is κ-meagre.

Example 1.11. Consider (Mκ,⊆). What are b and d for this partial order?

b(Mκ,⊆) = min{|U| | U ⊆ Mκ ∧ ∀Y ∈Mκ ∃X ∈ U X 6⊆ Y }

In other words, it is the least cardinality of a set of meagre sets whose union
is not meagre. This is known as the additivity add(Mκ) of the meagre
ideal. Dually, d(Mκ,⊆) is the least cardinality of a cofinal subset of Mκ,
and is denoted with cof(Mκ). Under the “red” assumptions4, add(Mκ) ≤
cof(Mκ).

Remark 1.12. The things above apply to both 2κ and κκ. But let’s say5

we are working in 2κ.

Proposition 1.13. Let (P,≤) be a preorder such that ∀p ∃q q > p. Then

b(P) = cf(b(P)) ≤ cf(d(P)) ≤ d(P) ≤ |P|

Proof. If B is unbounded with |B| = b(P) but the latter is singular, then
we can write B =

⋃
α<cf b(P)Bα, where ∀α |Bα| < b. Then we can choose

qα such that p ≤ qα for all p ∈ Bα, and {qα | α ∈ cf(b(P))} would be
unbounded, contradicting minimality of |B|.

The rest of the proof is left as an exercise.

4Also we need the non-existence of maximal elements.
5Actually, if κ is not weakly compact, the two spaces are homeomorphic.
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2.1 Singular Dominating Numbers

Question 2.1. Can d(P) be singular?

Let’s elaborate on that with an example.

Example 2.2. Let β, δ be infinite cardinals such that1 cf(β) = β ≤ cf(δ) ≤
δ = δ<β . Consider the partial order Q with underlying set β × [δ]<β and
(ρ, x) ≤ (σ, y) iff ρ ≤ σ and x ⊆ y.

Claim. b(Q) = β and d(Q) = δ.

Proof. If B ⊆ Q and |B| < β, take σ := sup{ρ | ∃x (ρ, x) ∈ B} and
let y :=

⋃
{x | ∃p (p, x) ∈ B}. Then (σ, y) is an upper bound for B, so

b(Q) ≥ β. To show equality, notice that {(α, ∅) | α < β} is unbounded.
Now suppose D ⊆ Q is a dominating set such that |D| < δ. Consider

X :=
⋃
{x | (ρ, x) ∈ D}. If δ is regular, then obviously |X| < δ. Otherwise,

by the previous Proposition, |X| ≤ |D| · β < δ. Take γ ∈ δ \ X. Then
(0, {γ}) is not dominated by any element of D, and this shows d(Q) ≥ δ.
But |Q| = β × δ<β = δ.

Definition 2.3. A function f : P→ Q is a cofinal embedding iff

• ∀p, p′ ∈ P p ≤ p′ ⇐⇒ f(p) ≤Q f(p′), and

• ∀q ∈ Q ∃p ∈ P (q ≤ f(p)).

Lemma 2.4. If f : P → Q is a cofinal embedding, then b(P) = b(Q) and
d(P) = d(Q).

Proof. Chase around unbounded or dominating sets.

1E.g. under GCH let β = ℵ1 and δ = ℵℵω2
.
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So we may try to embed our contrived example above into a more natural
object.

Theorem 2.5 (Hechler). In the case ω, if P is such that every countable
subset of P has an upper bound, then there is a forcing extension of the
universe in which P cofinally embeds into (ωω,≤∗).

Theorem 2.6 (Cummings, Shelah, κ = κ<κ). Suppose P is a well-founded
poset with b(P) ≥ κ+. Then there is a forcing D(κ,P) such that

1. D(κ,P) is κ-closed and κ+-c.c. In particular it preserves cardinals and
cofinalities.

2. V D(κ,P) � P cofinally embeds into (κκ,≤∗).

3. If V � b(P) = β, then V D(κ,P) � bκ = β

4. If V � d(P) = δ, then V D(κ,P) � dκ = δ

Lemma 2.7. Every poset has a well-founded dominating subset.

Proof. Just keep on choosing elements by induction.

Since then the inclusion map will be a cofinal embedding, the well-
foundedness hypothesis in the Theorem above is not really restrictive.

2.2 Beyond Preorders: Galois-Tukey Connections

Consider triples A = (A−, A+, A), where A is a binary with domain A−
and codomain A+, i.e. A ⊆ A− ×A+.

Definition 2.8. The norm ‖A‖ of A is defined as

‖A‖ = min{|Y | | Y ⊆ A+ ∧ ∀x ∈ A− ∃y ∈ Y (x A y)}

So, basically, ‖A‖ is d for A. In fact, another notation is d(A). What
about b? The nice thing about Galois-Tukey connections is that they allow
you to dualise things:

Definition 2.9. The dual of A is A⊥ := (A+, A−,¬Ǎ), where y Ǎ x ≡ x A y.

Pictorially, the dual of R is 6 R. Now we have, by spelling out the defini-
tions,

‖A⊥‖ = min{|Y | | Y ⊆ A− ∧ ∀x ∈ A+ ∃y ∈ Y ¬(y A x)}

and that’s exactly b(A). This is the sense in which b and d are dual.
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Definition 2.10. Amorphism Φ: A→ B is a pair of functions Φ = (Φ−,Φ+)
such that

• Φ+ : A+ → B+

• Φ− : B− → A−

• ∀a ∈ A+ ∀b ∈ B− Φ−(b) A a =⇒ b B Φ+(a).

Terminology of Vojtáš: a Galois-Tukey connection from B to A is a
morphism2 from A to B.

Exercise 2.11. If there is a morphism A → B (we write that as A � B),
then ‖A‖ ≥ ‖B‖ and ‖A⊥‖ ≤ ‖B⊥‖, i.e. d(A) ≥ d(B) and b(A) ≤ b(B).

Remark 2.12. This is easier to apply than cofinal embeddings: the condi-
tion is an “if. . . then”, not an “if and only if”.

Exercise 2.13. Express the least cardinality non(Mκ) of a non-meagre set
as b of something and the least number cov(Mκ) of meagre sets require to
cover all of κκ as d of something.

2Yes, these things do form a category.
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3.1 Examples of Triples and Morphisms

Example 3.1. D := (κκ, κκ,≤∗)

Example 3.2. Let Cof(Mκ) := (Mκ,Mκ,⊆). Then d(Mκ) = cof(Mκ)
and b(Mκ) = add(Mκ).

Solution of Exercise 2.13. Let Cov(Mκ) := (2κ,Mκ,∈). Then d(Cov(Mκ))
equals

min{|U| | U ⊆ Mκ ∧ ∀x ∈ 2κ ∃X ∈ U x ∈ X}

i.e. the least size of a set of meagre sets that covers 2κ, i.e. cov(Mκ).
On the other hand, b(Cov(Mκ)) is the least size of a non meagre set, i.e.

non(Mκ), as can be seen by writing it as

min{|Y | | Y ⊆ 2κ ∧ ∀X ∈Mκ ∃y ∈ Y y /∈ X}

Proposition 3.3. There is a morphism Φ: Cof(Mκ)→ Cov(Mκ)

Proof. We have to find maps

Φ+ : Mκ →Mκ Φ− : 2κ →Mκ

such that if Φ−(x) ⊆ Y then x ∈ Φ+(Y ). Take Φ+ = idMκ and Φ−(x) =
{x}.

From this and Exercise 2.11 we immediately get

Corollary 3.4. b(Cof) ≤ b(Cov) and d(Cof) ≥ d(Cov). In other words,
add(Mκ) ≤ non(Mκ) and cof(Mκ) ≥ cov(Mκ).

Exercise 3.5. Try to proof the above inequalities directly from the defini-
tions. It should boil down to the morphism above.

9
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Proposition 3.6. There is a morphism1 Ψ: Cof(Mκ)→ Cov(Mκ)⊥.

Proof. We have to find maps

Ψ+ : Mκ → 2κ Ψ− : Mκ →Mκ

such that if Ψ−(X) ⊆ Y then X 63 Ψ+(Y ). Let Ψ− = idMκ and let Ψ+(Y )
be any element2 y ∈ 2κ \ Y .

We therefore have the following picture, where arrows mean ≤:

non(Mκ) cof(Mκ)

add(Mκ) cov(Mκ)

b d

Example 3.7. Let E = (κκ, κκ, 6=∗), where for f, g : κ→ κ we say that f is
eventually different from g, written f 6=∗ g, if ∃α < κ ∀β ≥ α f(β) 6= g(β).

Remark 3.8. 6=∗ is symmetric, but here we are thinking of it in a “partial
order” sense. Distinguishing left and right in this context is very important.

We have∥∥∥E⊥∥∥∥ = b( 6=∗) = min{|F| | F ⊆ κκ ∧ ∀g ∈ κκ ∃f ∈ F ¬f 6=∗ g}

Recall that ¬f 6=∗ g means ∀α < κ ∃β ≥ α f(β) = g(β). Also

‖E‖ = d( 6=∗) = min{|G| | G ⊆ κκ ∧ ∀f ∈ κκ ∃g ∈ G f 6=∗ g}

Proposition 3.9. D � E .

Proof. One morphism is given by Φ+ := κκ → κκ defined as d 7→ (Φ+(d)(α) :=
d(α)+1) and Φ− : κκ → κκ the identity. If Φ−(e) ≤∗ d then e 6=∗ Φ+(d).

Proposition 3.10. D � E � Cov(Mκ)

Proof. We want Φ+ : κκ →Mκ and Φ− : κκ → κκ such that if Φ−(x) 6=∗ g
then x ∈ Φ+(g). Let Φ− = idκκ , and define

Φ+(f) := {g | g 6=∗ f}
1Recall that Cov(Mκ)⊥ = (Mκ, 2

κ, 63).
2Here we hare using the κ<κ = κ, because if 2κ turned out to be meagre. . .
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The point is that for every f ∈ κκ the set {g | g 6=∗ f} is meagre. The reason
for this is that

{g | g 6=∗ f} =
⋃
α<κ

{g | ∀β ≥ α g(β) 6= f(β)}

And each of the sets we’re taking the union of, i.e. for fixed α, is nowhere
dense, because if s ∈ κ<κ defines an open set, extend s to t ∈ κκ taking the
value f(β) on some β ≥ α.

Remark 3.11. Pay attention to the last step in the proof above, since we
are going to use similar tricks often.

As a result of the Proposition, the diagram becomes

non(Mκ) cof(Mκ)

add(Mκ) cov(Mκ)

b d

b( 6=∗)

d(6=∗)

Spoiler 3.12. We will show later that (2κ,Mκ,∈) ≡ (κκ,Mκ,∈).
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4.1 κκ vs 2κ

Claim. Meagre sets in κκ are “basically the same” as meagre sets in 2κ. More
precisely, there is an homeomorphic embedding of κκ into 2κ with comeagre
image.

