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\chapter{02/10}
Assumptions are color coded: black (white on the board) means $\kappa$ regular, \textcolor{red}{red} means {\color{red}$\kappa^{<\kappa}=\kappa$} and \textcolor{blue}{blue} means {\color{blue}$\kappa$ inaccessible}.

Cardinal characteristics of the continuum have been studied a lot, but there is still work ongoing. E.g.\ it was recently shown that $\mf p=\mf t$, and there is a recent preprint with $10$ different cardinals in Chico\'n's diagram.

This course is about generalisation to higher cardinals: replace $\omega$ with $\kappa$ and finite with $<\kappa$.

We are going to start from scratch from cardinal characteristics of the continuum in a uniform approach  for what will come later.

\section{Good References}
\begin{itemize}
\item For classical cardinal characteristics of the continuum, Blass's article inside \emph{Handbook of set theory}.
\item For large cardinals, Kanamori's book.
\end{itemize}
\section{Bounding and Dominating Number}
\begin{defin}[$\kappa$ regular]
  For functions $f,g\from \kappa\to\kappa$, write $f\le^*g$ ($f$ is \emph{eventually dominated} by $g$) to mean
\[
\exists \alpha<\ka\; \forall \beta\ge\ka\; f(\beta)\le g(\beta)
\]
\end{defin}
\begin{rem}
  As $\kappa$ is regular, this is equivalent to ask that $f\le g$ on all but $<\kappa$ many points.
\end{rem}
Another reason for choosing $\kappa$ to be regular is because otherwise the increasing functions wouldn't be dense (cofinal) in this preorder.
\begin{defin}
  We define
  \begin{gather*}
    \mf b_\ka\coloneqq\min\set{\abs{\mc F}\mid \mc F\subseteq \ka^\ka\land \forall g\from \ka\to\ka\;\exists f\in\mc F\;f\centernot{\le^*}g}    \\
    \mf d_\ka\coloneqq\min\set{\abs{\mc G}\mid \mc G\subseteq \ka^\ka\land \forall f\from \ka\to\ka\;\exists g\in\mc G\;f\le^*g}    
  \end{gather*}
\end{defin}
In other words, $\mf b_\ka$ is the least size of an unbounded set, while $\mf d_\ka$ is the least size of a dominating set.
\begin{rem}
  $\centernot{\le^*}$ means $\neg (\le^*)$. Later in the course we will also consider $(\neg \le)^*$, which is a different object.
\end{rem}
\begin{rem}
  Every dominating set is unbounded. In particular, $\mf b_\ka\le\mf d_\ka$.
\end{rem}
These notions can be generalised:
\begin{defin}
  Suppose $(\mb P,\le)$ is a preorder such that\footnote{Otherwise you get boring stuff: the singleton a maximal element is a dominating set, and there are no unbounded sets.} $\forall\;p\in \mb P\;\exists q\in \mb P\; q>p$. Then $U$ is an \emph{unbounded set} iff $\forall q\in \mb P\;\exists p\in U\; p\centernot\le q$, and $D$ is a \emph{dominating set} iff $\forall p\in \mb P\;\exists q\in D\; p\le q$. We define
\[    \mf b(\mb P)\coloneqq\min\set{\abs{U}\mid U\tn{ unbounded}}\qquad
    \mf d(\mb P)\coloneqq\min\set{\abs{D}\mid D\tn{ dominating}}
\]
\end{defin}
{\color{red}
\begin{eg}[$\kappa$-meagre sets]
The \emph{generalised Baire space} is $\kappa^\kappa$ with the \emph{box topology}, generated by sets of the form
\[
[s]=\set{f\in \ka^\ka\mid f\restr \abs s=s}
\]
as $s$ varies in $\kappa^{<\kappa}$. Similarly, the \emph{generalised Cantor space} is $2^\kappa$ with the box topology.
\end{eg}
\begin{rem}In $\ka^\ka$ and $2^\ka$
  \begin{itemize}
  \item   The intersection of fewer than $\kappa$ many open sets is open\footnote{This only works because $\kappa$ is regular. Also, the box topology has a universal property similar to the one enjoyed by the product topology, but subject to this requirement.}.
  \item There is an open base of size $\ka$, because $\ka^{<\ka}=\ka$.
  \item In the $\omega$ case, \emph{the} Baire space $\omega^\omega$ is \emph{a} Baire space\footnote{Apparently people manage to avoid confusion even in languages with no articles.} (definition later).
  \end{itemize}
\end{rem}
\begin{defin}In a topological space,
  \begin{itemize}
  \item   A set $X$ is \emph{nowhere dense} iff for any open set $V$ there is an open subset $U\ssq V$ such that $U\cap X= \emptyset$.
  \item $X$ is \emph{$\kappa$-meagre} iff it is a union of $\kappa$-many nowhere dense sets. Let $\mc M_\ka$ be the set of $\ka$-meagre subsets of the topological space at hand. If $\ka$ is clear from context we may just say \emph{meagre}.
  \end{itemize}
\end{defin}
\begin{rem}
  $\mc M_\ka$ is a $\ka$-ideal, since subsets of a nowhere dense sets are nowhere dense, and the union of $\ka$-many meagre sets is $\ka$-meagre.
\end{rem}
\begin{eg}
  Consider $(\mc M_\ka, \ssq)$. What are $\mf b$ and $\mf d$ for this partial order?
\[
\mf b(\mc M_\ka, \ssq)=\min \set{
\abs {\mc U}\mid \mc U\ssq \mc M_\ka\land \forall Y\in \mc M_\ka\;\exists X\in \mc U\; X\centernot\ssq Y
}
\]
In other words, it is the least cardinality of a set of meagre sets whose union is not meagre. This is known as the \emph{additivity} $\operatorname{add}(\mc M_\ka)$ of the meagre ideal. Dually, $\mf d(\mc M_\ka, \ssq)$ is the least cardinality of a cofinal subset of $\mc M_\ka$, and is denoted with $\cof(\mc M_\ka)$. Under the ``red'' assumptions\footnote{Also we need the non-existence of maximal elements.}, $\operatorname{add}(\mc M_\ka)\le \cof(\mc M_\ka)$. 
\end{eg}
\begin{rem}
  The things above apply to both $2^\ka$ and $\ka^\ka$. But let's say\footnote{Actually, if $\ka$ is not weakly compact, the two spaces are homeomorphic.} we are working in $2^\ka$.
\end{rem}
}%end of color red
\begin{pr}
  Let $(\mb P, \le)$ be  a preorder such that $\forall p\;\exists q\; q>p$. Then
\[
\mf b(\mb P)=\cf(\mf b(\mb P))\le \cf(\mf d(\mb P))\le \mf d(\mb P)\le \abs {\mb P}
\]
\end{pr}
\begin{proof}
If $B$ is unbounded with $\abs B=\mf b(\mb P)$  but the latter is singular, then we can write $B=\bigcup_{\alpha<\cf \mf b(\mb P)}B_\alpha$, where $\forall\alpha\; \abs {B_\alpha}<\mf b$. Then we can choose $q_\alpha$ such that $p\le q_\alpha$  for all $p\in B_\alpha$, and $\set{q_\alpha\mid \alpha\in \cf(\mf b(\mb P))}$ would be unbounded, contradicting minimality of $\abs B$. 

The rest of the proof is left as an exercise.
\end{proof}
\chapter{03/10}
\section{Singular Dominating Numbers}
\begin{question}
  Can $\mf d(\mb P)$ be singular?
\end{question}
Let's elaborate on that  with an example.
\begin{eg}
  Let $\beta, \delta$ be infinite cardinals such that\footnote{E.g.\ under \tf{GCH} let $\beta=\aleph_1$ and $\delta=\aleph_{\aleph_{\omega_2}}$.}  $\cf(\beta)=\beta\le \cf(\delta)\le \delta=\delta^{<\beta}$. Consider the partial order $\mb Q$ with underlying set $\beta\times [\delta]^{<\beta}$ and $(\rho, x)\le (\sigma, y)$ iff $\rho\le \sigma$ and $x\ssq y$.
\end{eg}
\begin{claim}
  $\mf b(\mb Q)=\beta$ and $\mf d(\mb Q)=\delta$.
\end{claim}
\begin{proof}
  If $B\ssq \mb Q$ and $\abs B<\beta$, take $\sigma\coloneqq \sup\set{\rho\mid \exists x\; (\rho, x)\in B}$ and let $y\coloneqq\bigcup\set{x\mid \exists p\;(p, x)\in B}$. Then $(\sigma, y)$ is an upper bound for $B$, so $\mf b(\mb Q)\ge \beta$. To show equality, notice that $\set{(\alpha, \emptyset)\mid \alpha<\beta}$ is unbounded.

Now suppose $D\ssq \mb Q$ is a dominating set such that $\abs D<\delta$. Consider $X\coloneqq \bigcup\set{x\mid (\rho, x)\in D}$. If $\delta$ is regular, then obviously $\abs X<\delta$. Otherwise, by the previous Proposition, $\abs X\le \abs D\cdot \beta<\delta$. Take $\gamma\in\delta\setminus X$. Then $(0, \set \gamma)$ is not dominated by any element of $D$, and this shows $\mf d(\mb Q)\ge \delta$. But $\abs {\mb Q}=\beta\times \delta^{<\beta}=\delta$.
\end{proof}
\begin{defin}
  A function $f\from \mb P\to \mb Q$ is a \emph{cofinal embedding} iff
  \begin{itemize}
  \item $\forall p,p'\in\mb P\; p\le p'\iff f(p)\le_\mb Q f(p')$, and
  \item $\forall q\in \mb Q\;\exists p\in \mb P\;(q\le f(p))$.
  \end{itemize}
\end{defin}
\begin{lemma}
  If $f\from \mb P\to \mb Q$ is a cofinal embedding, then $\mf b(\mb P)=\mf b(\mb Q)$ and $\mf d(\mb P)=\mf d(\mb Q)$.
\end{lemma}
\begin{proof}
  Chase around  unbounded or dominating sets.
\end{proof}
So we may try to embed our contrived example above into a more natural object.
\begin{thm}[Hechler]
  In the case $\omega$, if $\mb P$ is such that every countable subset of $\mb P$ has an upper bound, then there is a forcing extension of the universe in which $\mb P$ cofinally embeds into $(\omega^\omega, \le^*)$.
\end{thm}
{\color{red}
\begin{thm}[Cummings, Shelah, $\ka=\ka^{<\ka}$]
    Suppose $\mb P$ is a well-founded poset with $\mf b(\mb P)\ge \ka^+$. Then there is a forcing $\mb D(\ka, \mb P)$ such that
    \begin{enumerate}
    \item  $\mb D(\ka, \mb P)$ is $\ka$-closed and $\ka^+$-c.c. In particular it preserves cardinals and cofinalities.
    \item $V^{\mb D(\ka, \mb P)}\models \mb P$ cofinally embeds into $(\ka^\ka, \le^*)$.
    \item If $V\models \mf b(\mb P)=\beta$, then $V^{\mb D(\ka, \mb P)}\models \mf b_\ka=\beta$
    \item If $V\models \mf d(\mb P)=\delta$, then $V^{\mb D(\ka, \mb P)}\models \mf d_\ka=\delta$
    \end{enumerate}
\end{thm}
}%end of color red
\begin{lemma}
  Every poset has a well-founded dominating subset.
\end{lemma}
\begin{proof}
  Just keep on choosing elements by induction.
\end{proof}
Since then the inclusion map will be a cofinal embedding, the well-foundedness hypothesis in the Theorem above is not really restrictive.
\section{Beyond Preorders: Galois-Tukey Connections}
Consider triples $\mb A=(A_-, A_+, A)$, where $A$ is a binary with domain $A_-$ and codomain $A_+$, i.e.\ $A\ssq A_-\times A_+$.
\begin{defin}
  The \emph{norm} $\norm A$ of $A$ is defined as
\[
\norm A=\min\set{\abs Y\mid Y\ssq A_+\land \forall x\in A_-\;\exists y\in Y\; (x\mathrel{A} y)}
\]
\end{defin}
So, basically, $\norm A$ is $\mf d$ for $A$. In fact, another notation is $\mf d(A)$. What about $\mf b$? The nice thing about Galois-Tukey connections is that they allow you to dualise things:
\begin{defin}
  The \emph{dual} of $\mb A$ is $\mb A^\perp\coloneqq(A_+, A_-, \neg \check A)$, where $y\mathrel{\check A} x\equiv x\mathrel{A} y$.
\end{defin}
Pictorially, the dual of $R$ is $\centernot{\reflectbox{$R$}}$. Now we have, by spelling out the definitions, 
\[
\norm{A^\perp}=\min\set{\abs Y\mid Y\ssq A_-\land \forall x\in A^+\;\exists y\in Y\; \neg (y \mathrel{A} x)}
\]
and that's exactly $\mf b(A)$. This is the sense in which  $\mf b$ and $\mf d$ are dual.

\begin{defin}
  A \emph{morphism} $\Phi\from\mb A\to \mb B$ is a pair of functions $\Phi=(\Phi_-, \Phi_+)$ such that
  \begin{itemize}
  \item $\Phi_+\from A_+\to B_+$
  \item $\Phi_-\from B_-\to A_-$
  \item $\forall a\in A_+\;\forall b\in B_-\; \Phi_-(b)\mathrel{A}a\then b\mathrel{B}\Phi_+(a)$.
  \end{itemize}
\end{defin}
Terminology of Vojt\'a\v s: a Galois-Tukey connection from $\mb B$ to $\mb A$ is a morphism\footnote{Yes, these things do form a category.} from $\mb A$ to $\mb B$.
\begin{exr}\label{exr:morphnorm}
If there is a morphism $\mb A\to \mb B$ (we write that as $\mb A\preceq \mb B$), then $\norm {\mb A}\ge \norm{\mb B}$ and $\norm{\mb A^\perp}\le \norm{\mb B^\perp}$, i.e.\ $\mf d(\mb A)\ge \mf d(\mb B)$ and $\mf b(\mb A)\le \mf b(\mb B)$.
\end{exr}
\begin{rem}
  This is easier to apply than cofinal embeddings: the condition is an ``if\ldots{} then'', not an ``if and only if''.
\end{rem}
{\color{red}
\begin{exr}\label{exr:cov}
  Express the least cardinality $\operatorname{non}(\mc M_\ka)$ of a non-meagre set  as $\mf b$ of something and the least number $\operatorname{cov}(\mc M_\ka)$ of meagre sets require to cover all of $\ka^\ka$ as $\mf d$ of something.
\end{exr}
}
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\section{Examples of Triples and Morphisms}
\begin{eg}
  $\mc D\coloneqq (\ka^\ka, \ka^\ka, \le^*)$
\end{eg}

{\color{red}
\begin{eg}
Let $\operatorname{Cof}(\mc M_\ka)\coloneqq (\mc M_\ka, \mc M_\ka, \ssq)$. Then $\mf d(\mc M_\ka)=\operatorname{cof}(\mc M_\ka)$ and $\mf b(\mc M_\ka)=\operatorname{add}(\mc M_\ka)$.
\end{eg}
\begin{proof}[Solution of Exercise~\ref{exr:cov}]
  Let $\operatorname{Cov}(\mc M_\ka)\coloneqq (2^\ka, \mc M_\ka, \in)$. Then $\mf d(\operatorname{Cov}(\mc M_\ka))$ equals
\[
\min \set{\abs{\mc U}\mid \mc U\ssq \mc M_\ka\land \forall x\in 2^\ka\;\exists X\in \mc U\; x\in X}
\]
i.e.\ the least size of a set of meagre sets that covers $2^\ka$, i.e.\ $\operatorname{cov}(\mc M_\ka)$.