Proof. Consider the function ϕ : κκ → 2κ sending f to f(0) many 0’s, then
1+f(1), many 1’s, then 1+f(2) many 0’s etc. More formally, define ϕ(f) :=⋃
α<κ sf (α), where sf : κ → 2<κ, sf (β) ⊇ sf (α) for β ≥ α is defined by

recursion by letting sf (β) be
⋃
α<β sf (α) followed by 1 + f(β) many 0’s if β

is even and nonzero, and (1 + f(β)) many 1’s if β is odd, or f(0) many 0’s
if β = 0.

This is an homeomorphism to its range. To see this, consider that the
open base set [t], for t ∈ κκ maps to [st(|t|) a r], where r is 0 if |t| is even
and 1 if |t| is odd. So our map is open. To see it is continuous, notice that
anyting in 2<κ is of the form st(|t|) a r, where r is α many 0’s or 1’s. So,
for t ∈ κ<κ, this has inverse image

⋃
1+β≥α[ta β]. Since, clearly, the map is

injective, it’s an homeomorphism to its range.
We now show that 2κ \Ran(ϕ) is meagre; to see this, let C be the set of

x ∈ 2κ such that x eventually stops alternating. We have

C =
⋃
α<κ

{x ∈ 2κ | ∀β ≥ α x(β) = 0} ∪
⋃
α<κ

{x ∈ 2κ | ∀β ≥ α x(β) = 1}

and each of the sets we are taking the union of is nowhere dense: just extend
something beyond α forcing it to be out of the set.

Therefore, up to a meagre set κκ is the same as 2κ.

Remark 4.1. There is another encoding one could use: use 1’s as separators
and put f(α) many 0’s each time. This may even be easier to work with.

Corollary 4.2. (2κ,M2κ
κ ,∈) ≡ (κκ,Mκκ

κ ,∈)

13
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Proof. To see �, let Φ+ : M2κ
κ →Mκκ

κ be ϕ−1, and let Φ− : κκ → 2κ be ϕ.
If ϕ(f) ∈ X then f ∈ ϕ−1(X), so this is a morphism.

The morphism in the other direction is given by Φ+ : Mκκ
κ →M2κ

κ being1

X 7→ ϕ”X ∪ C and Φ− : 2κ → κκ being ϕ−1 if defined, arbitrary otherwise.
If Φ−(x) ∈ Y , then x ∈ Φ+(Y ), so we are done.

The objects above were called Cov(Mκ). What about Cof(Mκ)?

Corollary 4.3. (M2κ
κ ,M2κ

κ ,⊆) ≡ (Mκκ
κ ,Mκκ

κ ,⊆)

Proof. To see �, let Φ+ be ϕ−1 and Φ− be ϕ”. Clearly, if ϕ”X ⊆ Y then
X ⊆ ϕ−1Y .

For the other direction, let Φ+ be C∪ϕ” and Φ− := ϕ−1. If ϕ−1(Y ) ⊆ X,
then Y ⊆ ϕ”X ∪ C, so we are done.

4.2 Baire’s Category Theorem

We were actually tacitly using the following result, which we are now
going to prove:

Theorem 4.4 (Baire’s Category Theorem). Every meagre set has empty
interior.

Proof. Work in2 2κ. LetX be meagre, as witnessed by writingX =
⋃
α<κXα

with Xα nowhere dense, and let ∅ 6= U ⊆ 2κ be open. We want to show that
U \X 6= ∅.

Since X0 is nowhere dense, take s0 ∈ 2<κ such that [s0] ⊆ U \X0. Take
s1 ∈ 2<κ strictly extending s0, such that [s1] ⊆ [s0] \X1. Go on like this for
successor steps, and for limit λ take sλ strictly extending

⋃
α<λ sα such that

[sλ] ⊆
[⋃

α<λ sα
]
\Xλ. Then take x =

⋃
α<κ sα. Then x ∈ U \X.

4.3 Interval Partitions

Definition 4.5. Let (iα | α < κ) be a strictly increasing, continuous se-
quence of ordinals less than κ. Then ([iα, iα+1) | α < κ) is an interval
partition. Denote the set of all interval partitions by IP.

Definition 4.6. For interval partitions I = (Iα | α < κ) and J = (Jα | α <
κ), say that I dominates J , written J ≤∗ I iff for some γ < κ and all α ≥ γ
there is a β ∈ κ such that Jβ ⊆ Iα.

In other words, eventually each Iα is big enough to contain some Jβ .

1C is the complement of the range of ϕ.
2Note that to do something similar to the classical case (“complete metric spaces”) one

should figure out what “metric” means.
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Proposition 4.7. D ≡ (IP, IP,≤∗) (recall that D := (κκ, κκ,≤∗)).

Proof. Consider Ψ1 : IP→ κκ sending

([iα, iα+1)) 7→ (γ 7→ iα+2 for the α such that γ ∈ [iα, iα + 1))

Then let Ψ2 : κκ → IP be defined as

f 7→ some J = ([jα, jα+1)) such that γ < jα =⇒ f(γ) < jα+1

Exercise 4.8. These work as Φ+ and Φ− for both directions.
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5.1 Interval Partitions and Meagreness

Definition 5.1. A κ-chopped function is a pair (x, I) with x ∈ 2κ and I an
interval partition. We say that y ∈ 2κ matches (x, I) iff for cofinally many
α ∈ κ we have y � Iα = x � Iα.

The idea is that matching is the negation of 6=∗, but in chunks.

Definition 5.2. Let

Match(x, I) := {y ∈ 2κ | y matches (x, I)}

Call M ⊆ 2κ combinatorially meagre iff there is some κ-chopped (x, I) such
that M ∩Match(x, I) = ∅.

Basically, we are thinking of Match(x, I) as the basic combinatorially
comeagre sets. The reason is the following. Consider

2κ \Match(x, I) =
⋃
α<κ

{y | ∀β ≥ α y � Iβ 6= x � Iβ}

Claim. Each set in that union is nowhere dense.

Proof. For any open set, go a little bit further and make it match some
x � Iβ .

Corollary 5.3. Combinatorially meagre sets are meagre.

Question 5.4. Does the other implication hold?

Proposition 5.5 (Blass, Hyttinen, Zhang). If κ is strongly inaccessible or
κ = ω, then meagre implies combinatorially meagre.

17
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Proof. Suppose that A is meagre, as witnessed by A =
⋃
α<kaAα, with

each Aα nowhere dense. We can wlog assume the union is increasing,
i.e. α < β ⇒ Aα ⊆ Aβ , because as κ is inaccessible or ω, in particular
κ>κ = κ. We want to construct a κ-chopped function (x, I) not matched by
any member of A.

Construct a continuous, strictly increasing sequence of ordinals iα, which
will give us the interval partition I, and a sequence σα, for α < κ, such that
σα : [iα, iα+1)→ 2. Then the concatenation (union) of the σα will be our x.

Because κ is inaccessible or ω, we can just choose iα+1 and σα such that
for all τ ∈ 2iα we have τaσα∩Aα = ∅. E.g. enumerate 2iα = {τ0, τ1, τ2, . . .},
then extend τ0 by σα0 to avoid Aα, extend τ1

a σα0 by σα1 to avoid Aα, etc,
and let σα := σα0

aσα1
aσα2

a. . .. By construction, A∩Match(x, I) = ∅.

Theorem 5.6. If κ is regular, but not strongly inaccessible and not ω, then
there is a meagre set that is not combinatorially meagre.

Proof. By hypothesis, there is some µ < κ ≤ 2µ. Say that y repeats at α
if ∀ξ < α y(ξ) = y(α + ξ). Recall that an ordinal γ is indecomposable iff γ
cannot be written as α+β for α, β < γ. In other words, γ is of the form ωα,
or 0. Defin

X := {y ∈ 2κ | y repeats at an indecomposable α ∈ [µ, κ)}

We now show that 2κ \ X is meagre but not combinatorially meagre. In
fact, X is open dense: given any sequence, extend up to the next inde-
composable ordinal and then repeat. To show that, for every (x, I), we
have X 6⊇ Match(x, I), for every (x, I) we are going to construct some
y ∈ Match(x, I) \X. First note that if J is coarser than I, then y matching
(x, J) implies that y matches (x, I), so wlog we can thin out the iα.

The iα form a club, and the indecomposables ≥ µ form another club.
Therefore, wlog every iα other than i0 = 0 is an indecomposable ≥ µ.
Proceed by induction: for the base case, on I0 ∪ I1 set y(ξ) to be 1 iff
ξ = 0, and 0 otherwise. This ensures that we do not get repetitions at
indecomposables in I0∪I1. To define y on [i2β, i2β+1) and [i2β+1, i2β+2), first
let y � [i2β+1, iβ+2) = x � [i2β+1, iβ+2), to ensure matching. Then we use
the bit on [i2β, i2β+1) to ensure there are no repetitions at indecomposables:
if α ∈ I2β is indecomposable, set y(α) = 0 to prevent repetitions at α
(because y(0) = 1); this takes care of the indecomposables in [i2β, i2β+1),
but what about the ones in [i2β+1, iβ+2)? We have not defined y yet on
(i2β, i2β + µ); by indecomposability, i2β+µ will not be indecomposable1. For
α an indecomposable in I2β+1, define fα : µ→ 2 as

fα(x) = y(α+ i2β + 1 + ξ)

1Recall that i1 is already ≥ µ.
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There are at most |i2β+2| < κ ≤ 2µ of these, so we can choose g : µ → 2
different from every fα. Then define y(i2β + 1 + ξ) := g(ξ), and define y
arbitrarily on other elements of I2β .

We are now left to check that for every α indecomposable in I2β+1 we do
not have repetition at α. Indeed, for ξ with g(ξ) 6= fα(ξ) we have

y(α+ i2β + 1 + ξ) = fα(ξ) 6= g(ξ) = y(i2β + 1 + ξ)
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6.1 Two Lemmas, One Lovely, One Not

Recall that we had D � E� Cov(Mκ), so

bκ ≤ bκ(6=∗)≤ non(Mκ)

dκ ≥ dκ(6=∗)≥ cov(Mκ)

Also, recall that if I, J are interval partitions, then I ≤∗ J means that for
all but < κ many α there is a β such that Jα ⊇ Iβ .

Note that there is an asymmetry between D and interval partitions: ≤
is a total order, ⊆ is not. But we can get around that:

Lemma 6.1. Suppose that I, J are interval partitions, and let I ′ be the
interval partition (I2β ∪ I2β+1 | β < κ). If ¬(I ′ ≥∗ J), then for cofinally
many α there is a β such that Iβ ⊆ Jα.

Proof. ¬(I ′ ≥∗ J) means that cofinally many I ′β do not contain a Jα.

•
i2β

•
i2β+1

•
i2β+2

•
i2β+3

•
i2β+4

•
i2β+5

| | | || |

If no jα is in [i2,γ , i2γ+2) we are done. If it contains one jα, we’re done
anyway (look at the picture).

Definition 6.2. Let Fn(κ, 2, κ) be the set of partial functions κ → 2 with
domain of size < κ (not necessarily an initial segment).

Lemma 6.3. There are functions Φ− : CF× IP→ ((Fn(κ, 2, κ))<κ)κ, where
CF stands for “chopped functions”, and Φ+ : IP × ((Fn(κ, 2, κ))<κ)κ → 2κ

such that if

21
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• (x, I) ∈ CF

• J ∈ IP

• y ∈ ((Fn(κ, 2, κ))<κ)κ

• cofinally many Jα contain an Iβ , (i.e. ¬(I ′ ≥∗ J))

• Φ−((x, I), J)(β) = y(β) for cofinally many β, i.e. ¬Φ−((x, I), J) 6=∗ y)

then Φ+(J, y) matches (x, I).

Spoiler 6.4. We will use this to show that non(Mκ) ≤ b(6=∗) and cov ≥
d( 6=∗) (so that will be equalities, since we already know the opposite inequal-
ities.).

Proof. First, construct Φ−. Suppose I, J ∈ IP are such that for cofinally
many α we have Jα ⊇ Iβ for some β. Let A = {αγ | γ < κ} be the
increasing enumeration of these α. For each γ < κ, let δγ be such that
Jαγ ⊇ Iδγ . Define

Φ−((x, I), J)(β) := (x � Iδγ | γ < ωβ+1)

(replace ωβ+1 with β+1 in the ω case). For other I, J , define Φ− arbitrarily.
We define Φ+ recursively, defining Φ+(J, y) � a subset of Jα for at most

one α at every stage. At stage β < κ:

• if y(β) is a sequence of length ωβ+1 (or β + 1 in the ω case) of
partial functions, all of whose domains are included in distinct Jα’s,
then choose such an α that has not been considered yet1; say Jα ⊇
dom(y(β)(γ)). Let

Φ+(J, y) � dom(y(β)(γ)) := y(β)(γ)

• if not, do nothing.

At the end, extend Φ+(J, y) arbitrarily to get a total function in 2κ.
Let’s now check that these actually work. Suppose we have (x, I), J, y as

in the hypotheses, and fix β such that Φ−((x, I), J)(β) = y(β) (by assump-
tion, there’s cofinally many of them). Then y(β) is, by definition, a length2

ωβ+1 of partial functions (x � Iδγ ) all of whose domains are contained in
distinct Jα’s. So, for some γ dependent on β,

Φ+(J, y) � Iδγ = y(β)(γ) = x � Iδγ

and different β give different α, therefore different γ. So Φ+(J, y) matches
(x, I).

1This is ok because |β| ≤ ωβ < ωβ+1.
2β + 1 in the ω case.
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Remark 6.5. In the proof above, we only needed κ to be closed under the
ℵ function, so it also works for weakly inaccessible κ. Anyway, the next
Corollary requires strong inaccessibility.

Corollary 6.6.

1. (Blass, Hyttinen, Zhang) non(Mκ) = b(6=∗)

2. (Landver) cov(Mκ) = d( 6=∗)

Proof.

1. As we already know≥, it suffices to show≤. Suppose Y ⊆ ((Fn(κ, 2, κ))<κ)κ.
By strong inaccessibility, we can identify (Fn(κ, 2, κ))<κ with κ, and
therefore the whole thing with κκ. Suppose |Y| = bκ( 6=∗) is un-
bounded with respect to 6=∗. We will use this to construct a non-
meagre set. Suppose J is a (≤∗)-unbounded family of partitions of
size bκ ≤ bκ(6=∗).

Claim. M := {Φ+(J, y) | J ∈ H, y ∈ Y} is non-meagre.

To prove the claim and conclude the proof of this point, if (x, I) is a
chopped function, since combinatorially meagre is the same as mea-
gre (by strong inaccessibility), take J ∈ J such that ¬(J ≤∗ I ′),
which exists because J is unbounded. By Lemma 6.1 we know that
Jα contains some Iβ for cofinally many α. Take y ∈ Y such that
Φ−((x, I), J)(β) = y(β) for cofinally many β; this exists because Y
is unbounded in 6=∗. By Lemma 6.3, we know that Φ+(J, y) matches
(x, I). SoM 6⊆ Match(x, I){. Now, this is true for any (x, I), and since
combinatorially meagre is the same as meagre, this tells us that M is
non-meagre. As |M | = b( 6=∗), we have non(Mκ) ≤ b(6=∗).

2. We already know ≤. Suppose X ⊆ CF is of size < d( 6=∗) ≤ d(≤∗). In
particular, we have

|{I ′ | (x, I) ∈ X}| < d(≤∗) = d(IP,≤∗)

So we can choose J ∈ IP such that Jα contains an Iβ for cofinally many
α. Identify (Fn(κ, 2, κ))κ with κ. Then, modulo this identification,

|{Φ−((x, I), J) ∈ κκ | (x, I) ∈ κ}| < d( 6=∗)

so pick y ∈ (Fn(κ, 2, κ)<κ)κ such that for all (x, I) ∈ X we have
Φ−((x, I), J)(β) = y(β) for cofinally many β.

We are therefore in a position to apply Lemma 6.3, and so Φ+(J, y) ∈
2κ matches (x, I). In particular, Φ+(J, y) /∈

⋃
(x,I)∈X 2κ \Match(x, I).

This means that {2κ \ Match(x, I) | (x, I) ∈ X} does not cover 2κ.
This shows that cov(Mκ) ≥ d(6=∗).
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7.1 bκ and bκ(6=∗)
[Proof of the second point of Corollary 6.6; written directly in the previ-

ous chapter]
Let’s update our diagram:

non(Mκ) cof(Mκ)

add(Mκ) cov(Mκ)

b d

b( 6=∗)

d(6=∗)

Question 7.1. We have bκ ≤ bκ(6=∗) and dκ ≥ dκ(6=∗). Can the inequality
be strict?

Fact 7.2. In the inequalities above,

1. If κ is ω then < is consistent in both cases

2. (Baumhauer, Goldstern, Shelah, in preparation) If κ is supercompact,
consistently bκ < non(Mκ)(= b( 6=∗)).

3. (Shealah, preprint) If κ is supercompact, consistently, (d( 6=∗) =) cov(Mκ) <
dκ.

On the other hand,

Fact 7.3. [Hyttinen] If κ is a successor cardinal, then bκ = bκ(6=∗).

Note how this could interfere with the equalities we have in the “blue”
case and the consistency results above, in the supercompact case.

25
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Fact 7.4 (Matet, Shelah). If κ is a successor and 2<κ = κ, then dκ = dκ(6=∗).

Proposition 7.5.

1. For any σ ∈ 2<κ, the set Aσ of y ∈ 2κ with no occurrences of σ, i.e.

Aσ = {y ∈ 2κ | ∀τ ∈ 2<κ τ a σ 6⊆ y}

is nowhere dense.

2. (Landver) 2<κ > κ implies that κ+ = add(Mκ) = cov(Mκ),

3. (Blass, Hyttinen, Zhang) non(Mκ) ≥ 2<κ

Proof.

1. Immediate.

2. Any 2 ∈ 2κ has only κ many < κ substrings. If λ < κ is such that
2λ > κ, take Σ ⊆ 2λ with |Σ| = κ+. Then

{Aσ | σ ∈ Σ}

is a κ+-sized covering set.

3. non(Mκ) ≥ κ holds by definition, so we may assume 2<κ > κ. Let
X ⊆ 2κ with |X| < 2<κ. We want to show that X is meagre. Let
λ < κ be such that |X| < 2λ. Then X ⊆ Aσ for some σ ∈ 2λ, which is
nowhere dense.

This allows us to consistently break the equalities seen before: using this,
we can get

Proposition 7.6. Consistently, bκ( 6=∗) < non(Mκ) and dκ( 6=∗) > cov(Mκ).

Proof. To force bκ(6=∗) < non(Mκ) start with a model of gch, let κ be
a successor and force to add κ++-many Cohen reals1. In V [G] we have
2<κ = κ++ = 2κ. So from the last point of the previous Proposition we get
that non(Mκ) = κ++. But by the Hyttinen result (Fact 7.3), bκ(6=∗) = bκ.
Since the forcing notion has c.c.c. it is κκ-bounding, i.e. any g : κ→ κ in the
extension is dominated by a h : κ→ κ in the ground model; to see this, if ġ
is a name for a function κ→ κ, for every γ ∈ κ there is a maximal antichain
of conditions p such that p 
 ġ(γ̌) = α̌, so we can just define h(γ) to be
the sup of these α’s. Then 1 
 ġ ≤ ĥ. So if B is unbounded in the ground
model, B remains unbounded int he extension. So

b( 6=∗)V [G] = bV [G]
κ = κ+ < κ++ = non(Mκ)

It is open if this can be done with 2<κ = κ.
1Real reals, i.e. subsets of ω, not κ-reals.
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8.1 More on Combinatorially Meagre Sets

Proposition 8.1. Match(x, I) ⊆ Match(y, J) if and only if for all but < κ
many intervals Iα of I there is bη such that Jβ ⊆ Iα and x � Jβ = y � Jβ .

Remark 8.2. Thinking of the sets in the first statement as as the “comeagre”
sets, the statement in terms of the “meagre” ones is 2κ \ Match(y, J) ⊆
2κ \Match(x, I).

Proof.
⇒ Suppose there are κ many intervals Iαγ such that for every Jβ con-

tained in Iαγ we have x � Jβ 6= y � Jβ . Also, assume that successive Iαγ ’s
have a Jβ in between. Define

x′(α) :=

{
x(α) if ∃γ α ∈ Iαγ
1− y(α) otherwise

To conclude, it is sufficient to show that x′ ∈ Match(x, I) \Match(y, J). It
is clear that x′ matches x on I. For the other part, if Jβ is contained in
some Iαγ , our assumption tells us that x′ /∈ Match(y, J). Otherwise, use the
assumption above to find a Jβ between two successive Iαγ ’s.
⇐ Suppose z ∈ Match(x, I). Then there are κ many I intervals Iαγ

such that z � Iαγ = x � Iαγ . For κ many γ, wlog for all γ there is β such
that Jβ ⊆ Iα and y � Jβ = x � Jβ = z � Jβ .