On the other hand, $\mf b(\operatorname{Cov}(\mc M_\ka))$ is the least size of a non meagre set, i.e.\ $\operatorname{non}(\mc M_\ka)$, as can be seen by writing it as
\[
\min \set{
\abs Y\mid Y\ssq 2^\ka\land \forall X\in \mc M_\ka\;\exists y\in Y\; y\notin X
}\qedhere
\]
\end{proof}
\begin{pr}
There is a morphism $\Phi\from \operatorname{Cof}(\mc M_\ka)\to \operatorname{Cov}(\mc M_\ka)$ 
\end{pr}
\begin{proof}
We have to find  maps
\[
\Phi_+\from \mc M_\ka\to \mc M_\ka\qquad \Phi_-\from 2^\ka\to \mc M_\ka
\]
such that if $\Phi_-(x)  \ssq Y$ then $x\in \Phi_+(Y)$.
  Take $\Phi_+=\id_{\mc M_\ka}$ and $\Phi_-(x)=\set x$.
\end{proof}
From this and Exercise~\ref{exr:morphnorm} we immediately get  
\begin{co}
  $\mf b(\operatorname{Cof})\le \mf b(\operatorname{Cov})$ and $\mf d(\operatorname{Cof})\ge \mf d(\operatorname{Cov})$. In other words, $\operatorname{add}(\mc M_\ka)\le \operatorname{non}(\mc M_\ka)$ and $\operatorname{cof}(\mc M_\ka)\ge \operatorname{cov}(\mc M_\ka)$.
\end{co}
\begin{exr}
  Try to proof the above inequalities directly from the definitions. It should boil down to the morphism above.
\end{exr}
\begin{pr}
  There is a morphism\footnote{Recall that $\operatorname{Cov}(\mc M_\ka)^\perp=(\mc M_\ka, 2^\ka, \centernot\owns)$.} $\Psi\from\operatorname{Cof}(\mc M_\ka)\to \operatorname{Cov}(\mc M_\ka)^\perp$.
\end{pr}
\begin{proof}
We have to find maps
\[
\Psi_+\from \mc M_\ka\to 2^\ka\qquad \Psi_-\from \mc M_\ka\to \mc M_\ka
\]
such that if $\Psi_-(X)\ssq Y$ then $X\centernot\owns \Psi_+(Y)$.  Let $\Psi_-=\id_{\mc M_\ka}$ and let $\Psi_+(Y)$ be any element\footnote{Here we hare using the $\ka^{<\ka}=\ka$, because if $2^\ka$ turned out to be meagre\ldots} $y\in 2^\ka\setminus Y$.
\end{proof}
We therefore have the following picture, where arrows mean $\le$:
\begin{center}
\begin{tikzpicture}[scale=2]
\node(nw) at (0,1){$\operatorname{non}(\mc M_\ka)$};
\node(ne) at (2,1){$\operatorname{cof}(\mc M_\ka)$};
\node (sw) at (0,0) {$\operatorname{add}(\mc M_\ka)$};
\node(se) at (2,0){$\operatorname{cov}(\mc M_\ka)$};
 \node(c) at (0.75, 0.5){$\color{black} \mf b$};
 \node(d) at (1.25, 0.5){$\color{black} \mf d$};

\path[->, thick,  font=\scriptsize,>= angle 90]
(nw) edge node {} (ne)
(sw) edge node {} (se)
(sw) edge node {} (nw)
(se) edge node {} (ne);
{\color{black}
\path[->, thick,  font=\scriptsize,>= angle 90]
(c)  edge node {} (d);
}
\end{tikzpicture}
\end{center}
}%end of color red
\begin{eg}
  Let $\mc E=(\ka^\ka, \ka^\ka, \ne ^*)$, where for $f,g\from \ka\to \ka$ we say that $f$ is \emph{eventually different from} $g$, written $f\ne ^*g$, if $\exists \alpha<\ka\;\forall \beta\ge \alpha\; f(\beta)\ne g(\beta)$.
\end{eg}
\begin{rem}
  $\ne^*$ is symmetric, but here we are thinking of it in a ``partial order'' sense. Distinguishing left and right in this context is very important.
\end{rem}
We have
\[
\norm*{\mc E^\perp}=\mf b(\ne^*)=\min\set{
\abs {\mc F}\mid \mc F\ssq \ka^\ka\land \forall g\in \ka^\ka\;\exists f\in \mc F\; \neg f\ne^* g
}
\]
Recall that $\neg f\ne^*g$ means $\forall \alpha<\ka\;\exists \beta\ge \alpha\; f(\beta)=g(\beta)$. Also
\[
\norm {\mc E}=\mf d(\ne^*)=\min \set{
\abs{\mc G}\mid \mc G\ssq \ka^\ka\land \forall f\in \ka^\ka\; \exists g\in\mc G\; f\ne^*g
}
\]
\begin{pr}
$\mc D\preceq \mc E$.
\end{pr}
\begin{proof}
   One morphism is given by $\Phi_+\coloneqq \ka^\ka\to \ka^\ka$ defined as $d\mapsto (\Phi_+(d)(\alpha)\coloneqq d(\alpha)+1)  $ and $\Phi_-\from \ka^\ka\to \ka^\ka$ the identity. If $\Phi_-(e)\le^* d$ then $e\ne^*\Phi_+(d)$.
\end{proof}

{\color{red}
\begin{pr}
  ${\color{black}\mc D\preceq \mc E}\preceq\operatorname{Cov}(\mc M_\ka)$
\end{pr}
\begin{proof}
We want $\Phi_+\from \ka^\ka\to\mc M_\ka$ and $\Phi_-\from \ka^\ka \to \ka^\ka$ such that if $\Phi_-(x)\ne^*g$ then $x\in \Phi_+(g)$. Let $\Phi_-=\id_{\ka^\ka}$, and define
\[
\Phi_+(f)\coloneqq \set{g\mid g\ne^*f}
\]
The point is that for every $f\in \ka^\ka$ the set $\set{g\mid g\ne^*f}$ is meagre. The reason for this is that 
\[
\set{g\mid g\ne^*f}=\bigcup_{\alpha<\ka}\set{g\mid \forall \beta\ge \alpha\; g(\beta)\ne f(\beta)}
\]
And each of the sets we're taking the union of, i.e.\ for fixed $\alpha$, is nowhere dense, because if $s\in \ka^{<\ka}$ defines an open set, extend $s$ to $t\in \ka^\ka$ taking the value $f(\beta)$ on some $\beta\ge\alpha$.
\end{proof}
\begin{rem}
Pay attention to the last step in the proof above, since we are going to use similar tricks often.  
\end{rem}
As a result of the Proposition, the diagram becomes
 \begin{center}
 \begin{tikzpicture}[scale=3]
 {\color{red}
 \node(nw) at (0,1){$\operatorname{non}(\mc M_\ka)$};
 \node(ne) at (2,1){$\operatorname{cof}(\mc M_\ka)$};
 \node (sw) at (0,0) {$\operatorname{add}(\mc M_\ka)$};
 \node(se) at (2,0){$\operatorname{cov}(\mc M_\ka)$};
 \node(c) at (0.75, 0.5){$\color{black} \mf b$};
 \node(d) at (1.25, 0.5){$\color{black} \mf d$};
 \node(a) at (0.5, 0.75) {$\color{black}\mf b(\ne^*)$};
 \node(b) at (1.5, 0.25) {$\color{black}\mf d(\ne^*)$};
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (nw) edge node {} (ne)
 (sw) edge node {} (se)
 (sw) edge node {} (nw)
 (se) edge node {} (ne)
;
 {\color{black}
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (se) edge node {} (b)
 (a)  edge node {} (nw)
 (c)  edge node {} (d)
 (c)  edge node {} (a)
 (b)  edge node {} (d)
;
 }

 }%redend
 \end{tikzpicture}
 \end{center}

\begin{spoiler}
  We will show later that $(2^\ka, \mc M_\ka, \in)\equiv (\ka^\ka, \mc M_\ka, \in)$.
\end{spoiler}
}%redend
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\section{$\ka^\ka$ vs $2^\ka$}
\begin{claim}
  Meagre sets in $\ka^\ka$ are ``basically the same'' as meagre sets in $2^\ka$. More precisely, there is an homeomorphic embedding of $\ka^\ka$ into $2^\ka$ with comeagre image.
\end{claim}
\begin{proof}
  Consider the function $\phi\from \ka^\ka\to 2^\ka$ sending $f$ to $f(0)$ many $0$'s, then $1+f(1)$, many $1$'s, then $1+f(2)$ many $0$'s etc. More formally, define $\phi(f)\coloneqq \bigcup_{\alpha<\kappa} s_{f}(\alpha)$, where $s_f\from \kappa\to 2^{<\kappa}$, $s_f(\beta)\supseteq s_f(\alpha)$ for $\beta\ge \alpha$ is defined by recursion by letting $s_f(\beta)$ be $\bigcup_{\alpha<\beta}s_f(\alpha)$ followed by $1+f(\beta)$ many $0$'s if $\beta$ is even and nonzero, and $(1+f(\beta))$ many $1$'s if $\beta$ is odd, or $f(0)$ many $0$'s if $\beta=0$.

This is an homeomorphism to its range. To see this, consider that the open base set $[t]$, for $t\in \ka^\ka$ maps to $[s_t(\abs t)\cat r]$, where $r$ is $0$ if $\abs t$ is even and $1$ if $\abs t$ is odd. So our map is open. To see it is continuous, notice that anyting in $2^{<\ka}$ is of the form $s_t(\abs t)\cat r$, where $r$ is $\alpha$ many $0$'s or $1$'s. So, for $t\in \ka^{<\ka}$, this has inverse image $\bigcup_{1+\beta\ge \alpha}[t\cat \beta]$. Since, clearly, the map is injective, it's an homeomorphism to its range.

We now show that $2^\ka\setminus \operatorname{Ran}(\phi)$ is meagre; to see this, let $C$ be the set of $x\in 2^\ka$ such that $x$ eventually stops alternating. We have
\[
C=\bigcup_{\alpha<\ka}\set{x\in 2^\ka\mid \forall \beta \ge \alpha\; x(\beta)=0}\cup \bigcup_{\alpha<\ka}\set{x\in 2^\ka\mid \forall \beta \ge \alpha\; x(\beta)=1}
\]
and each of the sets we are taking the union of is nowhere dense: just extend something beyond $\alpha$ forcing it to be out of the set.

Therefore, up to a meagre set $\ka^\ka$ is the same as $2^\ka$.
\end{proof}
\begin{rem}
  There is another encoding one could use: use $1$'s as separators and put $f(\alpha)$ many $0$'s each time. This may even be easier to work with.
\end{rem}
\begin{co}
  $(2^\ka, \mc M_\ka^{2^\ka}, \in)\equiv (\ka^\ka, \mc M_\ka^{\ka^\ka}, \in)$
\end{co}
\begin{proof}
  To see $\preceq$, let $\Phi_+\from \mc M_\ka^{2^\ka}\to \mc M_\ka^{\ka^\ka}$ be $\phi^{-1}$, and let $\Phi_-\from \ka^\ka \to 2^\ka$ be $\phi$. If $\phi(f)\in X$ then $f\in \phi^{-1}(X)$, so this is a morphism.

The morphism in the other direction is given by $\Phi_+\from \mc M_\ka^{\ka^\ka}\to \mc M_\ka^{2^\ka}$ being\footnote{$C$ is the complement of the range of $\phi$.} $X\mapsto \phi"X\cup C$ and $\Phi_-\from 2^\ka\to \ka^\ka$ being $\phi^{-1}$ if defined, arbitrary otherwise. If $\Phi_-(x)\in Y$, then $x\in \Phi_+(Y)$, so we are done.
\end{proof}
The objects above were called $\operatorname{Cov}(\mc M_\ka)$. What about $\operatorname{Cof}(\mc M_\ka)$?
\begin{co}
  $ (\mc M_\ka^{2^\ka}, \mc M_\ka^{2^\ka} ,\ssq)\equiv(\mc M_\ka^{\ka^\ka}, \mc M_\ka^{\ka^\ka}, \ssq)$
\end{co}
\begin{proof}
  To see $\preceq$, let $\Phi_+$ be $\phi^{-1}$ and $\Phi_-$ be $\phi"$. Clearly, if $\phi"X\ssq Y$ then $X\ssq \phi^{-1}Y$.

For the other direction, let $\Phi_+$ be $C\cup \phi"$ and $\Phi_-\coloneqq \phi^{-1}$. If $\phi^{-1}(Y)\ssq X$, then $Y\ssq \phi"X\cup C$, so we are done.
\end{proof}
\section{Baire's Category Theorem}
We were actually tacitly using the following result, which we are now going to prove:
\begin{thm}[Baire's Category Theorem]
  Every meagre set has empty interior.
\end{thm}
\begin{proof}
  Work in\footnote{Note that to do something similar to the classical case (``complete metric spaces'') one should figure out what ``metric'' means.} $2^\ka$. Let $X$ be meagre, as witnessed by writing $X=\bigcup_{\alpha<\ka} X_\alpha$ with $X_\alpha$ nowhere dense, and let $\emptyset\ne U\ssq 2^\ka$ be open. We want to show that $U\setminus X\ne \emptyset$.

Since $X_0$ is nowhere dense, take $s_0\in 2^{<\ka}$ such that $[s_0]\ssq U\setminus X_0$. Take $s_1\in 2^{<\ka}$ strictly extending $s_0$, such that $[s_1]\ssq [s_0]\setminus X_1$. Go on like this for successor steps, and for limit $\lambda$ take $s_\lambda$ strictly extending $\bigcup_{\alpha<\lambda } s_\alpha$ such that $[s_\lambda]\ssq \l[\bigcup_{\alpha<\lambda} s_\alpha\r]\setminus X_\lambda$. Then take $x=\bigcup_{\alpha<\ka} s_\alpha$. Then $x\in U\setminus X$.
\end{proof}
%that probably works for a generalisation of "locally compact" where you have to replace the FIP with something similar to \kappa-compactness (\kappa-saturation)

\section{Interval Partitions}
\begin{defin}
  Let $(i_\alpha\mid \alpha<\ka)$ be a strictly increasing, continuous sequence of ordinals less than $\ka$. Then $([i_\alpha, i_{\alpha+1})\mid \alpha <\ka)$ is an \emph{interval partition}. Denote the set of all interval partitions by $\mathrm{IP}$.
\end{defin}
\begin{defin}
  For interval partitions $I=(I_\alpha\mid \alpha<\ka)$ and  $J=(J_\alpha\mid \alpha<\ka)$, say that $I$ \emph{dominates} $J$, written $J\le^*I$ iff for some $\gamma<\ka$ and all $\alpha\ge\gamma$ there is a $\beta\in \ka$ such that $J_\beta\ssq I_\alpha$.
\end{defin}
In other words, eventually each $I_\alpha$ is big enough to contain some $J_\beta$.
\begin{pr}
  $\mc D\equiv (\mathrm{IP}, \mathrm{IP}, \le^*)$ (recall that $\mc D\coloneqq (\ka^\ka, \ka^\ka, \le^*)$).
\end{pr}
\begin{proof}
  Consider $\Psi_1\from \mathrm{IP}\to \ka^\ka$ sending 
\[
([i_\alpha, i_{\alpha+1}))\mapsto (\gamma\mapsto i_{\alpha+2}\tn{ for the $\alpha$ such that }\gamma\in[i_\alpha, i_\alpha+1))
\]
Then let $\Psi_2\from \ka^\ka\to \mathrm{IP}$ be defined as
\[
f\mapsto \tn{some }J=([j_\alpha, j_{\alpha+1}))\tn{ such that } \gamma<j_\alpha\then f(\gamma)<j_{\alpha+1}
\]
\begin{exr}
  These work as $\Phi_+$ and $\Phi_-$ for both directions.
\end{exr}
\end{proof}
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\section{Interval Partitions and Meagreness}
\begin{defin}
  A \emph{$\kappa$-chopped function} is a pair $(x,I)$ with $x\in 2^\ka$ and $I$ an interval partition. We say that  $y\in 2^\ka$ \emph{matches} $(x,I)$ iff for cofinally many $\alpha\in\ka$ we have $y\restr I_\alpha=x\restr I_\alpha$.
\end{defin}
The idea is that matching is the negation of $\ne^*$, but in chunks.
\begin{defin}
Let 
\[
\operatorname{Match}(x,I)\coloneqq \set{y\in 2^\ka\mid y\tn{ matches }(x,I)}
\]
Call $M\ssq 2^\ka$ \emph{combinatorially meagre}  iff there is some $\ka$-chopped $(x,I)$ such that $M\cap \operatorname{Match}(x,I)=\emptyset$.
\end{defin}
Basically, we are thinking of $\operatorname{Match}(x,I)$ as the basic combinatorially comeagre sets. The reason is the following. Consider
\[
2^\ka\setminus\operatorname{Match}(x,I)=\bigcup_{\alpha<\ka}\set{y\mid \forall \beta\ge \alpha\; y\restr I_\beta\ne x\restr I_\beta}
\]
\begin{claim}
  Each set in that union is nowhere dense.
\end{claim}
\begin{proof}
  For any open set, go a little bit further and make it match some $x\restr I_\beta$.
\end{proof}
\begin{co}
  Combinatorially meagre sets are meagre.
\end{co}
\begin{question}
  Does the other implication hold?
\end{question}
{\color{blue}
\begin{pr}[Blass, Hyttinen, Zhang]
If $\ka$ is strongly inaccessible or $\ka=\omega$, then meagre implies combinatorially meagre.
\end{pr}
\begin{proof}
Suppose that $A$ is meagre, as witnessed by $A=\bigcup_{\alpha<ka} A_\alpha$, with each $A_\alpha$ nowhere dense. We can \tc{wlog} assume the union is increasing, i.e.\ $\alpha<\beta\allora A_\alpha\ssq A_\beta$, because as $\ka$ is inaccessible or $\omega$, in particular $\ka^{>\ka}=\ka$. We want to construct a $\ka$-chopped function $(x,I)$ not matched by any member of $A$. 

Construct a continuous, strictly increasing sequence of ordinals $i_\alpha$, which will give us the interval partition $I$, and a sequence $\sigma_\alpha$, for $\alpha<\ka$, such that $\sigma_\alpha\from[i_\alpha, i_{\alpha+1})\to 2$. Then the concatenation (union) of the $\sigma_\alpha$ will be our $x$.

Because $\ka$ is inaccessible or $\omega$, we can just choose $i_{\alpha+1}$ and $\sigma_\alpha$ such that for \emph{all} $\tau\in 2^{i_\alpha}$ we have $\tau\cat \sigma_\alpha\cap A_\alpha=\emptyset$. E.g.\ enumerate $2^{i_\alpha}=\set{\tau_0,\tau_1,\tau_2,\ldots}$, then extend $\tau_0$ by $\sigma_{\alpha 0}$ to avoid $A_\alpha$, extend $\tau_1\cat \sigma_{\alpha 0}$ by $\sigma_{\alpha 1}$ to avoid $A_\alpha$, etc, and let $\sigma_\alpha\coloneqq \sigma_{\alpha0}\cat\sigma_{\alpha1}\cat \sigma_{\alpha2}\cat\ldots$. By construction, $A\cap \operatorname{Match}(x,I)=\emptyset$.
\end{proof}
}%end of color blue
\begin{thm}
  If $\ka$ is regular, but not strongly inaccessible and not $\omega$, then there is a meagre set that is not combinatorially meagre.
\end{thm}
\begin{proof}
By hypothesis, there is some $\mu<\ka\le 2^\mu$. Say that $y$ \emph{repeats} at $\alpha$ if $\forall \xi<\alpha\; y(\xi)=y(\alpha+\xi)$. Recall that an ordinal $\gamma$ is \emph{indecomposable} iff $\gamma$ cannot be written as $\alpha+\beta$ for $\alpha, \beta<\gamma$. In other words, $\gamma$ is of the form $\omega^\alpha$, or $0$. Defin
\[
X\coloneqq \set{
y\in 2^\ka \mid y\tn{ repeats at an indecomposable }\alpha\in[\mu, \ka)
}
\]
We now show that $2^\ka\setminus X$ is meagre but not combinatorially meagre. In fact, $X$ is open dense: given any sequence, extend up to the next indecomposable ordinal and then repeat. To show that, for every $(x,I)$, we have $X\centernot\supseteq \operatorname{Match}(x,I)$, for every $(x,I)$ we are going to construct some $y\in \operatorname{Match}(x,I)\setminus X$. First note that if $J$ is coarser than $I$, then  $y$ matching $(x,J)$ implies that $y$ matches $(x,I)$, so \tc{wlog} we can thin out the $i_\alpha$. 

The $i_\alpha$ form a club, and the indecomposables $\ge \mu$ form another club. Therefore, \tc{wlog} every $i_\alpha$ other than $i_0=0$ is an indecomposable $\ge \mu$. Proceed by induction: for the base case, on $I_0\cup I_1$ set $y(\xi)$ to be $1$ iff $\xi=0$, and $0$ otherwise. This ensures that we do not get repetitions at indecomposables in $I_0\cup I_1$. To define $y$ on $[i_{2\beta}, i_{2\beta+1})$ and $[i_{2\beta+1}, i_{2\beta+2})$, first let $y\restr [i_{2\beta+1}, i_{\beta+2})=x\restr [i_{2\beta+1}, i_{\beta+2})$, to ensure matching. Then we use the bit on $[i_{2\beta}, i_{2\beta+1})$ to ensure there are no repetitions at indecomposables: if $\alpha\in I_{2\beta}$ is indecomposable, set $y(\alpha)=0$ to prevent repetitions at $\alpha$ (because $y(0)=1$); this takes care of the indecomposables in $[i_{2\beta}, i_{2\beta+1})$, but what about the ones in   $[i_{2\beta+1}, i_{\beta+2})$? We have not defined $y$ yet on $(i_{2\beta}, i_{2\beta}+\mu)$; by indecomposability, $i_{2\beta+\mu}$ will not be indecomposable\footnote{Recall that $i_1$ is already $\ge \mu$.}. For $\alpha$ an indecomposable in $I_{2\beta+1}$, define $f_\alpha\from \mu\to 2$ as 
\[
f_\alpha(x)=y(\alpha+i_{2\beta}+1+\xi)
\]
There are at most $\abs{i_{2\beta+2}}<\ka\le 2^\mu$ of these, so we can choose $g\from \mu \to 2$ different from every $f_\alpha$. Then define $y(i_{2\beta}+1+\xi)\coloneqq g(\xi)$, and define $y$ arbitrarily on other elements of $I_{2\beta}$.

We are now left to check that for every $\alpha$ indecomposable in $I_{2\beta+1}$ we do not have repetition at $\alpha$. Indeed, for $\xi$ with $g(\xi)\ne f_\alpha(\xi)$ we have 
\[
y(\alpha+i_{2\beta}+1+\xi)=f_\alpha(\xi)\ne g(\xi)=y(i_{2\beta}+1+\xi)\qedhere
\]
\end{proof}
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\section{Two Lemmas, One Lovely, One Not}
Recall that we had $\mc D\preceq \mc E{\color{red}\preceq \operatorname{Cov}(\mc M_\ka)}$, so
\begin{gather*}
  \mf b_\ka\le \mf b_\ka(\ne^*){\color{red}\le\operatorname{non}(\mc M_\ka)}\\
  \mf d_\ka\ge \mf d_\ka(\ne^*){\color{red}\ge\operatorname{cov}(\mc M_\ka)}\\
\end{gather*}
Also, recall that if $I,J$ are interval partitions, then $I\le^*J$ means that for all but $<\ka$ many $\alpha$ there is a $\beta$ such that $J_\alpha\supseteq I_\beta$.

Note that there is an asymmetry between $\mc D$ and interval partitions: $\le$ is a total order, $\subseteq$ is not. But we can get around that:
\begin{lemma}\label{lemma:nicelemma}
  Suppose that $I, J$ are interval partitions, and let $I'$ be the interval partition $(I_{2\beta}\cup I_{2\beta+1}\mid \beta<\ka)$. If $\neg (I'\ge^* J)$, then for cofinally many $\alpha$ there is a $\beta$ such that $I_\beta\ssq J_\alpha$.
\end{lemma}
\begin{proof}
  $\neg (I'\ge^* J)$ means that cofinally many $I'_\beta$ do \emph{not} contain a $J_\alpha$.

 \begin{center}
 \begin{tikzpicture}[scale=2.25]
 \node(a) at (0,0){$\underset{i_{2\beta}}\bullet$};
 \node(b) at (1,0){$\underset{i_{2\beta+1}}\bullet$};
 \node(c) at (2,0){$\underset{i_{2\beta+2}}\bullet$};
 \node(d) at (3,0){$\underset{i_{2\beta+3}}\bullet$};
 \node(e) at (4,0){$\underset{i_{2\beta+4}}\bullet$};
 \node(f) at (5,0){$\underset{i_{2\beta+5}}\bullet$};
{\color{green}
 \node(g) at (1.5,0.09){$\mid$};
 \node(h) at (2.5,0.09){$\mid$};
 \node(i) at (3.5,0.09){$\mid$};
 \node(j) at (4.5,0.09){$\mid$};
}
 \node(j) at (2,0.09){$\mid$};
 \node(l) at (4,0.09){$\mid$};
\draw (0,0.09)--(5,0.09);
 \end{tikzpicture}

 \end{center}
If no $j_\alpha$ is in $[i_{2, \gamma}, i_{2\gamma+2})$ we are done. If it contains one $j_\alpha$, we're done anyway (look at the picture).
\end{proof}
\begin{defin}
  Let $\operatorname{Fn}(\ka, 2,\ka)$ be the set of partial functions $\ka\to 2$ with domain of size $<\ka$ (not necessarily an initial segment).
\end{defin}
{\color{blue}
\begin{lemma}\label{lemma:uglylemma}
  There are functions $\Phi_-\from \mathrm{CF}\times \mathrm{IP}\to ((\operatorname{Fn}(\ka, 2,\ka))^{<\ka})^\ka$, where $\mathrm{CF}$ stands for ``chopped functions'', and $\Phi_+\from \mathrm{IP}\times ((\operatorname{Fn}(\ka, 2,\ka))^{<\ka})^\ka\to 2^\ka$ such that if
  \begin{itemize}
  \item $(x,I)\in \mathrm{CF}$
  \item $J\in \mathrm{IP}$
  \item $y\in ((\operatorname{Fn}(\ka, 2,\ka))^{<\ka})^\ka$
  \item cofinally many $J_\alpha$ contain an $I_\beta$, (i.e.\ $\neg (I'\ge^* J)$)
  \item $\Phi_-((x, I), J)(\beta)=y(\beta)$ for cofinally many $\beta$, i.e.\ $\neg \Phi_-((x,I), J)\ne^*y)$
  \end{itemize}
then $\Phi_+(J,y)$ matches $(x,I)$.
\end{lemma}
\begin{spoiler}
  We will use this to show that $\operatorname{non}(\mc M_\ka)\le \operatorname{\mf b}(\ne^*)$ and $\operatorname{cov}\ge \operatorname{\mf d}(\ne^*)$ (so that will be equalities, since we already know the opposite inequalities.).
\end{spoiler}

\begin{proof}
  First, construct $\Phi_-$. Suppose $I,J\in \mathrm{IP}$ are such that for cofinally many $\alpha$ we have $J_\alpha\supseteq I_\beta$ for some $\beta$. Let $A=\set{\alpha_\gamma\mid \gamma<\ka}$ be the increasing enumeration of these $\alpha$. For each $\gamma<\ka$, let $\delta_\gamma$ be such that $J_{\alpha_\gamma}\supseteq I_{\delta_{\gamma}}$. Define
\[
\Phi_-((x,I), J)(\beta)\coloneqq (
x\restr I_{\delta_\gamma}\mid \gamma<\omega_{\beta+1}
)
\]
(replace $\omega_{\beta+1}$ with $\beta+1$ in the $\omega$ case). For other $I,J$, define $\Phi_-$ arbitrarily. 

We define $\Phi_+$ recursively, defining $\Phi_+(J,y)\restr $ a subset of $J_\alpha$ for at most one $\alpha$ at every stage. At stage $\beta<\ka$:
\begin{itemize}
\item if $y(\beta)$ is a sequence of length $\omega_{\beta+1}$ (or $\beta+1$ in the $\omega$ case) of partial functions, all of whose domains are included in distinct $J_\alpha$'s, then choose such an $\alpha$ that has not been considered yet\footnote{This is ok because $\abs{\beta}\le \omega_\beta<\omega_{\beta+1}$.}; say $J_\alpha\supseteq \dom(y(\beta)(\gamma))$. Let 
\[
\Phi_+(J, y)\restr \dom(y(\beta)(\gamma))\coloneqq y(\beta)(\gamma)
\]
\item if not, do nothing.
\end{itemize}
At the end, extend $\Phi_+(J,y)$ arbitrarily to get a total function in $2^\ka$.