Definition 8.3. Say that (x, I) is engulfed by (y, J) iff1 Match(x, I) ⊇
Match(y, J).

We have seen that essentially Cof(Mκ) = (Mκ,Mκ,⊆) is equivalent to
Cof ′(Mκ) := (CF,CF, is engulfed by). The morphism from the former to

1So the complements, the “meagre” sets, are engulfed.
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28 Chapter 8. 30/10

the latter is given by

Φ+ : M 7→ some (y, J) with M ⊆ 2κ \Match(y, J)

Φ− : (x, I) 7→ 2κ \Match(x, I)

While the morphism in the other direction is given by Φ+ and Φ− swapped:
if Φ(M) is less than some “bigger” (x, I) and is engulfed by (y, J), then
M ⊆ 2κ \Match(y, J). This is a particular case of the following:

Exercise 8.4. If D is cofinal in P, then (D,D,≤) ≡ (P,P,≤).

Corollary 8.5. Cof(Mκ) � Dκ.

Proof. We know Cof(Mκ) ≡ Cof ′(Mκ) and Dκ ≡ IP. By Proposition 8.1,
if (x, I) is engulfed by (y, J), then I ≤∗ J . We can then take as morphism

Φ+ : (x, J) 7→ J Φi : I 7→ (x, I) (some x)

since what we just said say exactly that this maps give us a morphism.

Corollary 8.6. cof(Mκ) ≥ dκ and add(Mκ) ≤ bκ.

So we have the following picture

non(Mκ) cof(Mκ)

add(Mκ) cov(Mκ)

bκ dκ

b(6=∗)

d(6=∗)

Also, [someone, I missed the name] claims in a preprint that the last arrows
we added to the diagram can be black, i.e. are true just assuming regularity.

In the ω case, Chicon’s diagram also involves other posets related to the
ideal of Lebesgue null sets. The problem in the κ case is, for now, that
nobody has still come up with a suitable generalisation of the Lebesgue null
sets.

8.2 Slaloms

Definition 8.7. A slalom is a function ϕ : κ → [κ]<κ such that ∀α ϕ(α) ∈
[κ]≤|α|. If h : κ → κ is a function with limα→κ h(α) = κ, an h-slalom is a
function ϕ : κ→ [κ]<κ such that ∀α ϕ(α) ∈ [κ]≤|h(α)|.
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Definition 8.8. For f ∈ κκ, we say that f is localised at ϕ, written f ∈∗ ϕ
iff for all but < κ many α we have f(α) ∈ ϕ(α).

Proposition 8.9 (Bartzynski, κ = ω). If N is the Lebesgue null ideal,
add(N ) = b(∈∗) and cof(N ) = d(∈∗).

Definition 8.10. A partial h-slalom is a partial function ϕ : κ→ [κ]<κ with
|domϕ| = κ such that ∀α ∈ domϕ ϕ(α) ∈ [κ]≤|h(α)|. We say that f ∈∗p ϕ iff
for all but < κ many α ∈ dom(ϕ) we have f(α) ∈ ϕ(α).

Spoiler 8.11. In the ω case, we have b(∈∗) → bp(∈∗) → add(Mω). Also,
p = t→ bp(∈∗).
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9.1

The goal of today is getting the diagram here:

non(Mκ) cof(Mκ)

add(Mκ) cov(Mκ)

bκ dκ

b( 6=∗)

d(6=∗)
min

max

For convenience, think of 2κ as the group with coordinatewise addition mod-
ulo 2. Think of any σ ∈ 2<κ in 2κ as σ on its domain and 0 elsewhere. With
these conventions, B + 2<κ means {b + σ | b ∈ B, σ ∈ 2<κ}, i.e. B modulo
small differences.

Lemma 9.1 (κ regular, 2<κ = κ). Denote with NWDκ the collection of
nowhere dense sets in 2κ. There are functions

Φ+ : 2κ × κκ tpMκ 2κ ×NWDκ → κκ

such that if B ∈ NWDκ, x ∈ 2κ and f ∈ κκ are such that

• limα→κ f(α) = κ

• x /∈ B + 2κ

• f ≥∗ Φ−(x,B)

then B ⊆ Φ+(x, f).

Once we have the Lemma, we have
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Corollary 9.2. The following hold:

1. add(Mκ) ≥ min{bκ, cov(Mκ)}

2. cof(Mκ) ≤ max{dκ,non(Mκ)}

Proof.

1. If 2<κ > κ, by Proposition 7.5 we have add(Mκ) = cov(Mκ) = κ+.
If 2<κ = κ, if B ⊆ NWDκ is such that |B| < min{bκ, cov(Mκ)}, we
can find x ∈ 2κ \ (

⋃
B + 2<κ) and then f ≥∗ Φ−(x,B) for all B ∈ B.

Then for all B ∈ B we have B ⊆ Φ+(x, f), so
⋃
B is meagre.

2. Let F ⊆ κκ be dominating, X ⊆ 2κ be non-meagre. We are now going
to show that {Φ+(x, f) | f ∈ F , x ∈ X} is cofinal in Mκ. If M is
meagre, say M =

⋃
α<κ Yα, choose x ∈ X \M and f ≥∗ Φ−(x, Yα) for

all1 α. Then ∀α Yα ⊆ Φ+(x, f), so M ⊆ Φ+(x, f).

Remark 9.3. In the proof above, we used tacitly the fact that the functions
in a dominating family can be chosen to be increasing.

Corollary 9.4. add(Mκ) = min{bκ, cov(Mκ)} and cof(Mκ) = max{dκ, non(Mκ)}
and

Proof of Lemma 9.1. Enumerate 2<κ as {σα | α < κ}. For f such that
limα→κ f(α) = κ, set

Φ+(x, f) :=
⋃
α<κ

⋂
β≥α

2κ \ [(σβ + x) � f(β)]

We are now going to show that each of those intersections is nowhere dense.
If τ ∈ 2<κ, choose σβ such that σβ + x � |τ | = τ and f(β) ≥ |τ |. Then
(σβ +x) � f(β) is an extension of τ . For other f ’s, let Φ+(x, f) be arbitrary.

Let now B ∈ NWDκ and x /∈ B + 2<κ. As every nowhere dense set is
contained in a closed one, we may assume wlog that B is closed. For such
B and x Φ−(x,B)(α) to be an ordinal γ such that B ∩ [(σα + x) � γ] = ∅.
Let Φ(x,B) be arbitrary for other (x,B).

Assume x,B, f satisfy the hypotheses of the Lemma. Let y ∈ B. Then
y /∈ [(σα+x) � Φ−(x,B)(α)] by definition of Φ−. Since f ≥∗ Φ−(x,B), there
is α such that for all β ≥ α we have y ∈ 2κ \ [(σα + x) � f(β)]. But, by
definition, this means y ∈ Φ+(x, f).

1There’s only κ many of them
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10.1 On Slaloms

We would like to deal with something similar to the ideal of Lebesgue
null sets, but no one has come up with a suitable generalisation of that ideal
for general κ. So we talk about slaloms instead.

Definition 10.1. Let Loch = {ϕ : κ→ [κ]<κ | ∀α < κ |ϕ(α)| = |h(α)|}.

Remark 10.2. In the ω case requiring |ϕ(α)| ≤ |h(α)| instead does not make
a difference. But for now let us be cautious and work with the definition
above.

Notation 10.3. ∀∗α < κ means “for all but < κ many”.

Definition 10.4. For f : κ→ κ, say f ∈∗ ϕ iff ∀∗α < κ f(α) ∈ ϕ(α).

We are now going to consider bh(∈∗) and dh(∈∗).

Fact 10.5. In the ω case we have bidω(∈∗) = add(N ) and didω(∈∗) = cof(N ),
where N is the ideal of Lebesgue null sets.

In the ω case, there is a famous result stating

Fact 10.6 (Bartoszyńsky, Raissonnier, Stern). Cof(N ) � Cof(M)

Unpacking the proof Gives that Cof(N ) ≡ LOCidω := (ωω,Locidω ,∈∗),
and this induces a morphism from the latter to Cof(M).This does generalise,
so we are going to look at it.

Definition 10.7. Call pLoch the set of partial h-slaloms, and denote pLOCidω :=
(ωω,pLocidω ,∈

∗)

Proposition 10.8. LOCh � pLoch � Dκ
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Proof. For the first morphism Φ+ : Loch → pLoch is inclusion, and Φ− : κκ →
κκ is the identity.

For the second one, Φ+ : pLoch → κκ is

Φ+(ϕ)(α) sup(ϕ(least β ≥ α in domϕ))

and Φ− : κκ → κκ is the identity. To check that this works we need to
see that if Φ−(f) ∈∗p ϕ then f ≤∗ Φ+(ϕ), i.e. if f ∈∗p ϕ then f ≤∗
sup(ϕ(least β ≥ α in domϕ)). For f increasing this works. Using the fact
that the increasing f are dense, the proof can be completed.

Corollary 10.9. bh(∈∗) ≤ bh(∈∗p) ≤ bκ and dh(∈∗) ≥ dh(∈∗p) ≥ dκ.

Remark 10.10. In the ω case, dh(∈∗p) has a name too. We will come back
to that.

Lemma 10.11. For κ = λ+ we have Dκ � LOCh. So LOCh ≡ pLOCh ≡
Dκ.

Proof. For κ = λ+, |h(α)| is almost always equal to λ. Define Φ+ : κκ →
Loch as

g 7→ (α 7→ g(α) + 1 (as a set of ordinals))

This is ϕ : κ → [κ]λ = [κ]|h|(α). Then take Φ− := idκκ , and we have that if
Φ−(f) = f ≤∗ g then f ∈∗ Φ+(g) (unpacking the definitions shows that this
is equivalent to f ≤∗ g).

Proposition 10.12. Let g, h : κ → κ be such that limα→κ g(α) = κ =
limα→κ h(α). Then pLOCg ≡ pLOCh.

Proof. We will show pLOCg � pLOCh, i.e. (κκ, pLocg,∈∗p) � (κκ, pLoch,∈∗p
). Choose a strictly increasing (αγ)γ∈κ subset of domh = κ such that
h(αγ) ≥ g(γ). Define Φ− : κκ → κκ by Φ−(f)(γ) = f(αγ). Define Φ+ : pLocg →
pLoch by

dom((Φ+)(ϕ)) := {αγ | γ ∈ domϕ} Φ+(ϕ)(αγ)︸ ︷︷ ︸
∈[κ]|h(αγ )|

⊇ ϕ(γ)︸︷︷︸
∈[κ]|g(γ)|

by extending arbitrarily the set if need be. Now assume Φ−(f) ∈∗ ϕ, i.e.
∀∗γ ∈ domϕ Φ−(f)(γ) = f(αγ) ∈ ϕ(γ). Then ∀∗α ∈ dom(Φ+(ϕ)) f(α) ∈
Φ+(ϕ)(α), and ∀∗γ ∈ domϕ f(αγ) ∈ Φ+(ϕ)(αγ), as ϕ(γ) ⊆ Φ+(ϕ)(αγ).
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11.1 Towards the κ-B.R.S. Theorem

We are aiming towards showing that pLOC � COF(Mκ).