Let's now check that these actually work. Suppose we have $(x,I), J, y$ as in the hypotheses, and fix $\beta$ such that $\Phi_-((x,I), J)(\beta)=y(\beta)$ (by assumption, there's cofinally many of them). Then $y(\beta)$ is, by definition, a length\footnote{$\beta+1$ in the $\omega$ case.} $\omega_{\beta+1}$ of partial functions $(x\restr I_{\delta_\gamma})$ all of whose domains are contained in distinct $J_\alpha$'s. So, for some $\gamma$ dependent on $\beta$,
\[
\Phi_+(J,y)\restr I_{\delta_\gamma}=y(\beta)(\gamma)=x\restr I_{\delta_\gamma}
\]
and different $\beta$ give different $\alpha$, therefore different $\gamma$. So $\Phi_+(J,y)$ matches $(x,I)$.
\end{proof}
\begin{rem}
In the proof above, we only needed $\ka$ to be closed under the $\aleph$ function, so it also works for weakly inaccessible $\ka$. Anyway, the next Corollary requires strong inaccessibility.
\end{rem}
\begin{co}\label{co:bhzl}\*
  \begin{enumerate}
  \item   (Blass, Hyttinen, Zhang) $\operatorname{non}(\mc M_\ka)=\mf b(\ne^*)$
  \item (Landver) $\operatorname{cov}(\mc M_\ka)=\mf d(\ne^*)$
  \end{enumerate}
\end{co}
\begin{proof}\*
  \begin{enumerate}
  \item As we already know $\ge$, it suffices to show $\le$. Suppose $\mc Y\ssq((\operatorname{Fn}(\ka, 2,\ka))^{<\ka})^\ka$. By strong inaccessibility, we can identify $(\operatorname{Fn}(\ka, 2,\ka))^{<\ka}$ with $\ka$, and therefore the whole thing with $\ka^\ka$. Suppose $\abs{\mc Y}=\mf b_\ka(\ne^*)$ is unbounded with respect to $\ne^*$. We will use this to construct a non-meagre set. Suppose $\mc J$ is a $(\le^*)$-unbounded family of partitions of size $\mf b_\ka\le \mf b_\ka(\ne^*)$.
    \begin{claim}
      $M\coloneqq\set{\Phi_+(J,y)\mid J\in \mc H, y\in \mc Y}$ is non-meagre.
    \end{claim}
To prove the claim and conclude the proof of this point, if $(x,I)$ is a chopped function, since combinatorially meagre is the same as meagre (by strong inaccessibility), take $J\in \mc J$ such that $\neg (J\le^* I')$, which exists because $\mc J$ is unbounded.  By Lemma~\ref{lemma:nicelemma}    we know that $J_\alpha$ contains some $I_\beta$ for cofinally many $\alpha$. Take $y\in \mc Y$ such that $\Phi_-((x,I), J)(\beta)=y(\beta)$ for cofinally many $\beta$; this exists because $\mc Y$ is unbounded in $\ne^*$. By Lemma~\ref{lemma:uglylemma}, we know that $\Phi_+(J,y)$ matches $(x,I)$. So $M\centernot \ssq \operatorname{Match}(x,I)^\complement$. Now, this is true for any $(x,I)$, and since combinatorially meagre is the same as meagre, this tells us that $M$ is non-meagre. As $\abs M=\mf b(\ne^*)$, we have $\operatorname{non}(\mc M_\ka)\le \mf b(\ne^*)$.
\item We already know $\le$. Suppose $\mc X\ssq\mathrm{CF}$ is of size $<\mf d(\ne^*)\le \mf d(\le^*)$. In particular, we have
\[
\abs{\set{I'\mid (x,I)\in \mc X}}<\mf d(\le^*)=\mf d(\mathrm{IP}, \le^*)
\]
So we can choose $J\in \mathrm{IP}$ such that $J_\alpha$ contains an $I_\beta$ for cofinally many $\alpha$. Identify $(\operatorname{Fn}(\ka, 2,\ka))^\ka$ with $\ka$. Then, modulo this identification,
\[
\abs{\set{\Phi_-((x,I), J)\in \ka^{\ka}\mid (x,I)\in \ka}}<d(\ne^*)
\]
so pick $y\in (\operatorname{Fn}(\ka, 2,\ka)^{<\ka})^\ka$ such that for all $(x,I)\in \mc X$ we have $\Phi_-((x,I), J)(\beta)=y(\beta)$ for cofinally many $\beta$.

We are therefore in a position to apply Lemma~\ref{lemma:uglylemma}, and so $\Phi_+(J,y)\in 2^\ka$ matches $(x,I)$. In particular, $\Phi_+(J,y)\notin \bigcup_{(x,I)\in \mc X} 2^\ka\setminus \operatorname{Match}(x,I)$. This means that $\set{2^\ka\setminus \operatorname{Match}(x,I)\mid (x,I)\in \mc X}$ does not cover $2^\ka$. This shows that $\operatorname{cov}(\mc M_\ka)\ge \mf d(\ne^*)$.
  \end{enumerate}  
\end{proof}
}%endblue
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\section{$\mf b_\ka$ and $\mf b_\ka(\ne^*)$}
[Proof of the second point of  Corollary~\ref{co:bhzl}; written directly in the previous chapter]

Let's update our diagram:
 \begin{center}
 \begin{tikzpicture}[scale=3]
 {\color{red}
 \node(nw) at (0,1){$\operatorname{non}(\mc M_\ka)$};
 \node(ne) at (2,1){$\operatorname{cof}(\mc M_\ka)$};
 \node (sw) at (0,0) {$\operatorname{add}(\mc M_\ka)$};
 \node(se) at (2,0){$\operatorname{cov}(\mc M_\ka)$};
 \node(c) at (0.75, 0.5){$\color{black} \mf b$};
 \node(d) at (1.25, 0.5){$\color{black} \mf d$};
 \node(a) at (0.5, 0.75) {$\color{black}\mf b(\ne^*)$};
 \node(b) at (1.5, 0.25) {$\color{black}\mf d(\ne^*)$};
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (nw) edge node {} (ne)
 (sw) edge node {} (se)
 (sw) edge node {} (nw)
 (se) edge node {} (ne)
;
 {\color{black}
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (se) edge [bend right] node {} (b)
 (a)  edge[bend left] node {} (nw)
 (c)  edge node {} (d)
 (c)  edge node {} (a)
 (b)  edge node {} (d)
;
 }
 {\color{blue}
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (nw) edge[bend left] node {} (a)
 (b) edge[bend right] node {} (se)
;
 }
 }%redend
 \end{tikzpicture}
 \end{center}
 \begin{question}
   We have $\mf b_\ka\le \mf b_\ka(\ne^*)$ and $\mf d_\ka\ge \mf d_\ka(\ne^*)$. Can the inequality be strict?
 \end{question}
{\color{blue}
 \begin{fact} In the inequalities above,
   \begin{enumerate}
   \item If $\ka$ is $\omega$ then $<$ is consistent in both cases
   \item (Baumhauer, Goldstern, Shelah, in preparation) If $\ka$ is supercompact, consistently $\mf b_\ka<\operatorname{non}(\mc M_\ka)(=\mf b(\ne^*))$.
   \item (Shealah, preprint) If $\ka$ is supercompact, consistently, $(\mf d(\ne^*)=)\operatorname{cov}(\mc M_\ka)<\mf d_\ka$.
   \end{enumerate} 
 \end{fact}
}
On the other hand,
\begin{fact}\label{fact:hyttinen}[Hyttinen]
  If $\ka$ is a successor cardinal, then $\mf b_\ka=\mf b_\ka(\ne^*)$.
\end{fact}
Note how this could interfere with the equalities we have in the ``blue'' case and the consistency results above, in the supercompact case.
\begin{fact}[Matet, Shelah]
  If $\ka$ is a successor and $2^{<\ka}=\ka$, then $\mf d_\ka=\mf d_\ka(\ne^*)$.
\end{fact}
\begin{pr}\*\label{pr:landveretal}
  \begin{enumerate}
  \item For any $\sigma\in 2^{<\ka}$, the set $A_\sigma$ of $y\in 2^\ka$ with no occurrences of $\sigma$, i.e.\
\[
A_\sigma=\set{y\in 2^\ka\mid \forall \tau\in 2^{<\ka}\;\tau\cat \sigma\centernot\ssq y}
\]
is nowhere dense.
\item (Landver) $2^{<\ka}>\ka$ implies that $\ka^+=\operatorname{add}(\mc M_\ka)=\operatorname{cov}(\mc M_\ka)$,
\item (Blass, Hyttinen, Zhang) $\operatorname{non}(\mc M_\ka)\ge 2^{<\ka}$
  \end{enumerate}
\end{pr}
\begin{proof}\*
  \begin{enumerate}
  \item Immediate.
  \item Any $2\in 2^\ka$ has only $\ka$ many $<\ka$ substrings. If $\lambda<\ka$ is such that $2^\lambda>\ka$, take $\Sigma\ssq 2^\lambda$ with $\abs{\Sigma}=\ka^+$. Then 
\[
\set{A_\sigma\mid \sigma\in \Sigma}
\]
is a $\ka^+$-sized covering set.
\item $\operatorname{non}(\mc M_\ka)\ge \ka$ holds by definition, so we may assume $2^{<\ka}>\ka$. Let $X\ssq 2^\ka$ with $\abs{X}<2^{<\ka}$. We want to show that $X$ is meagre. Let $\lambda<\ka$ be such that $\abs{X}<2^{\lambda}$. Then $X\ssq A_\sigma$ for some $\sigma\in 2^\lambda$, which is nowhere dense.
  \end{enumerate}
\end{proof}
This allows us to consistently break the equalities seen before: using this, we can get
\begin{pr}
  Consistently, $\mf b_\ka(\ne^*)<\operatorname{non}(\mc M_\ka)$ and $\mf d_\ka(\ne^*)>\operatorname{cov}(\mc M_\ka)$.
\end{pr}
\begin{proof}
To force $\mf b_\ka(\ne^*)<\operatorname{non}(\mc M_\ka)$ start with a model of \tc{gch}, let $\ka$ be a successor and force to add $\ka^{++}$-many Cohen reals\footnote{Real reals, i.e.\ subsets of $\omega$, not $\ka$-reals.}. In $V[G]$ we have $2^{<\ka}=\ka^{++}=2^\ka$. So from the last point of the previous Proposition we get that $\operatorname{non}(\mc M_\ka)=\ka^{++}$. But by the Hyttinen result   (Fact~\ref{fact:hyttinen}), $\mf b_\ka(\ne^*)=\mf b_\ka$. Since the forcing notion has c.c.c.\ it is $\ka^\ka$-bounding, i.e.\ any $g\from \ka\to \ka$ in the extension is dominated by a $h\from\ka\to\ka$ in the ground model; to see this, if $\dot g$ is a name for a function $\ka\to \ka$, for every $\gamma\in \ka$ there is a maximal antichain of conditions $p$ such that $p\forces \dot g(\check \gamma)=\check\alpha$, so we can just define $h(\gamma)$ to be the sup of these $\alpha$'s. Then $1\forces \dot g\le \hat h$. So if $B$ is unbounded in the ground model, $B$ remains unbounded int he extension. So
\[
\mf b(\ne^*)^{V[G]}=\mf b_\ka^{V[G]}=\ka^+<\ka^{++}=\operatorname{non}(\mc M_\ka)
\qedhere
\]
\end{proof}
It is open if this can be done with  $2^{<\ka}=\ka$.
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\section{More on Combinatorially Meagre Sets}
\begin{pr}\label{pr:engulf}
  $\operatorname{Match}(x,I)\ssq \operatorname{Match}(y, J)$ if and only if for all but $<\ka$ many intervals $I_\alpha$ of $I$ there is $b\eta$ such that $J_\beta\ssq I_\alpha$ and $x\restr J_\beta=y\restr J_\beta$.
\end{pr}
\begin{rem}
  Thinking of the sets in the first statement as as the ``comeagre'' sets, the statement in terms of the ``meagre'' ones is $2^\ka \setminus \operatorname{Match}(y, J)\ssq 2^\ka \setminus \operatorname{Match}(x, I)$.
\end{rem}
\begin{proof}\*

\bigoval{$\allora$}  Suppose  there are $\ka$ many intervals $I_{\alpha_\gamma}$ such that for every $J_\beta$ contained in $I_{\alpha_\gamma}$ we have $x\restr J_\beta\ne y\restr J_\beta$. Also, assume that successive $I_{\alpha_\gamma}$'s have a $J_\beta$ in between. Define 
\[
x'(\alpha)\coloneqq \l\{
\begin{array}{ll}
  x(\alpha)&\tn{ if }\exists \gamma\; \alpha\in I_{\alpha_\gamma}\\
1-y(\alpha)&\tn{ otherwise}
\end{array}
\r.
\]
To conclude, it is sufficient to show that   $x'\in\operatorname{Match}(x,I)\setminus\operatorname{Match}(y,J)$. It is clear that $x'$ matches $x$ on $I$. For the other part, if $J_\beta$ is contained in some $I_{\alpha_\gamma}$, our assumption tells us that $x'\notin \operatorname{Match}(y,J)$. Otherwise, use the assumption above to find a $J_\beta$ between two successive $I_{\alpha_\gamma}$'s.


\bigoval{$\se$}  Suppose $z\in \operatorname{Match}(x,I)$. Then there are $\ka$ many $I$ intervals $I{\alpha_\gamma}$ such that $z\restr I_{\alpha_\gamma}=x\restr I_{\alpha_\gamma}$. For $\ka$ many $\gamma$, \tc{wlog} for all $\gamma$ there is $\beta$ such that $J_\beta\ssq I_\alpha$ and $y\restr J_\beta=x\restr J_\beta=z\restr J_\beta$.
\end{proof}
\begin{defin}
  Say that $(x,I)$ is \emph{engulfed by $(y,J)$} iff\footnote{So the complements, the ``meagre'' sets, are engulfed.} $\operatorname{Match}(x,I)\supseteq \operatorname{Match}(y,J)$.
\end{defin}
{\color{blue}
We have seen that essentially $\operatorname{Cof}(\mc M_\ka)=(\mc M_\ka, \mc M_\ka, \ssq)$ is equivalent to $\operatorname{Cof}'(\mc M_\ka)\coloneqq(\mathrm{CF}, \mathrm{CF}, \tn{ is engulfed by})$. The morphism from the former to the latter is given by
\begin{gather*}
\Phi_+\from M\mapsto \tn{ some }(y,J)\tn{ with }M\ssq 2^\ka\setminus \operatorname{Match}(y,J)\\
\Phi_-\from (x,I)\mapsto 2^\ka\setminus \operatorname{Match}(x,I)
\end{gather*}
While the morphism in the other direction is given by $\Phi_+$ and $\Phi_-$ swapped: if $\Phi_(M)$ is less than  some ``bigger'' $(x,I)$ and  is engulfed by $(y,J)$, then $M\ssq 2^\ka\setminus \operatorname{Match}(y,J)$. This is a particular case of the following:
}%endblue
\begin{exr}
  If $D$ is cofinal in $\mb P$, then $(D,D, \le)\equiv (\mb P, \mb P, \le)$.
\end{exr}
{\color{blue}
\begin{co}
  $\operatorname{Cof}(\mc M_\ka)\preceq \mc D_\ka$.
\end{co}
\begin{proof}
We know  $\operatorname{Cof}(\mc M_\ka)\equiv  \operatorname{Cof}'(\mc M_\ka)$ and $\mc D_\ka\equiv \mathrm{IP}$. By  Proposition~\ref{pr:engulf}, if $(x,I)$ is engulfed by $(y,J)$, then $I\le^* J$. We can then take as morphism
\[
\Phi_+\from (x,J)\mapsto J\qquad \Phi_i\from I\mapsto (x,I)\tn{ (some $x$)}
\]
since what we just said say exactly that this maps give us a morphism.
\end{proof}
\begin{co}
  $\operatorname{cof}(\mc M_\ka)\ge \mf d_\ka$ and $\operatorname{add}(\mc M_\ka)\le \mf b_\ka$.
\end{co}
So we have the following picture
}%endblue
 \begin{center}
 \begin{tikzpicture}[scale=3]
 {\color{red}
 \node(nw) at (0,1){$\operatorname{non}(\mc M_\ka)$};
 \node(ne) at (2,1){$\operatorname{cof}(\mc M_\ka)$};
 \node (sw) at (0,0) {$\operatorname{add}(\mc M_\ka)$};
 \node(se) at (2,0){$\operatorname{cov}(\mc M_\ka)$};
 \node(c) at (0.75, 0.5){$\color{black} \mf b_\ka$};
 \node(d) at (1.25, 0.5){$\color{black} \mf d_\ka$};
 \node(a) at (0.5, 0.75) {$\color{black}\mf b(\ne^*)$};
 \node(b) at (1.5, 0.25) {$\color{black}\mf d(\ne^*)$};
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (nw) edge node {} (ne)
 (sw) edge node {} (se)
 (sw) edge node {} (nw)
 (se) edge node {} (ne)
;
 {\color{black}
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (se) edge [bend right] node {} (b)
 (a)  edge[bend left] node {} (nw)
 (c)  edge node {} (d)
 (c)  edge node {} (a)
 (b)  edge node {} (d)
;
 }
 {\color{blue}
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (nw) edge[bend left] node {} (a)
 (b) edge[bend right] node {} (se)
 (sw) edge node {} (c)
 (d) edge node {} (ne)
;
 }
 }%endblue
 \end{tikzpicture}
 \end{center}
Also, [someone, I missed the name] claims in a preprint that the last arrows we added to the diagram can be black, i.e.\ are true just assuming regularity.

In the $\omega$ case, Chicon's diagram also involves other posets related to the ideal of Lebesgue null sets. The problem in the $\ka$ case is, for now, that nobody has still come up with a suitable generalisation of the Lebesgue null sets.
\section{Slaloms}
\begin{defin}
  A \emph{slalom} is a function $\phi\from \ka \to [\ka]^{<\ka}$ such that $\forall \alpha\; \phi(\alpha)\in [\ka]^{\le \abs \alpha}$.  If $h\from \ka\to \ka$ is a function with $\lim_{\alpha\to \ka} h(\alpha)=\ka$, an \emph{$h$-slalom} is a function $\phi\from \ka \to [\ka]^{<\ka}$ such that  $\forall \alpha\; \phi(\alpha)\in [\ka]^{\le \abs{h(\alpha)}}$.
\end{defin}
\begin{defin}
  For $f\in \ka^\ka$, we say that \emph{$f$ is localised at $\phi$}, written $f\in^*\phi$ iff for all but $<\ka$ many $\alpha$ we have $f(\alpha)\in \phi(\alpha)$.
\end{defin}
{\color{blue}
  \begin{pr}[Bartzynski, $\ka=\omega$]
If $\mc N$ is the Lebesgue null ideal,    $\operatorname{add}(\mc N)=\mf b(\in^*)$ and $\operatorname{cof}(\mc N)=\mf d(\in^*)$.
  \end{pr}
}%endblue
\begin{defin}
  A \emph{partial $h$-slalom} is a partial function $\phi\from \ka\to [\ka]^{<\ka}$ with $\abs{\dom\phi}=\ka$ such that $\forall \alpha\in \dom\phi\;\phi(\alpha)\in [\ka]^{\le \abs{h(\alpha)}}$. We say that $f\in^*_{\mathrm p}\phi$ iff for all but $<\ka$ many $\alpha\in \dom(\phi)$ we have $f(\alpha)\in \phi(\alpha)$.
\end{defin}
{\color{blue}
  \begin{spoiler}
    In the $\omega$ case, we have $\mf b(\in^*)\to \mf b_{p}(\in^*)\to \operatorname{add}(\mc M_\omega)$. Also, $\mf p=\mf t\to \mf b_{\mathrm p}(\in^*)$.
  \end{spoiler}
}
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\section{}
The goal of today is getting the diagram here:
 \begin{center}
 \begin{tikzpicture}[scale=3]
 {\color{red}
 \node(nw) at (0,1){$\operatorname{non}(\mc M_\ka)$};
 \node(ne) at (2,1){$\operatorname{cof}(\mc M_\ka)$};
 \node (sw) at (0,0) {$\operatorname{add}(\mc M_\ka)$};
 \node(se) at (2,0){$\operatorname{cov}(\mc M_\ka)$};
 \node(c) at (0.75, 0.5){$\color{black} \mf b_\ka$};
 \node(d) at (1.25, 0.5){$\color{black} \mf d_\ka$};
 \node(a) at (0.5, 0.75) {$\color{black}\mf b(\ne^*)$};
 \node(b) at (1.5, 0.25) {$\color{black}\mf d(\ne^*)$};
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (nw) edge node {} (ne)
 (sw) edge node {} (se)
 (sw) edge node {} (nw)
 (se) edge node {} (ne)
;
 {\color{black}
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (se) edge [bend right] node {} (b)
 (a)  edge[bend left] node {} (nw)
 (c)  edge node {} (d)
 (c)  edge node {} (a)
 (b)  edge node {} (d)
;
 }
 {\color{blue}
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (nw) edge[bend left] node {} (a)
 (b) edge[bend right] node {} (se)
 (sw) edge node {} (c)
 (d) edge node {} (ne)
;
\path[thick,  font=\scriptsize,>= angle 90]
 (sw.30) edge [bend left] node [right]{$\min$} (sw.east)
 (ne.west) edge [bend right] node [left]{$\max$} (ne.210)
;
 }
 }%endblue
 \end{tikzpicture}
 \end{center}
For convenience, think of $2^\ka$ as the group with coordinatewise addition modulo $2$. Think of any $\sigma\in 2^{<\ka}$ in $2^\ka$ as $\sigma$ on its domain and $0$ elsewhere. With these conventions, $B+2^{<\ka}$ means $\set{b+\sigma\mid b\in B, \sigma\in 2^{<\ka}}$, i.e.\ $B$ modulo small differences.
{
\color{red}
\begin{lemma}[$\ka$ regular, $2^{<\ka}=\ka$]\label{lemma:otherstrangelemma}
Denote with $\mc{NWD}_\ka$ the collection of nowhere dense sets in $2^\ka$.  There are functions 
\[
\Phi_+\from 2^\ka\times \ka^\ka\tp \mc M_\ka\qquad 2^\ka\times \mc{NWD}_\ka\to \ka^\ka
\]
such that if $B\in \mc{NWD}_\ka$, $x\in 2^\ka$ and $f\in \ka^\ka$ are such that
\begin{itemize}
\item $\lim_{\alpha\to \ka}f(\alpha)=\ka$
\item $x\notin B+2^{\ka}$
\item $f\ge^* \Phi_-(x, B)$
\end{itemize}
then $B\ssq \Phi_+(x,f)$.
\end{lemma}
}%redend
Once we have the Lemma, we have
{\color{red}
\begin{co}\label{co:minmax}The following hold:
  \begin{enumerate}
{\color{black}  \item   $\operatorname{add}(\mc M_\ka)\ge \min\set{\mf b_\ka, \operatorname{cov}(\mc M_\ka)}$}
\item $\operatorname{cof}(\mc M_\ka)\le \max\set{\mf d_\ka, \operatorname{non}(\mc M_\ka)}$
  \end{enumerate}
\end{co}
\begin{proof}\*
  \begin{enumerate}
  \item {\color{black}If $2^{<\ka}>\ka$, by Proposition~\ref{pr:landveretal} we have $\operatorname{add}(\mc M_\ka)=\operatorname{cov}(\mc M_\ka)=\ka^+$. } If $2^{<\ka}=\ka$, if $\mc B\ssq \mc{NWD}_\ka$ is such that $\abs {\mc B}<\min\set{\mf b_\ka, \operatorname{cov}(\mc M_\ka)}$, we can find $x\in 2^{\ka}\setminus \l(\bigcup \mc B+2^{<\ka}\r)$ and then $f\ge^*\Phi_-(x, B)$ for all $B\in \mc B$. Then for all $B\in \mc B$ we have $B\ssq \Phi_+(x,f)$, so $\bigcup \mc B$ is meagre.
  \item Let $\mc F\ssq \ka^\ka$ be dominating, $X\ssq 2^\ka$ be non-meagre. We are now going to show that $\set{\Phi_+(x, f)\mid f\in \mc F, x\in X}$ is cofinal in $\mc M_\ka$. If $M$ is meagre, say $M=\bigcup_{\alpha<\ka} Y_\alpha$, choose $x\in X\setminus M$ and $f\ge^* \Phi_-(x, Y_\alpha)$ for all\footnote{There's only $\ka$ many of them} $\alpha$. Then $\forall \alpha\;Y_\alpha\ssq \Phi_+(x,f)$, so $M\ssq \Phi_+(x,f)$.
  \end{enumerate}
\end{proof}
\begin{rem}
  In the proof above, we used tacitly the fact that the functions in a dominating family can be chosen to be increasing.
\end{rem}
}%redend
{\color{blue}
\begin{co}
  $\operatorname{add}(\mc M_\ka)=\min\set{\mf b_\ka, \operatorname{cov}(\mc M_\ka)}$ and   $\operatorname{cof}(\mc M_\ka)=\max\set{\mf d_\ka, \operatorname{non}(\mc M_\ka)}$ and 
\end{co}
}%endblue
{\color{red}
\begin{proof}[Proof of Lemma~\ref{lemma:otherstrangelemma}]
Enumerate $2^{<\ka}$ as $\set{\sigma_\alpha\mid \alpha<\ka}$. For $f$ such that  $\lim_{\alpha\to \ka} f(\alpha)=\ka$, set
\[
\Phi_+(x,f)\coloneqq\bigcup_{\alpha<\ka}\bigcap_{\beta\ge \alpha}2^\ka\setminus [(\sigma_\beta+x)\restr f(\beta)]
\]
We are now going to show that each of those intersections is nowhere dense. If $\tau\in 2^{<\ka}$, choose $\sigma_\beta$ such that $\sigma_\beta+x\restr \abs\tau=\tau$ and $f(\beta)\ge \abs \tau$. Then $(\sigma_\beta+x)\restr f(\beta)$ is an extension of $\tau$. For other $f$'s, let $\Phi_+(x,f)$ be arbitrary.

Let now $B\in \mc{NWD}_\ka$ and $x\notin B+2^{<\ka}$. As every nowhere dense set is contained in a closed one, we may assume \tc{wlog} that $B$ is closed. For such $B$ and $x$  $\Phi_-(x,B)(\alpha)$ to be an ordinal $\gamma$ such that $B\cap [(\sigma_\alpha+x)\restr \gamma]=\emptyset$. Let $\Phi(x,B)$ be arbitrary for other $(x,B)$.

Assume $x, B, f$ satisfy the hypotheses of the Lemma. Let $y\in B$. Then $y\notin [(\sigma_\alpha+x)\restr\Phi_-(x,B)(\alpha)]$ by definition of $\Phi_-$. Since $f\ge^* \Phi_-(x,B)$, there is $\alpha$ such that for all $\beta\ge \alpha$ we have $y\in 2^\ka\setminus [(\sigma_\alpha+x)\restr f(\beta)]$. But, by definition, this means $y\in\Phi_+(x,f)$.
\end{proof}
}%redend
\chapter{06/11}
\section{On Slaloms}
We would like to deal with something similar to the ideal of Lebesgue null sets, but no one has come up with a suitable generalisation of that ideal for general $\ka$. So we talk about slaloms instead.
\begin{defin}
  Let $\mathrm{Loc}_h=\set{\phi\from \ka\to [\ka]^{<\ka}\mid \forall \alpha<\ka\; \abs{\phi(\alpha)}=\abs{h(\alpha)}}$.
\end{defin}
\begin{rem}
  In the $\omega$ case requiring $\abs{\phi(\alpha)}\le\abs{h(\alpha)}$ instead does not make a difference. But for now let us be cautious and work with the definition above.
\end{rem}
\begin{notation}
  $\forall^*\alpha<\ka$ means ``for all but $<\ka$ many''.
\end{notation}

\begin{defin}
  For $f\from \ka\to \ka$, say $f\in^*\phi$ iff $\forall^*\alpha<\ka\; f(\alpha)\in\phi(\alpha)$.
\end{defin}
We are now going to consider $\mf b_h(\in^*)$ and $\mf d_h(\in^*)$.
\begin{fact}
  In the $\omega$ case we have $\mf b_{\id_\omega}(\in^*)=\operatorname{add}(\mc N)$ and $\mf d_{\id_\omega}(\in^*)=\operatorname{cof}(\mc N)$, where $\mc N$ is the ideal of Lebesgue null sets. 
\end{fact}
{\color{blue}In the $\omega$ case, there is a famous result stating
\begin{fact}[Bartoszy\'nsky, Raissonnier, Stern]
   $\operatorname{Cof}(\mc N)\preceq \operatorname{Cof}(\mc M)$
\end{fact}
Unpacking the proof  Gives that $\operatorname{Cof}(\mc N)\equiv \operatorname{LOC}_{\id_\omega}\coloneqq(\omega^\omega, \operatorname{Loc}_{\id_\omega}, \in^*)$, and this induces a morphism from the latter to $\operatorname{Cof}(\mc M)$.}%endblue
 This \emph{does} generalise, so we are going to look at it.

\begin{defin}
  Call $\mathrm{pLoc}_h$ the set of partial $h$-slaloms, and denote $\mathrm{pLOC}_{\id_\omega}\coloneqq (\omega^\omega, \mathrm{pLoc}_{\id_\omega}, \in^*)$
\end{defin}
\begin{pr}
  $\mathrm{LOC}_h\preceq \mathrm{pLoc}_h\preceq \mc D_\ka$
\end{pr}
\begin{proof}
For the first morphism  $\Phi_+\from \mathrm{Loc}_h\to \mathrm{pLoc}_h$ is inclusion, and $\Phi_-\from \ka^\ka\to \ka^\ka$ is the identity.