Lemma 11.1 (Main Lemma). Let X ⊆ 2κ be a non-empty open set, and
let λ < κ. Then there is a family Y of open subsets of X such that

(i) |Y| ≤ κ

(ii) Every open dense subset of 2κ includes a member of Y as a subset.

(iii) For any Y ′ ⊆ Y with |Y ′| ≤ λ we have
⋂
Y ′ 6= ∅.

[the proof was actually started in the previous lecture, but I have pre-
ferred to keep it all in one chapter]

Proof. Let (Σα)α<κ enumerate subsets of 2<κ of size < κ. This can be done
because, for each α, Σα is (induced by) a collection of σ ∈ 2<κ, and by strong
inaccessibility (2<κ)<κ = κ, so there are κ many Σα at most. For each α let
Xα =

⋃
σ∈Σα

[σ], i.e. (Xα)α lists the union of basic open sets, relative to X.
From now one, assume wlog X = 2κ. For β < κ, let

Aβ = {α | ∀σ ∈ 2β ∃τ ∈ 2<κ τ ⊇ σ ∧ τ ∈ Σα}

Now define

Y =

 ⋃
ζ<λ+

Xαζ

∣∣∣∣∣ α0 ∈ κ ∧ αζ ∈ Aβζ for ζ > 0 where βζ =
⋃
ξ<ζ

⋃
σ∈Σαξ

domσ


To help digesting what Y is, think of it as a recursive construction where
α ∈ κ is arbitrary, αζ ∈ Aβζ for ζ > 0, and βζ =

⋃
ξ<ζ

⋃
σ∈Σαξ

domσ (think
of the

⋃
as a sup).
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Note that |Y| ≤ κλ
+

= κ, so we have the first point of the thesis. For
the second one, let D ⊆ 2κ be open dense. Notice that, for any β,

{α ∈ Aβ | Xα ⊆ D} 6= ∅

because, for any fixed β, for all σ ∈ 2β we can take τσ ⊇ σ such that [τσ] ⊆ D
and then let α be such that Σα = {τσ | σ ∈ 2β}. Note that if β ≤ γ then
Aβ ⊇ Aγ . Recursively, construct αζ , for ζ < λ+, such that αζ ∈ Aβζ and
Xαζ ⊆ D. The member of Y for this construction is

⋃
ζ<λ+ Xαζ : as each

Xαζ is included in D, so is their union.
For the last point, suppose Y ′ = {Yδ | δ < λ} is given. We find a point

in the intersection through diagonalisation as follows. Suppose that

Yδ =
⋃
ζ<λ+

Xα(δ,ζ)

as per the recursive construction above, i.e. α(δ, 0) is arbitrary in κ and
α(δζ) ∈ Aβ(δ,ζ). Analogously, let

β(δ, ζ) =
⋃
ξ<ζ

⋃
σ∈Σα(δ,ξ)

domσ

Define a partial injective function η : λ+ → λ recursively by

η(0) := min{δ | ∀ε < λ β(δ, 1) ≤ β(ε, 1)}

η(ζ + 1) := min
{
δ /∈ {η(ξ) | ξ < ζ}

∣∣∣ ∀ε /∈ {η(ξ) | ξ < ζ} β(δ, ζ + 1) ≤ β(ε, ζ + 1)
}

Eventually, we run out of δ’s, so this is a function from a proper initial
segment of λ+ to λ. Specifically, if we let λ0 be such that {η(xi) | ξ < λ0} =
λ, then η a bijection1 λ0 → λ. We now sow that

⋂
Yδ 6= ∅ by recursively

constructing (σζ ∈ 2<κ | ζ < λ0) such that

• σ0 = 〈〉

• if ξ < ζ then σξ ⊆ σζ

• and σζ =
⋃
ξ<ζ σξ for limit ζ

• σζ+1 ∈ Σα(η(ζ),ζ)

• domσξ ⊆
⋃
ξ<ζ β(η(ξ), ξ + 1)

Once this is done, just let σ =
⋃
ζ<λ0

σζ , and observe that

[σ] ⊆
⋂
ζ

Xα(η(ζ),ζ) ⊆
⋂
ζ

Yη(ζ)

1Basically, the point of the all construction is that λ is the wrong ordering for Y ′, the
correct one is λ0.
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To conclude, let’s show that the construction above can actually be carried
out. For this, notice that for ξ < ζ we have β(η(ξ), ξ + 1) ≤ β(η(ζ), ξ + 1)
by minimality of η(ξ). But since β is increasing we have

β(η(ξ), ξ + 1) ≤ β(η(ζ), ξ + 1) ≤ β(η(ζ), ζ) ≤ β(η(ζ), ζ + 1)

Let’s look at the recursion defining σζ in the case ζ = 1 for simplicity. Let
σ1 ∈ Σα(η(0),0) be arbitrary. So dom(σ1) ⊆ β(η(0), 1) by definition of β. In
the general successor case, assume we have σζ as required, so

dom(σζ) ⊆
⋃
ξ<ζ

β(η(ξ), ξ + 1)

rhs is at most β(η(ζ), ζ) by (11.1). By definition, α(η(ζ), ζ) ∈ Aβ(η(ζ),ζ). So
we can find σζ+1 ∈ Σα(η(ζ),ζ) extending σζ . To conclude, just notice that by
definition of β

dom(σζ+1) ⊆ β(η(ζ), ζ + 1)

and that at limit stages the conditions are trivially satisfied.
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12.1 The κ-B.R.S. Theorem

Theorem 12.1. pLOC � Cof(Mκ), i.e. there are Φ− : Mκ → κκ and
Φ+ : pLoc→Mκ such that if Φ−(A) ∈∗ ϕ then A ⊆ Φ+(ϕ).

Proof. Identify κβ with κ; actually work with functions f : κ → κ<κ with
f(β) ∈ κβ . So, instead of κκ, work with [κ<κ]κ and partial slaloms ϕ : κ →
[κ<κ]<κ, where ϕ(β) ∈ [κβ]|β|.

Let 〈Xα | α < κ〉 be a base for the topology on 2κ. For α, β < κ, let
Yα,β := {Yα, β, γ | γ < κ} be given by the Main Lemma with Xα as X and
|β| as λ.

To define Φ−, suppose A is meagre, as witnessed by A =
⋃
α<κAα, each

Aα nowhere dense, and wlog1 Aα ⊆ Aβ for α ≤ β. As said above, we want
to define an element of (κ<κ)κ, instead of one of κκ. Stipulate that2

Aβ ∩ Yα,β,Φ−(A)(β)(α) = ∅

Such a Yα,β,Φ−(A)(β)(α) exists because Yα,β comes from the Lemma and Aβ
is nowhere dense, so its complement contains an open dense subset.

Given a partial slalom ϕ with ϕ(β) ∈ [κβ]|β|, put

Φ+(ϕ) := 2κ \
(⋂
δ<κ

⋃
β≥δ

β∈domϕ

⋃
α<β

⋂
σ∈ϕ(β)

Yα,β,σ(α)

)
Let’s show this is meagre.

⋂
σ∈ϕ(β) Yα,β,σ(α) is the intersection of |β|-many

Y ’s from Yα,β , so by the Main Lemma the intersection is a non-empty subset
of Xα. Also, it’s open, because each Y is and the open sets in this topology
is stable under intersections of size < κ. So the set⋃

β≥δ
β∈domϕ

⋃
α<β

⋂
σ∈ϕ(β)

Yα,β,σ(α)

1Exercise: the union of < κ nowhere dense subsets of 2κ is nowhere dense.
2Φ−(A)(β) should be a β-tuple, so we just need to define it on all the α < β.
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is open dense, as for each α, there is β ∈ ϕ such that β > α, and so the
union meets Xα. It follows that Φ+(ϕ) is meagre.

Now, assuming Φ−(A) ∈∗ ϕ, we need to show that A ⊆ Φ+(ϕ). As
Φ−(A) ∈∗ ϕ, there is β0 such that for all β ≥ β0 we have Φ−(A)(β) ∈ ϕ(β).
Let x ∈ A, say x ∈ Aδ for some3 δ ≥ β0. Fix β ∈ domϕ, β ≥ δ. For
α < β, we have x /∈ Yα,β,Φ−(A)(β)(α) by choice of Φ−. In particular, x /∈⋂
σ∈ϕ(β) Yα,β,σ(α). As this holds for all α < β and β ≥ δ, we have

x /∈
⋃
β≥δ

β∈domϕ

⋃
α<β

⋂
σ∈ϕ(β)

Yα,β,σ(α)

So x is not in the intersection as δ varies, i.e. x ∈ Φ+(ϕ).

Corollary 12.2. b(∈∗p) ≤ add(Mκ) and d(∈∗p) ≥ cof(Mκ).

So for inaccessibles we have

non(Mκ) cof(Mκ) d(∈∗p)

d(∈∗)

b(∈∗p)

b(∈∗)

add(Mκ) cov(Mκ)

bκ dκ

b(6=∗)

d(6=∗)

Question 12.3. Is b(∈∗p) < add(Mκ) consistent? It is know to be in the
case ω, but the proof uses a rank argument with Heckler forcing, that does
not generalise well to the inaccessible case.

3As the union is increasing, then x ∈ Aβ for all β ≥ δ.
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13.1 Iterated Forcing – Basic Facts

We are going to assume familiarity with the basics of forcing.

Question 13.1. How to force GCH while preserving inaccessibles?

References:

1. Cummings1, Iterated forcing and elementary embeddings, inside Hand-
book of set theory.

2. Baumgartner, Iterated forcing, Surveys in Set Theory. Beware of the
fact that the notation here is oldish.

Definition 13.2. Let κ be an infinite cardinal, and λ > κ an ordinal. Cohen
forcing is defined as

Add(κ, λ) := {p | p partial function κ× λ→ 2, |p| < κ}

ordered by reverse inclusion, i.e. p ≤ q iff p ⊇ q.

Another notation for Add(κ, λ), e.g. in Kunen’s book, is Fnκ(κ× λ, 2).