For the second one, $\Phi_+\from \mathrm{pLoc}_h\to \ka^\ka$ is
\[
\Phi_+(\phi)(\alpha)\sup(\phi(\tn{least $\beta\ge \alpha$  in }\dom \phi))
\]
and $\Phi_-\from \ka^\ka\to \ka^\ka$ is the identity. To check that this works we need to see that if $\Phi_-(f)\in^*_{\mathrm p}\phi$ then $f\le^*\Phi_+(\phi)$, i.e.\ if $f\in_{\mathrm p}^*\phi$ then $f\le^*\sup(\phi(\tn{least $\beta\ge \alpha$  in }\dom \phi))$. For $f$ increasing this works. Using the fact that the increasing $f$ are dense, the proof can be completed.
\end{proof}
\begin{co}
  $\mf b_h(\in^*)\le \mf b_h(\in_{\mathrm p}^*)\le \mf b_\ka$ and   $\mf d_h(\in^*)\ge \mf d_h(\in_{\mathrm p}^*)\ge \mf d_\ka$.
\end{co}
\begin{rem}
  In the $\omega$ case, $\mf d_h(\in_{\mathrm p}^*)$ has a name too. We will come back to that.
\end{rem}
\begin{lemma}
  For $\ka=\lambda^+$ we have $\mc D_\ka\preceq \mathrm{LOC}_h$. So $\mathrm{LOC}_h\equiv \mathrm{pLOC}_h\equiv \mc D_\ka$.
\end{lemma}
\begin{proof}
  For $\ka=\lambda^+$, $\abs{h(\alpha)}$ is almost always equal to $\lambda$. Define $\Phi_+\from \ka^\ka\to \mathrm{Loc}_h$ as
\[
g\mapsto (\alpha\mapsto g(\alpha)+1\;\tn{(as a set of ordinals)})
\]
This is $\phi\from \ka\to [\ka]^\lambda=[\ka]^{\abs h(\alpha)}$. Then take $\Phi_-\coloneqq\id_{\ka^\ka}$, and we have that if $\Phi_-(f)=f\le^*g$ then $f\in^*\Phi_+(g)$ (unpacking the definitions shows that this is equivalent to $f\le^* g$).
\end{proof}
\begin{pr}
  Let $g,h\from \ka\to\ka$ be such that $\lim_{\alpha\to \ka}g(\alpha)=\ka=\lim_{\alpha\to\ka}h(\alpha)$. Then $\mathrm{pLOC}_g\equiv \mathrm{pLOC}_h$.
\end{pr}
\begin{proof}
  We will show $\mathrm{pLOC}_g\preceq \mathrm{pLOC}_h$, i.e.\ $(\ka^\ka, \mathrm{pLoc}_g, \in^*_{\mathrm p})\preceq (\ka^\ka, \mathrm{pLoc}_h, \in^*_{\mathrm p})$. Choose a strictly increasing $(\alpha_\gamma)_{\gamma\in\ka}$ subset of $\dom h=\ka$ such that $h(\alpha_\gamma)\ge g(\gamma)$. Define $\Phi_-\from \ka^\ka\to \ka^\ka$ by $\Phi_-(f)(\gamma)=f(\alpha_\gamma)$. Define $\Phi_+\from \mathrm{pLoc}_g\to \mathrm{pLoc}_h$ by
\[
\dom((\Phi_+)(\phi))\coloneqq \set{\alpha_\gamma\mid \gamma\in\dom \phi}\qquad \underbrace{\Phi_+(\phi)(\alpha_\gamma)}_{\in[\ka]^{\abs{h(\alpha_\gamma)}}}\supseteq \underbrace{\phi(\gamma)}_{\in [\ka]^{\abs{g(\gamma)}}}
\]
by extending arbitrarily the set if need be. Now assume  $\Phi_-(f)\in^*\phi$, i.e.\ $\forall^*\gamma\in\dom\phi\;\Phi_-(f)(\gamma)=f(\alpha_\gamma)\in \phi(\gamma)$. Then $\forall^*\alpha\in\dom(\Phi_+(\phi))\;f(\alpha)\in \Phi_+(\phi)(\alpha)$, and $\forall^*\gamma\in\dom\phi\; f_(\alpha_\gamma)\in\Phi_+(\phi)(\alpha_\gamma)$, as $\phi(\gamma)\ssq\Phi_+(\phi)(\alpha_\gamma)$.
\end{proof}

\chapter{07/11}
{\color{blue}
\section{Towards the $\ka$-B.R.S.~Theorem}
We are aiming towards showing that $\mathrm{pLOC}\preceq \mathrm{COF}(\mc M_\ka)$.
\begin{lemma}[Main Lemma]
Let $X\ssq 2^\ka$ be a non-empty   open set, and let $\lambda<\ka$. Then there is a family $\mc Y$ of open subsets of $X$ such that
\begin{enumerate}[label=(\roman*)]
\item $\abs{\mc Y}\le \ka$
\item Every open dense subset of $2^\ka$ includes a member of $\mc Y$ as a subset.
\item For any  $\mc Y'\ssq \mc Y$ with $\abs{\mc Y'}\le \lambda$ we have $\bigcap \mc Y'\ne \emptyset$.
\end{enumerate}
\end{lemma}
[the proof was actually started in the previous lecture, but I have preferred to keep it all in one chapter]
\begin{proof}
 Let $(\Sigma_\alpha)_{\alpha<\ka}$ enumerate subsets of $2^{<\ka}$ of size $<\ka$. This can be done because, for each $\alpha$, $\Sigma_\alpha$ is (induced by) a collection of $\sigma\in 2^{<\ka}$, and by strong inaccessibility $(2^{<\ka})^{<\ka}=\ka$, so there are $\ka$ many $\Sigma_\alpha$ at most. For each $\alpha$ let $X_\alpha=\bigcup_{\sigma\in \Sigma_\alpha}[\sigma]$, i.e.\ $(X_\alpha)_\alpha$ lists the union of basic open sets, relative to $X$. From now one, assume   \tc{wlog} $X=2^\ka$. For $\beta<\ka$, let
\[
A_\beta=\set{\alpha\mid \forall \sigma\in2^\beta\;\exists\tau\in2^{<\ka}\;\tau\supseteq \sigma\wedge \tau\in \Sigma_\alpha}
\]
Now define
\[
\mc Y=\set*{
\bigcup_{\zeta<\lambda^+}X_{\alpha_\zeta}\Biggm| \alpha_0\in\ka\wedge \alpha_\zeta\in A_{\beta_\zeta}\tn{ for }\zeta>0\tn{ where }\beta_\zeta=\bigcup_{\xi<\zeta}\bigcup_{\sigma\in \Sigma_{\alpha_{\xi}}}\dom\sigma
}
\]
To help digesting what $\mc Y$ is, think of it as a recursive construction where $\alpha\in \ka$ is arbitrary, $\alpha_\zeta\in A_{\beta_\zeta}$ for $\zeta>0$, and $\beta_\zeta=\bigcup_{\xi<\zeta}\bigcup_{\sigma\in \Sigma_{\alpha_\xi}}\dom\sigma$ (think of the $\bigcup$ as a $\sup$).

Note that $\abs{\mc Y}\le \ka^{\lambda^+}=\ka$, so we have the first point of the thesis. For the second one, let $D\ssq 2^\ka$ be open dense. Notice that, for any $\beta$,
\[
\set{\alpha\in A_\beta\mid X_\alpha\ssq D}\ne \emptyset
\]
because, for any fixed $\beta$, for all $\sigma\in 2^\beta$ we can take $\tau_\sigma\supseteq \sigma$ such that $[\tau_\sigma]\ssq D$ and then let $\alpha$ be such that $\Sigma_\alpha=\set{\tau_\sigma\mid \sigma\in 2^\beta}$. 
Note that if $\beta\le\gamma$ then $A_\beta\supseteq A_\gamma$. Recursively, construct $\alpha_\zeta$, for $\zeta<\lambda^+$, such that $\alpha_\zeta\in A_{\beta_\zeta}$ and $X_{\alpha_\zeta}\ssq D$. The member of $\mc Y$ for this construction is $\bigcup_{\zeta<\lambda^+}X_{\alpha_\zeta}$: as each $X_{\alpha_\zeta}$ is included in $D$, so is their union.

For the last point, suppose $\mc Y'=\set{Y_\delta\mid \delta<\lambda}$ is given. We find a point in the intersection through diagonalisation as follows. Suppose that
\[
Y_\delta=\bigcup_{\zeta<\lambda^+}X_{\alpha(\delta, \zeta)}
\]
as per the recursive construction above, i.e.\ $\alpha(\delta, 0)$ is arbitrary in $\ka$ and $\alpha(\delta_\zeta)\in A_{\beta(\delta, \zeta)}$.  Analogously, let
\[
\beta(\delta, \zeta)=\bigcup_{\xi<\zeta}\bigcup_{\sigma\in \Sigma_{{\alpha(\delta,\xi)}}}\dom\sigma
\]
Define a partial injective function $\eta\from \lambda^+\to \lambda$ recursively by 
\begin{align*}
\eta(0)&\coloneqq \min\set{\delta\mid \forall \epsilon<\lambda\; \beta(\delta,1)\le\beta(\epsilon,1)}\\
\eta(\zeta+1)&\coloneqq \min \set[\Big]{\delta\notin\set{\eta(\xi)\mid \xi<\zeta}\Bigm| \forall \epsilon\notin\set{\eta(\xi)\mid \xi<\zeta}\; \beta(\delta,\zeta+1)\le\beta(\epsilon,\zeta+1)}
\end{align*}
Eventually, we run out of $\delta$'s, so this is a function from a proper initial segment of $\lambda^+$ to $\lambda$. Specifically, if we let $\lambda_0$ be such that $\set{\eta(xi)\mid \xi<\lambda_0}=\lambda$, then $\eta$ a bijection\footnote{Basically, the point of the all construction is that $\lambda$ is the wrong ordering for $\mc Y'$, the correct one is $\lambda_0$.} $\lambda_0\to \lambda$. We now sow that $\bigcap Y_\delta\ne\emptyset$ by recursively constructing $(\sigma_\zeta\in2^{<\ka}\mid \zeta<\lambda_0)$ such that
\begin{itemize}
\item $\sigma_0=\seq{}$
\item if $\xi<\zeta$ then $\sigma_\xi\ssq \sigma_\zeta$
\item and $\sigma_{\zeta}=\bigcup_{\xi<\zeta} \sigma_\xi$ for limit $\zeta$
\item $\sigma_{\zeta+1}\in \Sigma_{\alpha(\eta(\zeta), \zeta)}$
\item $\dom\sigma_\xi\ssq \bigcup_{\xi<\zeta}\beta(\eta(\xi), \xi+1)$
\end{itemize}
Once this is done, just let $\sigma=\bigcup_{\zeta<\lambda_0}\sigma_\zeta$, and observe that 
\[
[\sigma]\ssq \bigcap_\zeta X_{\alpha(\eta(\zeta),\zeta)}\ssq \bigcap_\zeta Y_{\eta(\zeta)}
\]
To conclude, let's show that the construction above can actually be carried out. For this, notice that for $\xi<\zeta$ we have $\beta(\eta(\xi), \xi+1)\le \beta(\eta(\zeta), \xi+1)$ by minimality of $\eta(\xi)$. But since $\beta$ is increasing we have
\[\label{eq:etazeta}
\beta(\eta(\xi), \xi+1)\le\beta(\eta(\zeta), \xi+1)\le \beta(\eta(\zeta), \zeta)\le \beta(\eta(\zeta), \zeta+1)
\]
Let's look at the recursion defining $\sigma_\zeta$  in the case $\zeta=1$ for simplicity. Let $\sigma_1\in\Sigma_{\alpha(\eta(0), 0)}$ be arbitrary. So $\dom(\sigma_1)\ssq \beta(\eta(0), 1)$ by definition of $\beta$. In the general successor case, assume we have $\sigma_\zeta$ as required, so 
\[
\dom(\sigma_\zeta)\ssq \bigcup_{\xi<\zeta}\beta(\eta(\xi), \xi+1)
\]
\tc{rhs} is at most $\beta(\eta(\zeta), \zeta)$ by~\eqref{eq:etazeta}. By definition, $\alpha(\eta(\zeta), \zeta)\in A_{\beta(\eta(\zeta), \zeta)}$. So we can find $\sigma_{\zeta+1}\in \Sigma_{\alpha(\eta(\zeta), \zeta)}$ extending $\sigma_\zeta$. To conclude, just notice that by definition of $\beta$
\[
\dom(\sigma_{\zeta+1})\ssq \beta(\eta(\zeta), \zeta+1)
\]
and that at limit stages the conditions are trivially satisfied.
\end{proof}

}%endblue
\chapter{13/11}
\section{The $\ka$-B.R.S.~Theorem}
{\color{blue}
\begin{thm}
$\mathrm{pLOC}\preceq \operatorname{Cof}(\mc M_\ka)$, i.e.\ there are  $\Phi_-\from \mc M_\ka\to \ka^\ka$ and $\Phi_+\from\mathrm{pLoc}\to \mc M_\ka$ such that if $\Phi_-(A)\in^*\phi$ then $A\ssq \Phi_+(\phi)$.
\end{thm}
\begin{proof}
  Identify $\ka^\beta$ with $\ka$; actually work with functions $f\from \ka\to \ka^{<\ka}$ with $f(\beta)\in \ka^\beta$. So, instead of $\ka^\ka$, work with $[\ka^{<\ka}]^\ka$ and partial slaloms $\phi\from \ka\to [\ka^{<\ka}]^{<\ka}$, where $\phi(\beta)\in [\ka^\beta]^{\abs \beta}$.

Let $\seq{X_\alpha\mid\alpha<\ka}$ be a base for the topology on $2^\ka$. For $\alpha, \beta<\ka$, let $\mc Y_{\alpha, \beta}\coloneqq \set{Y_\alpha, \beta, \gamma\mid \gamma<\ka}$ be given by  the Main Lemma with $X_\alpha$ as $X$ and $\abs \beta$ as $\lambda$.

To define $\Phi_-$, suppose $A$ is meagre, as witnessed by $A=\bigcup_{\alpha<\ka}A_\alpha$, each $A_\alpha$ nowhere dense, and \tc{wlog}\footnote{Exercise: the union of $<\ka$ nowhere dense subsets of $2^\ka$ is nowhere dense.} $A_\alpha\ssq A_\beta$ for $\alpha\le \beta$. As said above, we want to define an element of $(\ka^{<\ka})^\ka$, instead of one of $\ka^\ka$. Stipulate that\footnote{$\Phi_-(A)(\beta)$ should be a $\beta$-tuple, so we just need to define it on all the $\alpha<\beta$.}
\[
A_\beta\cap Y_{\alpha, \beta, \Phi_-(A)(\beta)(\alpha)}=\emptyset
\]
Such a $Y_{\alpha, \beta, \Phi_-(A)(\beta)(\alpha)}$ exists because $\mc Y_{\alpha, \beta}$ comes from the Lemma and $A_\beta $ is nowhere dense, so its complement contains an open dense subset.