Definition 13.3 (Closure properties). Let P be a forcing notion and κ an
infinite cardinal. We say that

1. P is κ-closed iff every decreasing sequence of length < κ has a lower
bound.

2. P is κ-directed closed iff every downward directed subset of P of size
< κ has a lower bound.

3. P is κ-distributive iff for all generic filter G, for all λ < κ every function
f : λ→ V in V [G] exists already in V .

1Check his web page.
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Remark 13.4. If P is separative, then P is κ-distributive if and only if the
intersection of < κ-many open dense subsets of P is open dense.

Remark 13.5. In this list of properties of P, each one implies the next one:

1. being κ-directed closed

2. being κ-closed

3. being κ-distributive

4. preserving cardinals ≤ κ.

Moreover, the first two implications are strict.

Example 13.6. Add(κ, λ) is κ-directed closed.

Proposition 13.7. For κ infinite regular cardinal, Add(κ+, 1) forces 2κ =
κ+.

Proof. Add(κ+, 1) is κ+-closed, so it does not add any new subset of κ. Let
G ⊆ κ+ be the new set added, i.e. the union of the generic filter. For any
A ⊆ κ, it is dense to find a segment in G that looks like A. More formally,
for any A this set is dense:

DA := {p ∈ P | ∃α < κ+ p � [α, α+ )̨ codes A}

where “codes A” means that if you look at that function it is the characteristic
function of A translated by α. As G intersects all of these, the function
f : κ+ →P(κ) defined by f(α) = G ∩ [α, α+ κ) is surjective.

Another way of showing this is proving that that forcing notion is iso-
morphic to Add(κ+, 2κ).

Remark 13.8. Add(κ, λ) is (2<κ)+-c.c. If κ<κ = κ, then Add(κ, λ) has the
κ+-c.c, so it preserves cardinals ≥ κ+.

Let’s look at a two-step iteration: we want to do forcing a second time
in the forcing extension; the point is that the poset we force with the second
time may be in V [G] \ V , yet we want to be able to speak of this directly
from the point of view of V .

Definition 13.9 (Two-Step Iteration). Suppose P is a forcing notion, and

P Q̇ is a forcing notion. We define

P ∗ Q̇ := {(p, q̇) | p ∈ P,
P q̇ ∈ Q̇}

(pre2)ordered in the following way

(p1, q̇1) ≤ (p2, q̇2) ⇐⇒ p1 ≤ p2 ∧ p1 
 q̇1 ≤̇ q̇2

2See later.
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There is a variant where you replace 
P q̇ ∈ Q̇ with p 
P q̇ ∈ Q̇, but they
turn out the be equivalent.

There are some issues to address here, anyway:

1. P ∗ Q̇ can be a proper class. This is solved by choosing q̇ as a rep-
resentative for some equivalence class3, e.g. the name with the least
rank.

2. Actually, the ≤ we defined is not antisymmetric. This is solved by
using preorders instead of posets4.

Definition 13.10. P is an α-iteration, also denoted Pα, iff P = ((Pβ | β ≤
α), (Qβ | β < α)) and for all β < α

1. Pβ is a forcing notion whose elements are β-sequences

2. if p ∈ Pβ and γ < β, then p � γ ∈ Pγ

3. If β < α, then 
Pβ Q̇β is a forcing notion

4. If p ∈ Pβ and γ < β, then p(γ) is a Pγ-name for an element of Q̇γ

5. Pβ+1
∼= Pβ ∗ Q̇β (the isomorphism is canonical)

6. for all p, q ∈ Pβ we have p ≤Pβ q iff ∀γ < β p � γ 
Pγ p(γ) ≤Q̇γ q(γ)

7. for all γ ≤ β we have5 1Pβ (γ) = 1̇Qγ

8. if p ∈ Pβ , γ < β and q ≤Pγ p � γ then q a p � [γ, β) ∈ Pβ .

Remark 13.11. As a consequence of the definition, if G ⊆ P is a generic
filter, then Gβ := {p � β | p ∈ G} is a generic filter for Pβ and gβ :=
{(p(β))Gβ | p ∈ G} is a generic filter for (Q̇β)Gβ .

Definition 13.12. If p ∈ P, the support of p is defined by

supp(p) := {β < α | p(β) 6= 1̇Qβ}

Definition 13.13. Suppose λ ≤ α is a limit stage.

• Pλ is the inverse limit of {Pγ | γ < λ} iff

Pλ = {p | p is a λ-sequence, ∀γ < λ p � γ ∈ Pγ}

• Pλ is the direct limit of {Pγ | γ < λ} iff

Pλ = {p | p is a λ-sequence,∀γ < λ p � γ ∈ Pγ , and ∃β < λ ∀γ ≥ β p(γ) = 1̇Qγ}
3The equivalence relation is “1 forces the conditions to be equal”
4Or one could take quotients.
5In preorders we may have more equivalent maximal elements. We distinguish one.
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• We say we use < κ-support iff inverse limits are taken at stages of
cofinality κ and direct limits at cofinality ≥ κ

• We say we use Easton support iff inverse limits are take at singular
limit stages, and direct lmits are taken at regular limit stages.
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Proposition 14.1. Suppose Pα = P is the direct limit of {Pβ | β < α}, κ
regular > ω. If

• ∀β < α, Pβ has the κ-c.c.

• if cf(α) = κ then direct limits are taken at a stationary subset of α

Then Pα has the κ-c.c.

Proposition 14.2. If P has the κ-c.c. and 
P Q̇ has the κ-c.c., then P ∗ Q̇
has the κ-c.c.

Proposition 14.3. Let κ be regular, κ > ω, Pα as in Definition 13.10. If

• ∀β < α 
Pβ Q̇β is κ-directed closed

• all limits are either inverse or direct and inverse limits are taken at
stages of cofinality < κ

then Pα is κ-directed closed.

14.1 Factoring an iteration

Let β < α. If p ∈ Pα, let pβ = p � {γ | β ≤ γ < α}. Let Pβα = {pβ |
p ∈ Pα}. If Gβ ⊆ Pβ is V -generic, then pβ ≤ qβ iff ∃r ∈ Gβ such that
r ∪ pβ ≤Pα r ∪ qβ . Let Ṗ≥β ≡ Ṗβα ≡ Ṗ[β,α) be a Pβ-name for Pβα.

Proposition 14.4. Pα ∼= Pβ ∗ Ṗ≥β .

Proposition 14.5. 
Pβ Ṗ≥β is (isomorphic to) an (α − β)-iteration (i.e.
defines on {γ | β ≤ γ < α})

Proposition 14.6. Let κ > ω be regular. If
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• every A ⊆ Ord of size < κ in the forcing extension by Pβ , is covered
by a set B ⊆ Ord, B ∈ V , |B| < κ

• ∀β ≤ γ < α 
Pγ Q̇γ is κ-directed closed.

• inverse limits are taken at stages of cofinality < κ

then 
Pβ Ṗβα is κ-directed closed (also for κ-closed).

Proposition 14.7. If κ is inaccessible, Pκ is a κ-iteration and

• ∀α < κ Q̇α ∈ Vκ

• a direct imit is taken at κ and at a stationary subset of stages < κ

then Pκ ⊆ Vκ, Pκ is κ-c.c. and ∀α < κ for Pκ ∼= Ṗα ∗ Ṗ≥α, Ṗ≥α is forced to
be κ-c.c. and to have size κ.

Definition 14.8. The GCH forcing is the (class) iteration P = 〈〈Pα | α ∈
Ord〉, 〈Q̇α | α ∈ Ord〉〉 with Easton support such that ∀α ∈ Ord, if Pα
has been defined and 
Pα α is a cardinal, then let Q̇α be a Pα-name for
Add(α+, 1); otherwise let Q̇α name the trivial forcing1.

Theorem 14.9. After forcing with P, GCH holds and all inaccessible cardi-
nals are preserved.

Proof. One should take care of the extra technicalities in class forcing; in
this case everything works fine and we skip those details.

Let G ⊆ P be a V -generic filter. To see that GCH holds, let α be a
cardinal in V [G]. Split P ∼= Pα ∗ Ṗ≥α, so V [Gα] is a sub-universe of V [G].
Now, α is still a cardinal in V [Gα]. But then the next step forces GCH at
α, i.e. V [Gα+1] � 2α = α+. By two of the previous propositions, Ṗ≥α is
α+-directed closed, hence α+-distributive, so 2α = α+ still holds in V [G].

Now suppose κ is inaccessible in V . Suppose that κ is not regular in
V [G], and let λ = cf(κ) < κ. Split P ∼= Pλ ∗ Ṗ≥λ. As Pλ has size < κ,
it cannot change cof(κ), and as Ṗ≥λ is λ+-closed it cannot collapse cof(κ).
This is a contradiction, so κ is still regular in V [G]. Suppose now that κ is
not strong limit anymore in V [G], and let λ < κ be such that 2λ ≥ κ. Split
P ∼= Pλ ∗ Ṗ≥λ. Now Pλ is too small to force 2λ ≥ κ, and Ṗ≥λ is λ+-closed, so
it does not add any new subsets to λ, resulting in a contradiction.

Remark 14.10. As being inaccessible is downward absolute, forcing cannot
create new inaccessibles.

1The poset with just one element.
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Work with κ = ω. Today we want to prove add(N ) = b(∈∗), where N is
the idea of Lebesgue null sets. We need this fact:

Theorem 15.1. add(N ) ≤ b.

Definition 15.2 (B Beware: non-standard notation B). For this lecture1,
let a converging series be some f : ω → Q≥0 such that

∑
i∈ω f(i) <∞, and

let h be the least cardinality of a set of converging series such that no one
converging series dominates (summand-wise in all but finitely often places)
all of them.

Proposition 15.3. add(N ) ≥ h.

Proof. Take a family {Gξ | ξ < λ < h} of Lebesgue null sets. We want to
show that

⋃
ξ<λGξ is Lebesgue null. As Gξ is Lebesgue null, it as a subset

of ⋂
n∈ω

⋃
m>n

Iξm

where the Iξm are some intervals with rational endpoints such that
∑∞

m=1 µ(Iξm) <
∞. Fix an enumeration (In)n∈ω of the intervals with rational endpoints and
define

fξ(n) :=

{
1 if ∃m In = Iξn
0 otherwise

So we have ∑
n∈ω

fξ(n) · µ(In) <∞

As these are converging series and there are λ < h of them, we can dominate
(summand-wise, all but finite) all of these, and clearly we can assume that

1Usually both “series” and “h” mean something else.
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the dominating series is the product of a {0, 1}-function, say f ∈ 2ω, with
µ(In). Take

G :=
⋂
n∈ω

⋃
m>n
f(m)=1

Im

Then we have
Gξ ⊆

⋂
n

⋃
m>n

Iξn ⊆ G

and this shows h ≤ add(N ).
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[what follows was actually started in the previous lecture, but I have
preferred to keep it all in one chapter]

We now want to show that h ≥ add(N ). We need the following fact.

Proposition 16.1. The following are equivalent:

1. κ < h

2. Any set of κ many functions f : ω → ω is localised by an n 7→ n2-
slalom.

3. κ < b and for any set of κ many functions ω → ω and any g : ω →
ω such that

∑
n

1
g(n) < ∞ dominating them all there is a slalom ϕ

localising them all with
∑

n∈ω
|ϕ(n)|
g(n) <∞.

Proof.
2⇒ 1 Let F = {fξ | ξ < κ} be a set of converging series of size κ, i.e.

for all ξ < κ we have fξ : ω → Q>0 and
∑

n∈ω fξ(n) < ∞. Define, for each
ξ, a sequence 〈nξk | k ∈ ω〉 such that

∀k
∞∑
i>nξk

fξ(i) < 2−k

By assumption, there is w : ω → ω that dominates all of these sequences
k 7→ nξk. Define f ′ξ(k) := fξ � [w(k), w(k + 1)) ∈ ω<ω. Identify ω<ω with ω,
and use the hypothesis again to get a slalom ϕ such that for all k we have
|ϕ(k)| ≤ k2 and for all ξ < κ we have f ′ξ ∈∗ ϕ. Define f : ω → Q≥0 by

f(n) := sup

s(n)

∣∣∣∣∣ s ∈ ϕ(k) for the k s.t. n ∈ [w(k), w(k + 1)) and
w(k+1)−1∑
i=w(k)

s(i) < 2−k


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(the idea is keeping track of the fact that n is in [w(k), w(k + 1))). So∑
n∈ω

f(n) ≤
∑
k∈ω

values in the k-inteval ≤
∑
k∈ω

k22−k <∞

1⇒ 2 Suppose we have κ < h many functions ω → ω, say fξ for
ξ < κ. Define aξ : ω → Q≥0 as

aξ(n) =

{
max{1/k2 | fξ(k) = n} if 6= ∅
0 otherwise

Since κ < h, by definition there is a(n) such that
∑

n a(n) < ∞ that
eventually dominates every aξ. Assume wlog that

∑
n a(n) < 1, and let

ϕ(k) = {n | a(n) ≥ k−2}. As
∑

n a(n) < 1, for every k we have |ϕ(k)| < k2,
and so where aξ is dominated by a, fξ is guessed by ϕ.

3⇒ 2 Take any set F of κ many functions ω → ω. As κ < b by
hypothesis, there is f : ω → ω dominating everything in F . Let (kn)n∈ω
be such that ∀n kn/f(n) = n−2. For g ∈ ωω, define g′ ∈ ωω by repeating
g(ki) times the value g(i): start with1 k1 times g(1), then k2 times g(2), etc.
As the elements of {e′ | e ∈ F} are all dominated by f ′ and

∑
n 1/f(n) =∑

m∈ω\{0} 1/m2 < ∞ we can apply our hypothesis and get a slalom ϕ with
those properties. Take ψm = ϕ(`) of least cardinality amongst those for ` in
the km interval. Then we have

∞ >
∑
n

|ϕ(n)|
f ′(n)

≥
∑
n

kn|ψn|
f(n)

=
∑
n

|ψn|
n2

In particular, we almost always have |ψn|/n2 < 1.
1⇒ 3 We will not see the proof of this part, as we are not going to

need it in what follows.

Corollary 16.2. h = bn7→n2(∈∗).

Proof. This is 1⇔ 2 in Proposition 16.1.

Proposition 16.3. If κ < add(N ) then condition 3 in Proposition 16.1
holds.

Proof. By Theorem 15.1, we know κ < b. Take F ⊆ ωω with |F | = κ
and f dominating everything in F with

∑
n 1/f(n) < ∞. Consider X :=∏

n∈ω f(n), where we think of f(n) as the set of ordinals less than f(n).
Every g ∈ X is by definition dominated by f , so we can define Hg := {x ∈

1We do not start with 0 because of kn/f(n) = n−2.
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X | ∃∞n x(n) = g(n)}. Equip each f(n) with the equidistributed probability
measure and let µ be the induced product measure on X. We have

µ(Hg) = µ

(⋂
n

⋃
m>n

{x ∈ X | x(m) = g(m)}

)

≤ µ

( ⋃
m>n

{x ∈ X | x(m) = g(m)}

)
≤
∑
m>n

1

f(m)

n→∞−−−→ 0

Therefore2 µ(Hg) = 0. As
⋃
e∈F He is null, we can take a tree3 T such that

its set of branches [T ] has positive measure above every node (16.1)

and [T ] ∩
⋃
e∈F He = ∅. Define T (n) := {x(n) | x ∈ [T ]} and Ts := {t ∈ T |

s ≤ t}.

Claim. ∀e ∈ F ∃s ∈ T ∀n > h(s) e(n) /∈ Ts(n)

Suppose the Claim was false, as witnessed by e. Then there is x ∈ [T ]
such that ∃∞n x(n) = e(n). But then x ∈ [T ]∩He, contradicting the choice
of T and proving the Claim.

For each e ∈ F , let s ∈ T be given by the Claim. List the s’s as s1, s2, . . .,
and denote ϕn(m) = Tsn(m). Then, by (16.1),

∞∏
m=1

|ϕn(m)|
f(m)

> 0

Modify the first few ϕn(m)’s if necessary, to get

∞∏
m=1

|ϕn(m)|
f(m)

> 1− 2−n−1

and let ϕ(m) :=
⋂
n ϕn(m). We now have

∞∏
m=1

|ϕ(m)|
f(m)

> 0

and ψn := f(n) \ ϕ(n) is the slalom we were looking for.

Corollary 16.4. add(N ) ≤ h.

Proof. By 3⇒ 1 in Proposition 16.1.

2It is an instance of Borel-Cantelli.
3In X.
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Remember that Chicon’s diagram, without assuming inaccessibility, is

non(Mκ) cof(Mκ)

add(Mκ) cov(Mκ)

b d

b( 6=∗)

d(6=∗)

Today we want to see what happens to Chicon’s diagram after Cohen forcing.

Theorem 17.1 (κ = κ<κ). If λ > κ+ is such that λκ = κ, the poset
Add(κ, λ) forces non(Mκ) = κ+ and cov(Mκ) = 2κ = λ. In particular,
Chicon’s diagram splits as follows, where everything in the left part is κ+

and everything in the right part is λ = 2κ

non(Mκ) cof(Mκ)

add(Mκ) cov(Mκ)

b d

b( 6=∗)

d( 6=∗)

d(∈∗p)

d(∈∗)

b(∈∗p)

b(∈∗)

Before the proof, we need some preliminaries.
Recall that Add(κ, λ) is the poset of partial functions from κ×λ to κ with

|dom| < κ. Equivalently, it is a λ-fold product of Add(κ, 1) with< κ support.
As Add(κ, 1) is κ-directed-closed, it adds no new subsets of ordinals < κ.
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Equivalently it is, up to forcing equivalence, a λ-length iteration of Add(κ, 1)
with < κ support.

Fact 17.2. Add(κ, λ) has the κ+-c.c. (This uses κ<κ = κ).

Proof. Exercise: re-read the ∆-system Lemma from Kunen (II-.1.6. in the
original edition, 49 in some other one).

Lemma 17.3. If µ < λ and X ⊆ µ in the Add(κ, λ)-generic extension, then
there is a subset B of λ of size at most µ such that X is already added by
Add(κ,B).

Proof. Every such X has a “nice name” of the form⋃
α<µ

{(α̌, p) | p ∈ Aα}

where each Aα is an antichain. Each p has |dom(p)| < κ, and Add(κ, λ) has
the κ+-c.c, so letting

B :=
⋃
α<µ

⋃
p∈Aα

dom(p)

we have |B| ≤ µ, and X is completely determined by the B coordinates of
the forcing.

Remark 17.4. If µ = κ, since λκ = λ there are only λ many such nice
names, so (2κ)Add(κ,λ) ≤ λ. Also, each coordinate gives a different subset of
κ, so (2κ)Add(κ,λ) ≥ λ.
Proof of Theorem 17.1. For any nowhere dense setX ⊆ 2κ there is f : 2<κ →
2<κ such that ∀σ ∈ 2<ka f(σ) ⊇ σ and

X ⊆ {s ∈ 2κ | ∀σ ∈ 2<κ f(σ) 6⊆ x︸ ︷︷ ︸
x/∈[f(σ)]

} :=Af

Let f : 2<κ → 2<κ be such that ∀σ f(σ) ⊇ σ in the Add(κ, λ)-generic
extension1. By our assumptions |2<κ| = κ, so by the previous Lemma there
is a set Bf of size κ such that f is added by Add(κ,Bf ). Moreover, for
β /∈ Bf , the β coordinate Cohen subset cβ of κ is not in Af in the extension,
by a genericity argument. Namely, split the poset as a product of Bf with
all the rest and think of it as a two-step extension, and notice that it is dense
for cβ to include some f(σ). So now if we have X a set of nowhere dense
sets of the form Af in the Add(κ, λ)-generic extension with2 |X | < λ, then∣∣∣∣∣ ⋃

f∈X
Bf︸ ︷︷ ︸:=B

∣∣∣∣∣ < λ

1Note that 2<κ is unchanged in the generic extension.
2One can also show (exercise) that it is possible to find a name for X of cardinality

< λ.
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and therefore any β /∈ B has cβ /∈
⋃
f∈X Af . This shows that in the extension

cov(Mκ) ≥ λ, and as 2κ = λ we have equality.
To conclude, we need to show that non(Mκ) ≤ κ+. We explicitly give a

non-meagre set of size κ+, namely3

{cβ | β < κ+}

To see this is non-meagre, consider any κ many nowhere dense sets Af in
the extension. By the previous Lemma there is B ⊆ λ adding all of them
and with |B| = κ. Take β ∈ κ+ \B. Then cβ /∈

⋃
Af , and so {cβ | β < κ+}

is not contained in any (extension) meagre set.

3Or any κ+-size subset of the λ-many Cohen reals we added.





Chapter 18

04/11

18.1 Hechler Forcing

Definition 18.1 (1-step version). The conditions of (H,≤) are pairs (s, f)
such that

• s ∈ κ<κ

• f ∈ κκ

• s is an initial segment of f ; we denote this with s v f

The order is (s, f) ≥ (t, g) iff1 t w s and ∀α g(α) ≥ f(α).

Remark 18.2. Note that in particular t dominates s on dom s.

We can think of conditions as a “stem” s and a “promise” f .