Given a partial slalom $\phi$ with $\phi(\beta)\in [\ka^\beta]^{\abs \beta}$, put 
\[
\Phi_+(\phi)\coloneqq 2^\ka\setminus\Bigl(\bigcap_{\delta<\ka}\bigcup_{\substack{\beta\ge \delta\\ \beta\in\dom\phi}}\bigcup_{\alpha<\beta}\bigcap_{\sigma\in\phi(\beta)} Y_{\alpha,\beta,\sigma(\alpha)}\Bigr)
\]
Let's show this is meagre. $\bigcap_{\sigma\in\phi(\beta)} Y_{\alpha,\beta,\sigma(\alpha)}$ is the intersection of $\abs \beta$-many $Y$'s from $\mc Y_{\alpha,\beta}$, so by the Main Lemma the intersection is a non-empty subset of $X_\alpha$. Also, it's open, because each $Y$ is and the open sets in this topology is stable under intersections of size $<\ka$. So the set \[\bigcup_{\substack{\beta\ge \delta\\ \beta\in\dom\phi}}\bigcup_{\alpha<\beta}\bigcap_{\sigma\in\phi(\beta)} Y_{\alpha,\beta,\sigma(\alpha)}\]
is open dense, as for each $\alpha$, there is $\beta\in\phi$ such that $\beta>\alpha$, and so the union meets $X_\alpha$. It follows that $\Phi_+(\phi)$ is meagre.

Now, assuming  $\Phi_-(A)\in^*\phi$,  we need to show that $A\ssq \Phi_+(\phi)$. As $\Phi_-(A)\in^*\phi$, there is $\beta_0$ such that for all $\beta\ge\beta_0$ we have $\Phi_-(A)(\beta)\in\phi(\beta)$. Let $x\in A$, say $x\in A_\delta$ for some\footnote{As the union is increasing, then $x\in A_\beta$ for all $\beta\ge \delta$.} $\delta\ge\beta_0$. Fix $\beta\in\dom\phi$, $\beta\ge \delta$. For $\alpha<\beta$, we have $x\notin Y_{\alpha,\beta, \Phi_-(A)(\beta)(\alpha)}$ by choice of $\Phi_-$. In particular, $x\notin\bigcap_{\sigma\in \phi(\beta)} Y_{\alpha,\beta, \sigma(\alpha)}$. As this holds for all $\alpha<\beta$ and $\beta\ge\delta$, we have
\[
x\notin
\bigcup_{\substack{\beta\ge \delta\\ \beta\in\dom\phi}}\bigcup_{\alpha<\beta}\bigcap_{\sigma\in\phi(\beta)} Y_{\alpha,\beta,\sigma(\alpha)}
\]
So $x$ is not in the intersection as $\delta$ varies, i.e.\ $x\in \Phi_+(\phi)$.
\end{proof}
\begin{co}
  $\mf b(\in_{\mathrm{p}}^*)\le \operatorname{add}(\mc M_\ka)$ and   $\mf d(\in_{\mathrm{p}}^*)\ge \operatorname{cof}(\mc M_\ka)$.
\end{co}
So for inaccessibles we  have
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\begin{question}
  Is $\mf b(\in^*_{\mathrm{p}})<\operatorname{add}(\mc M_\ka)$ consistent? It is know to be in the case $\omega$, but the proof uses a rank argument with Heckler forcing, that does not generalise well to the inaccessible case.
\end{question}
}
\chapter{14/11 -- Stamatis Dimopoulos}
\section{Iterated Forcing -- Basic Facts}
We are going to assume familiarity with the basics of forcing.
\begin{question}
  How to force \tf{GCH} while preserving inaccessibles?
\end{question}
References:
\begin{enumerate}
\item Cummings\footnote{Check his web page.}, \emph{Iterated forcing and elementary embeddings}, inside \emph{Handbook of set theory}.
\item Baumgartner, \emph{Iterated forcing}, Surveys in Set Theory. Beware of the fact that the notation here is oldish.
\end{enumerate}
\begin{defin}
  Let $\ka$ be an infinite cardinal, and $\lambda>\ka$ an ordinal. \emph{Cohen forcing} is defined as
\[
\operatorname{Add}(\ka, \lambda)\coloneqq \set{p\mid p\tn{ partial function } \ka\times \lambda\to 2, \abs p<\ka}
\]
ordered by reverse inclusion, i.e.\ $p\le q$ iff $p\supseteq q$.
\end{defin}
Another notation for $\operatorname{Add}(\ka, \lambda)$, e.g.\ in Kunen's book, is $\operatorname{Fn}_\ka(\kappa\times \lambda, 2)$.
\begin{defin}[Closure properties]
  Let $\mb P$ be a forcing notion and $\ka$ an infinite cardinal. We say that
  \begin{enumerate}
  \item $\mb P$ is \emph{$\ka$-closed} iff every decreasing sequence of length $<\ka$ has a lower bound.
  \item $\mb P$ is \emph{$\ka$-directed closed} iff every downward directed subset of $\mb P$ of size $<\ka$ has a lower bound.
  \item $\mb P$ is \emph{$\ka$-distributive} iff for all generic filter $G$,  for all $\lambda<\ka$ every function $f\from \lambda\to V$  in $V[G]$ exists already in $V$.
  \end{enumerate}
\end{defin}
\begin{rem}
  If $\mb P$ is separative, then $\mb P$ is $\ka$-distributive if and only if the intersection of $<\ka$-many open dense subsets of $\mb P$ is open dense.
\end{rem}
\begin{rem}In this list of properties of $\mb P$, each one implies the next one:
  \begin{enumerate}
  \item   being $\ka$-directed closed
  \item  being $\ka$-closed
  \item being $\ka$-distributive
  \item preserving  cardinals $\le \ka$.
  \end{enumerate}
Moreover, the first two implications are strict.
\end{rem}

\begin{eg}
  $\operatorname{Add}(\ka, \lambda)$ is $\ka$-directed closed.
\end{eg}
\begin{pr}
  For $\ka$ infinite regular cardinal, $\operatorname{Add}(\ka^+,1)$ forces $2^\ka=\ka^+$.
\end{pr}
\begin{proof}
  $\operatorname{Add}(\ka^+,1)$ is $\ka^+$-closed, so it does not add any new subset of $\ka$. Let $G\ssq \ka^+$ be the new set added, i.e.\ the union of the generic filter. For any $A\ssq \ka$, it is dense to find a segment in $G$ that looks like $A$. More formally, for any $A$ this set is dense:
\[
D_A\coloneqq\set{p\in \mb P\mid \exists \alpha<\ka^+\; p\restr [\alpha, \alpha+\k)\tn{ codes }A}
\]
where ``codes $A$'' means that if you look at that function it is  the characteristic function of $A$ translated by $\alpha$. As $G$ intersects all of these, the function $f\from \ka^+\to \ms P(\ka)$ defined by  $f(\alpha)=G\cap [\alpha, \alpha+\ka)$ is surjective.
\end{proof}
Another way of showing this is proving that that forcing notion is isomorphic to $\operatorname{Add}(\ka^+, 2^\ka)$.
\begin{rem}
  $\operatorname{Add}(\ka, \lambda)$ is $(2^{<\ka})^+$-c.c. If $\ka^{<\ka}=\ka$, then $\operatorname{Add}(\ka, \lambda)$ has the $\ka^+$-c.c, so it preserves cardinals $\ge \ka^+$.
\end{rem}
Let's look at a two-step iteration: we want to do forcing a second time in the forcing extension; the point is that the poset we force with the second time may be in $V[G]\setminus V$, yet we want to be able to speak of this directly from the point of view of $V$.
\begin{defin}[Two-Step Iteration]
  Suppose $\mb P$ is a forcing notion, and $\forces_{\mb P}\dot{\mb Q}\tn{ is a forcing notion}$. We define
\[
\mb P*\dot{\mb Q}\coloneqq \set{(p, \dot q)\mid p\in \mb P, \forces_{\mb P} \dot q\in\dot {\mb Q}}
\]
(pre\footnote{See later.})ordered in the following way
\[
(p_1, \dot q_1)\le (p_2, \dot q_2)\iff p_1\le p_2 \land p_1\forces \dot q_1\mathrel{\dot\le}\dot q_2
\]
\end{defin}
There is a variant where you replace $\forces_{\mb P} \dot q\in\dot {\mb Q}$ with $p\forces_{\mb P} \dot q\in\dot {\mb Q}$, but they turn out the be equivalent.

There are some issues to address here, anyway:
\begin{enumerate}
\item $\mb P*\dot{\mb Q}$ can be a proper class. This is solved by choosing $\dot q$ as a representative for some equivalence class\footnote{The equivalence relation is ``$\mathds 1$ forces the conditions to be equal''}, e.g.\ the name with the least rank.
\item Actually, the $\le $ we defined is not antisymmetric. This is solved by using preorders instead of posets\footnote{Or one could take quotients.}.
\end{enumerate}
\begin{defin}\label{defin:alphait}
  $\mb P$ is an $\alpha$-iteration, also denoted $\mb P_\alpha$, iff $\mb P=((\mb P_\beta\mid \beta\le \alpha), (\mb Q_\beta\mid \beta<\alpha))$ and for all $\beta<\alpha$
  \begin{enumerate}
  \item $\mb P_\beta$ is a forcing notion whose elements are $\beta$-sequences
  \item if $p\in\mb P_\beta$ and $\gamma<\beta$, then $p\restr\gamma\in \mb P_\gamma$
  \item If $\beta<\alpha$, then $\forces_{\mb P_\beta}\dot{\mb Q}_\beta$ is a forcing notion
  \item If $p\in \mb P_{\beta}$ and $\gamma<\beta$, then $p(\gamma)$ is a ${\mb P}_\gamma$-name for an element of $\dot{\mb Q}_\gamma$
  \item $\mb P_{\beta+1}\cong \mb P_{\beta}*\dot{\mb Q}_\beta$ (the isomorphism is canonical)
  \item for all $p, q\in \mb P_\beta$ we have $p\le_{\mb P_\beta} q$ iff $\forall\gamma<\beta\; p\restr \gamma\forces_{{\mb P}_\gamma}p(\gamma)\le_{\dot{\mb Q}_{\gamma}}q(\gamma)$
  \item for all $\gamma\le \beta$ we have\footnote{In preorders we may have more equivalent maximal elements. We distinguish one.} ${\mathds 1}_{{\mb P}_{\beta}}(\gamma)=\dot{\mathds 1}_{{\mb Q}_\gamma}$
    \item if $p\in{\mb P}_\beta$, $\gamma<\beta$ and $q\le_{\mb P_\gamma} p\restr \gamma$ then $q\cat p\restr [\gamma, \beta)\in \mb P_\beta$.
  \end{enumerate}
\end{defin}
\begin{rem}
As a consequence of the definition, 
 if $G\ssq \mb P$ is a generic filter, then $G_\beta\coloneqq\set{p\restr \beta\mid p\in G}$ is a generic filter for $\mb P_\beta$ and $g_\beta\coloneqq \set{(p(\beta))_{G_\beta}\mid p\in G}$ is a generic filter for $(\dot {\mb Q}_\beta)_{G_\beta}$.
\end{rem}
\begin{defin}
  If $p\in \mb P$, the \emph{support} of $p$ is defined by
\[
\operatorname{supp}(p)\coloneqq\set{\beta<\alpha\mid p(\beta)\ne \dot{\mathds 1}_{\mb Q_\beta}}
\]
\end{defin}
\begin{defin}
  Suppose $\lambda\le\alpha$ is a limit stage.
  \begin{itemize}
  \item $\mb P_\lambda$ is the \emph{inverse limit} of $\set{\mb P_\gamma\mid \gamma<\lambda}$ iff \[\mb P_{\lambda}=\set{p\mid\ p\tn{ is a $\lambda$-sequence}, \forall \gamma<\lambda\;p\restr \gamma\in \mb P_\gamma}\]
  \item $\mb P_\lambda$ is the \emph{direct limit} of $\set{\mb P_\gamma\mid \gamma<\lambda}$ iff \[\mb P_{\lambda}=\set{p\mid\ p\tn{ is a $\lambda$-sequence}, \forall \gamma<\lambda\;p\restr \gamma\in \mb P_\gamma, \tn{ and }\exists \beta<\lambda\;\forall \gamma\ge \beta\; p(\gamma)=\dot{\mathds 1}_{\mb Q_\gamma}}
\]
  \item We say we use $<\ka$-support iff inverse limits are taken at stages of cofinality $\ka$ and direct limits at cofinality $\ge \ka$
  \item We say we use \emph{Easton support} iff inverse limits are take at singular limit stages, and direct lmits are taken at regular limit stages.
  \end{itemize}