Definition 18.3. A partial order P is

• (1, < κ)-centred iff every < κ many conditions have a common exten-
sion;

• (λ,< κ)-centred iff P =
⋃
α<λ Pα, where each Pα is (1, < κ)-centred;

• κ-centred iff it is (κ,< κ)-centred.

Example 18.4. Hechler forcing at κ is κ-centred.

Proof. Each “stem” defined a Pα, i.e. for all s ∈ κ<κ the set {(s, f) | f ∈ κκ}
is (1, < κ)-centred: just take the supremum of the f ’s, which can be done as
we have < κ of them.

Remark 18.5. If P is κ-centred, then P is κ+-c.c.
1Again, this means that t is an initial segment of s.
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The following notion is not needed in the ω case, but it is necessary in
general to deal with small cofinality limit stages.

Definition 18.6. Assume P is (<)κ closed and κ-centred, say P =
⋃
γ<κ Pγ ,

where each Pγ is (1, < ka)-centred. We say that P is κ-centred with canonical
lower bounds iff there is fP : κ<κ → κ such that whenever λ < κ and (pα |
α < λ) is a decreasing sequence from P with pα ∈ Pγα , there is p ∈ PfP(γα|α<λ)

such that for all α < λ we have p ≤ pα.

Example 18.7. For Hechler forcing, if pα = (sα, fα) and pβ ≤ pα, then
sβ w sα, so we can take

fH : (s0, s1, s2, . . . , sα, . . . | α < λ) 7→
⋃
α<λ

sα

Fact 18.8. Hechler forcing adds a function hκ → κ eventually dominating
all ground model functions: it is dense for (s, f) to have f ≥∗ g for any given
g, so we can just take h =

⋃
(s,f)∈G s.

18.2 Slalom Forcing

Definition 18.9. Define (Sh,≤) to as have conditions pairs (s,F) such that

• there is λ < κ such that s : λ[κ]<κ and |s(α)| ≤ h(α)

• F is a set of functions κ→ κ of size h(λ)

The order is (s,F) ≥ (t,G) iff

• t ⊇ s, G ⊇ F , and

• ∀α ∈ dom t \ dom s ∀f ∈ mcF f(α) ∈ t(α).

Think of F as a “promise to localise all f in F hereafter”. And in fact,

Fact 18.10.
⋃

(s,F)∈G s is a slalom localising all ground model functions.

Note that the requirement of F gets in the way of κ-centredness: the
point is that the domain of a common extension of a family actually depends
on the stems, and not just on their domains. This is where partial slaloms
are more handy to manage.

Definition 18.11. Partial h-slalom forcing is defined analogously, except s
can be partial and F can have any size < κ.

Proposition 18.12. This is κ-centred with canonical lower bounds.
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Proof. You can now take the union of the promises and just keep the same
stem: we can extend that later.

Lemma 18.13. Suppose (Pα,Qα | α < µ) is an iteration of κ-closed, κ-
centred with canonical lower bounds forcings Qα with < κ support and such
that for each α the function fQ̇α is in the ground model2 and 1Pα 
 Q̇α =⋃
γ<κ Q̇α,γ . Then the set of conditions p ∈ Pµ such that for all β ∈ supp(p)

there is γ < κ such that p � β 
 p(β) ∈ Qβ,γ̌ is dense.

In other words, it is dense that for everything in the support the stem
lives in the ground model (or: it is dense to choose a stem).

Proof Sketch. Given p ∈ P, list supp(p) as (βδ | δ < |supp(p)|) such that each
β ∈ supp(p) appears cofinally often3. Go through, at stage δ, extending to
get pδ(βδ) in a specific Qβδ,γ .

2The original ground model.
3Here we are assuming that the support is infinite. If it is not, extend arbitrarily. In

the ω case, conditions have finite support, so take the maximum β in the support, [extend
that?] and go backwards.
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19.1 Iterations of Centred Forcings

Lemma 19.1. Let µ < (2κ)+ be an ordinal. Assume (Pα, Q̇α is an iteration
of length µ with < κ supports of (< κ-closed) κ-centred with canonical lower
bounds forcings Qα such that the functions fQ̇α are in the ground model.
Then Pµ is < κ-closed and (forcing equivalent to something) κ-centred (so,
in particular, κ+-c.c.).

Proof. κ-closure is standard. To see it is κ-centred, take an injection f : µ→
2κ. Let F be the collection of all functions F such that there is δF < κ such
that

• domF ⊆ 2δF

• |domF | < κ

• codomainF = κ

These will correspond to the “stems”, and partition our iteration. Since
κ<κ = κ, we have1 |F| = κ. Define the partition piece for F as

PF := {p ∈ Pµ | ∀β ∈ supp(p) f(β) � δF ∈ domF∧p � β 
 p(β) ∈ Q̇β,F (f(β)�δF )}

We now just need to show that

1. each PF is (1, < κ)-centred, and

2.
⋃
F∈F PF is dense2 in Pµ

1use that then 2δF ≤ κ.
2Which is enough up to forcing equivalence.
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For the first part, assume we have λ < κ many elements pξ of PF . We find
a common extension p � β by recursion in β < µ. If ∀ξ < λ β /∈ supp(pξ),
then take p(β) = 1. If β ∈ supp(pξ), then3

p � β 
 pξ(β) ∈ Q̇β,F (f(β)�δF )

Since Q̇β,F (f(β)�δF ) is (1, < κ)-centred, there is a (forced by p � β to be)
common extension, call it p(β). As we only had λ < κ many pξ to consider
and each had size < κ, the support of p has size < κ.

For the second part, let p ∈ Pµ; up to extending it, assume it wlog to
be as per Lemma 18.13. Since |supp(p)| < κ. By the identification given
by f , think of this as < κ many κ-length bit strings, all different, and find
δ < κ such that ∀β, γ ∈ supp(p) f(β) � δ 6= f(γ) � δ. This is our δF .
Let F ∈ F be the function with domain {f(β) � δ | β ∈ supp(p)} such
that ∀β ∈ supp(p) F (f(β) � δ) := ιβ , where p � β 
 p(β) ∈ Q̇β,ιβ . Then
p ∈ PF .

19.2 Iterations of Hechler Forcing

We saw that κ-Hechler forcing is < κ-closed and κ-centred with canonical
lower bounds. We want to do a long iteration of it.

Let λ ≥ κ+ be regular, and consider a λ-length iteration of κ-Hechler
forcing. If λ is big enough, it will not be κ-centred anymore, but it will still
be κ+-c.c: use Lemma 18.13 and a ∆ system argument.

Exercise 19.2 (Prove this by the 12th of January as second part of the
assessment for this course.). Prove this.

3It is forced by pξ, and p � β is a common extension of all of them.
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20.1 Iterations of Hechler Forcing, continued

Take λ ≥ κ+ regular. Take a < κ-support iteration of Hechler forcing of
length λ. We already said that this is κ-closed and κ+-c.c.

Start with GCH and have λ > κ+.

Proposition 20.1. This forcing makes add(Mκ) = 2κ = λ.

Proof. We showed (Corollary 9.2) that add(Mκ) ≥ min{cov(Mκ), bκ}. No-
tice that the αth Hechler κ-real, mod 2 componentwise, is a Cohen κ-real.
So in the forcing we (cofinally) add λ many Cohens, so in the extension we
have, by previous resulst, cov(Mκ) = 2κ.

The point of Hechler forcing is dealing with the bκ part, i.e. we want
to show that b

V [G]
κ = (2κ)V [G] = λ. If B is a subset of κκ in V [G] of size

< λ then, by what we saw in the previous lectures, B occurs after some
initial segment of the forcing, and the next Hechler real dominates it. So
b
V [G]
κ = λ.

Let now κ be inaccessible and λ = κ++, and recall Lemma 19.1. We
want to show that

Proposition 20.2. For any h in V [G] we have b(∈∗h)V [G] = κ+.

Question 20.3 (Open). What happens with b(∈∗p)?

Lemma 20.4. Let κ be strongly inaccessible, P be κ-centred and < κ-closed,
and h ∈ κκ. Assume ϕ̇ is a P-name for an h-slalom. Then there are h-slaloms
ϕα, for α < κ, in the ground model such that if f ∈ (κκ)V is not localised
by any ϕα, then


P ϕ̇ does not localise f̌
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Proof. Let P =
⋃
α<κ Pα; where each Pα is (1, < κ)-centred. Suppose ϕ̇ is a

P-name for an h-slalom, and for α < κ define

ϕα(β) := {γ ∈ κ | ∃p ∈ Pα p 
 γ̌ ∈ ϕ̇(β̌)}

We claim that for every α, β we have |ϕα(β)| ≤ h(β). In fact, if this does
not happen we can take h(β)+ many γ in ϕα(β) such that pδ ∈ Pα and
pδ 
 γ̌δ ∈ ϕ̇(β̌). But then1 {pδ | δ < h(β)+} ⊆ Pα has cardinality < κ,
so those conditions have a common extension q. By definition of ϕα(β), we
have q 
 |ϕ̇(β̌)| > ȟ(β̌). This contradicts the definition of ϕ, which was
supposed to be a name for an h-slalom. Therefore every ϕα is an h-slalom.

If f ∈ (κκ)V is such that ∀α < κ ∃κβ f(β) /∈ ϕα(β), fix p ∈ P and β0 < κ.
Let α be such that p ∈ Pα. Take β > β0 such that f(β) /∈ ϕα(β), i.e. there
is no p′ ∈ Pα such that p′ 
 f̌(β̌) ∈ ϕ̇(β̌). In particular, p 6
 f̌(β̌) ∈ ϕ̇(β̌),
and therefore there is q ≤ p such that q 
 ¬f̌(β̌) ∈ ϕ̇(β̌).

Proof of Proposition 20.2. For any h in V [G], we know that h appears in an
initial segment of the forcing say by stage α0. Consider stage α1 := α0 +κ+.
Then we have added κ+ many Hechler2 κ-reals “since” V [Gα0 ], and a Hechler
is not localised by any ground model slalom. These κ+ many Hechlers are
∈∗-unbounded in V [Gα1 ], and by the previous Lemma they remain so in
V [G]: any ϕ in V [G] fails to localise them all because any ϕ in V [Gα1 ] fails
to localise more than κ many of them. To see why the last sentece is true,
encode a slalom as a subset of κ, look at the stage where it appears and then
consider the next Hechler.

Dual arguments [with the same forcing?] apply to cof(Mκ) and d(∈∗).

1As κ is inaccessible, h(β)+ < κ. Also, h(β)+ is still a cardinal in the generic extension
by < κ-closure (the only thing we need is that κ does not collapse to h(β)).

2Maybe a similar argument works with Cohen κ-reals as well.
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