\end{defin}
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\begin{pr}
  Suppose $\mb P_\alpha=\mb P$ is the direct limit of $\set{\mb P_\beta\mid \beta<\alpha}$, $\ka$ regular $>\omega$. If
  \begin{itemize}
  \item $\forall \beta<\alpha$, $\mb P_\beta$ has the $\ka$-c.c.
  \item if $\operatorname{cf}(\alpha)=\ka$ then direct limits are taken at a stationary subset of $\alpha$
  \end{itemize}
Then $\mb P_\alpha$ has the $\ka$-c.c.
\end{pr}
\begin{pr}
  If $\mb P$ has the $\ka$-c.c.\ and $\forces_\mb P\dot{\mb Q}$ has the $\ka$-c.c., then $\mb P* \dot{\mb Q}$ has the $\ka$-c.c.
\end{pr}
\begin{pr}
  Let $\ka$ be regular, $\ka>\omega$, $\mb P_\alpha$ as in Definition~\ref{defin:alphait}. If
  \begin{itemize}
  \item $\forall \beta<\alpha\; \forces_{\mb P_\beta} \dot{\mb Q}_\beta$ is $\ka$-directed closed
  \item all limits are either inverse or direct and inverse limits are taken at stages of cofinality $<\ka$
  \end{itemize}
then $\mb P_\alpha$ is $\ka$-directed closed.
\end{pr}
\section{Factoring an iteration}
Let $\beta<\alpha$. If $p\in \mb P_\alpha$, let $p^\beta=p\restr\set{\gamma\mid \beta\le \gamma<\alpha}$. Let $\mb P_{\beta\alpha}=\set{p^\beta\mid p\in \mb P_\alpha}$. If $G_\beta\ssq \mb P_\beta$ is $V$-generic, then $p^\beta\le q^\beta$ iff $\exists r\in G_\beta$ such that $r\cup p^\beta\le_{\mb P_\alpha} r\cup q^\beta$. Let $\dot{\mb P}_{\ge \beta}\equiv \dot{\mb P}_{\beta\alpha}\equiv \dot{\mb P}_{[\beta, \alpha)}$ be a $\mb P_\beta$-name for $\mb P_{\beta\alpha}$.
\begin{pr}
  $\mb P_\alpha\cong \mb P_\beta*\dot{\mb P}_{\ge \beta}$.
\end{pr}
\begin{pr}
  $\forces_{\mb P_\beta} \dot{\mb P}_{\ge \beta}$ is (isomorphic to) an $(\alpha-\beta)$-iteration (i.e.\ defines on $\set{\gamma\mid \beta\le \gamma<\alpha}$)
\end{pr}
\begin{pr}
  Let $\ka>\omega$ be regular. If
  \begin{itemize}
  \item every $A\ssq\mathrm{Ord}$ of size $<\ka$  in the forcing extension by $\mb P_\beta$, is covered by a set $B\ssq\mathrm{Ord}$, $B\in V$, $\abs B<\ka$
  \item $\forall \beta\le\gamma<\alpha\;\forces_{\mb P_\gamma}\dot{\mb Q}_\gamma$ is $\ka$-directed closed.
  \item inverse limits are taken at stages of cofinality $<\ka$
  \end{itemize}
then $\forces_{\mb P_\beta}\dot{\mb P}_{\beta\alpha}$ is $\ka$-directed closed (also for $\ka$-closed).
\end{pr}
\begin{pr}
  If $\ka$ is inaccessible, $\mb P_\ka$ is a $\ka$-iteration and
  \begin{itemize}
  \item $\forall\alpha<\ka\;\dot{\mb Q}_\alpha\in V_\ka$
  \item a direct imit is taken at $\ka$ and at a stationary subset of stages $<\ka$
  \end{itemize}
then $\mb P_\ka\ssq V_\ka$, $\mb P_\ka$ is $\ka$-c.c.\ and $\forall \alpha<\ka$ for $\mb P_\ka\cong\dot{\mb P}_\alpha*\dot{\mb P}_{\ge \alpha}$, $\dot{\mb P}_{\ge \alpha}$ is forced to be $\ka$-c.c.\ and to have size $\ka$.
\end{pr}
\begin{defin}
  The \emph{\tf{GCH} forcing} is the (class) iteration $\mb P=\seq{\seq{\mb P_\alpha\mid \alpha\in \mathrm{Ord}}, \seq{\dot{\mb Q}_\alpha\mid \alpha\in \mathrm{Ord}}}$ with Easton support such that
 $\forall \alpha\in\mathrm{Ord}$, if $\mb P_\alpha$ has been defined and $\forces_{\mb P_\alpha}\alpha$ is a cardinal, then let $\dot {\mb Q}_\alpha$ be a $\mb P_\alpha$-name for $\operatorname{Add}(\alpha^+, 1)$; otherwise let $\dot{\mb Q}_\alpha$ name the trivial forcing\footnote{The poset with just one element.}.
\end{defin}
\begin{thm}
  After forcing with $\mb P$, \tf{GCH} holds and all inaccessible cardinals are preserved.
\end{thm}
\begin{proof}
One should take care of the extra technicalities in class forcing;  in this case everything  works fine and we skip those details.

  Let $G\ssq \mb P$ be a $V$-generic filter. To see that \tf{GCH} holds, let $\alpha$ be a cardinal in $V[G]$. Split $\mb P\cong \mb P_\alpha*\dot{\mb P}_{\ge \alpha}$, so $V[G_\alpha]$ is a sub-universe of $V[G]$. Now, $\alpha$ is still a cardinal in $V[G_\alpha]$. But then the next step  forces \tf{GCH} at $\alpha$, i.e.\ $V[G_{\alpha+1}]\models 2^\alpha=\alpha^+$. By two of the previous propositions, $\dot{\mb P}_{\ge \alpha}$ is $\alpha^+$-directed closed, hence $\alpha^+$-distributive, so $2^{\alpha}=\alpha^+$ still holds in $V[G]$.

Now suppose $\ka$ is inaccessible in $V$. Suppose that $\ka$ is not regular in $V[G]$, and let $\lambda=\operatorname{cf}(\ka)<\ka$. Split $\mb P\cong\mb P_\lambda*\dot{\mb P}_{\ge\lambda}$. As $\mb P_\lambda$ has size $<\ka$, it cannot change $\operatorname{cof}(\ka)$, and as  $\dot{\mb P}_{\ge\lambda}$ is $\lambda^+$-closed it cannot collapse $\operatorname{cof}(\ka)$. This is a contradiction, so $\ka $ is still regular in $V[G]$. Suppose now that $\ka$ is not strong limit anymore in $V[G]$, and let $\lambda<\ka$ be such that $2^\lambda\ge \ka$. Split $\mb P\cong \mb P_{\lambda}*\dot{\mb P}_{\ge \lambda}$. Now $\mb P_\lambda$ is too small to force $2^\lambda\ge\ka$, and  $\dot{\mb P}_{\ge\lambda}$ is $\lambda^+$-closed, so it does not add any new subsets to $\lambda$, resulting in a contradiction.
\end{proof}
\begin{rem}
  As being inaccessible is downward absolute, forcing cannot create new inaccessibles.
\end{rem}
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{\color{blue}
Work with $\ka=\omega$.
Today we want to prove $\operatorname{add}(\mc N)=\mf b(\in^*)$, where $\mc N$ is the idea of Lebesgue null sets.  We need this fact:
\begin{thm}\label{thm:addnb}
  $\operatorname{add}(\mc N)\le \mf b$.
\end{thm}
\begin{defin}[{\raisebox{.4ex}{\fontencoding{U}\fontfamily{futs}\selectfont\char 66\relax}} Beware: non-standard notation {\raisebox{.4ex}{\fontencoding{U}\fontfamily{futs}\selectfont\char 66\relax}}]
  For this lecture\footnote{Usually both ``series'' and ``$\mf h$''  mean something else.}, let a \emph{converging series} be some $f\from \omega\to \mb Q^{\ge 0}$ such that $\sum_{i\in \omega} f(i)<\infty$, and let $\mf h$ be the least cardinality of a set of converging series such that no one converging series dominates (summand-wise in all but finitely often places) all of them.
\end{defin}
\begin{pr}
  $\operatorname{add}(\mc N)\ge\mf h$.
\end{pr}
\begin{proof}
Take a family $\set{G_\xi\mid \xi<\lambda<  \mf h}$ of Lebesgue null sets. We want to show that $\bigcup_{\xi<\lambda} G_\xi$ is Lebesgue null. As  $G_\xi$ is Lebesgue null, it as a  subset of
\[
\bigcap_{n\in\omega}\bigcup_{m>n} I_m^\xi
\]
where the $I_m^\xi$ are some intervals with rational endpoints such that $\sum_{m=1}^\infty \mu(I_m^\xi)<\infty$. Fix an enumeration $(I_n)_{n\in\omega}$ of the intervals with rational endpoints and define 
\[
f_\xi(n)\coloneqq\l\{
\begin{array}{ll}
  1&\tn{ if } \exists m\; I_n=I^\xi_n\\
0&\tn{ otherwise}
\end{array}
\r.
\]
So we have
\[
\sum_{n\in\omega} f_\xi(n)\cdot \mu(I_n)<\infty
\]
As these are converging series and there are $\lambda<\mf h$ of them,  we can dominate (summand-wise, all but finite) all of these, and clearly we can assume that the dominating series is the product of a $\set{0,1}$-function, say $f\in 2^\omega$, with $\mu(I_n)$. Take
\[
G\coloneqq \bigcap_{n\in\omega} \bigcup_{\substack{m>n\\ f(m)=1}} I_m
\]
Then we have
\[
G_\xi\ssq\bigcap_n\bigcup_{m>n} I_n^\xi\ssq G
\]
and this shows $\mf h\le \operatorname{add}(\mc N)$.
\end{proof}
}
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[what follows was actually started in the previous lecture, but I have preferred to keep it all in one chapter]

{\color{blue}
 We now want to show that   $\mf h\ge \operatorname{add}(\mc N)$. We need the following fact.
\begin{pr}\label{pr:oprhanimplication}
The following are equivalent:
\begin{enumerate}
\item $\ka<\mf h$
\item Any set of $\ka$ many functions $f\from \omega\to \omega$ is localised by an $n\mapsto n^2$-slalom.
\item $\ka<\mf b$ and for any set of $\ka$ many functions $\omega\to\omega$ and any $g\from\omega\to\omega$ such that $\sum_{n}\frac 1{g(n)}<\infty$ dominating them all there is a slalom $\phi$ localising them all with $\sum_{n\in\omega} \frac{\abs {\phi(n)}}{g(n)}<\infty$.
\end{enumerate}
\end{pr}
\begin{proof}\*

\bigoval{$2\allora 1$} Let $F=\set{f_\xi\mid \xi<\ka}$ be a set of converging series of size $\ka$, i.e.\ for all $\xi<\ka$ we have $f_\xi\from \omega\to \mb Q^{>0}$ and $\sum_{n\in\omega} f_\xi(n)<\infty$. Define, for each $\xi$, a sequence $\seq{n^\xi_k\mid k\in\omega}$ such that 
\[
\forall k\;\sum_{i>{n^\xi_k}}^\infty f_\xi(i)<2^{-k}
\]
By assumption, there is $w\from \omega\to \omega$ that dominates all of these sequences $k\mapsto n^\xi_k$. Define $f_\xi'(k)\coloneqq f_\xi\restr[w(k), w(k+1))\in \omega^{<\omega}$. Identify $\omega^{<\omega}$ with $\omega$, and use the hypothesis again to get  a slalom $\phi$ such that for all $k$ we have $\abs{\phi(k)}\le k^2$ and for all $\xi<\ka$ we have $f_\xi'\in^*\phi$. Define $f\from\omega\to\mb Q^{\ge 0}$ by 
\[
f(n)\coloneqq \sup\set*{
s(n)\Biggm| s\in \phi(k)\tn{ for the $k$ s.t.\ } n\in[w(k), w(k+1))\tn{ and } \sum_{i=w(k)}^{w(k+1)-1}s(i)<2^{-k}
}
\]
(the idea is keeping track of the fact that $n$ is in $[w(k), w(k+1))$). So
\[
\sum_{n\in\omega} f(n)\le \sum_{k\in\omega} \tn{values in the $k$-inteval}
\le  \sum_{k\in\omega}k^22^{-k}<\infty
\]


\bigoval{$1\allora 2$}
Suppose we have $\ka<\mf h$ many functions $\omega\to \omega$, say $f_\xi$ for $\xi<\ka$. Define $a_\xi\from \omega\to \mb Q^{\ge 0}$ as
\[
a_\xi(n)=
\l\{\begin{array}{ll}
\max \set{1/k^2\mid f_\xi(k)=n}&\tn{ if }\ne \emptyset\\
0&\tn{ otherwise}  
\end{array}\r.
\]
Since $\ka<\mf h$, by definition there is  $a(n)$ such that $\sum_na(n)<\infty$ that eventually dominates every $a_\xi$. Assume \tc{wlog} that $\sum_n a(n)<1$, and let $\phi(k)=\set{n\mid a(n)\ge k^{-2}}$. As $\sum_n a(n)<1$, for every $k$ we have $\abs{\phi(k)}<k^2$, and so where $a_\xi$ is dominated by $a$, $f_\xi$ is guessed by $\phi$.

\bigoval{$3\allora 2$}
Take any set $F$ of $\ka$ many functions $\omega\to \omega$. As $\ka<\mf b$ by hypothesis, there is $f\from \omega\to \omega$ dominating everything in $F$. Let $(k_n)_{n\in\omega}$ be such that $\forall n\; k_n/f(n)=n^{-2}$. For $g\in\omega^\omega$, define $g'\in\omega^\omega$ by repeating  $g(k_i)$ times the value $g(i)$: start with\footnote{We do not start with $0$ because of $k_n/f(n)=n^{-2}$.} $k_1$ times $g(1)$, then $k_2$ times $g(2)$, etc. As the elements of $\set{e'\mid e\in F}$ are all dominated by $f'$ and $\sum_n 1/f(n)=\sum_{m\in\omega\setminus\set0} 1/m^2<\infty$ we can apply our hypothesis and get a slalom $\phi$ with those properties. Take $\psi_m=\phi(\ell)$ of least cardinality amongst those for $\ell$ in the $k_m$ interval. Then we have 
\[
\infty>\sum_n \frac{\abs{\phi(n)}}{f'(n)}\ge \sum_n\frac{ k_n\abs{\psi_n}}{f(n)}=\sum_n \frac{\abs{\psi_n}}{n^2}
\]
In particular, we almost always have $\abs{\psi_n}/{n^2}<1$.

\bigoval{$1\allora 3$} We will not see the proof of this part, as we are not going to need it in what follows.
\end{proof}
\begin{co}
  $\mf h=\mf b_{n\mapsto n^2}(\in^*)$.
\end{co}
\begin{proof}
  This is $1\sse 2$ in Proposition~\ref{pr:oprhanimplication}.
\end{proof}
\begin{pr}
If  $\ka<\operatorname{add}(\mc N)$ then condition 3  in  Proposition~\ref{pr:oprhanimplication}    holds.
\end{pr}
\begin{proof}
  By Theorem~\ref{thm:addnb}, we know $\ka<\mf b$. Take $F\ssq \omega^\omega$ with $\abs F=\ka$ and $f$ dominating everything in $F$ with$\sum_n 1/f(n)<\infty$. Consider $X\coloneqq\prod_{n\in\omega} f(n)$, where we think of $f(n)$ as the set of ordinals less than $f(n)$. Every $g\in X$ is by definition dominated by $f$, so we can define $H_g\coloneqq\set{x\in X\mid \exists^\infty n\; x(n)=g(n)}$. Equip each $f(n)$ with the equidistributed probability measure and let $\mu$ be the induced product measure on $X$. We have
\begin{multline*}
\mu(H_g)=\mu\Biggl(\bigcap_n\bigcup_{m> n}\set{x\in X\mid x(m)=g(m)}\Biggr)\\\le \mu\Biggl(\bigcup_{m> n}\set{x\in X\mid x(m)=g(m)}\Biggr)\le \sum_{m>n} \frac1{f(m)}\xrightarrow{n\to\infty}0
\end{multline*}
Therefore\footnote{It is an instance of Borel-Cantelli.} $\mu(H_g)=0$. As $\bigcup_{e\in F} H_e$ is null, we can take a tree\footnote{In $X$.} $T$ such that 
\begin{equation}
  \label{eq:pmen}
\tn{its set of branches $[T]$ has positive measure above every node}
\end{equation}
and $[T]\cap \bigcup_{e\in F} H_e=\emptyset$. Define $T(n)\coloneqq \set{x(n)\mid x\in [T]}$ and $T_s\coloneqq \set{t\in T\mid s\le t}$.
\begin{claim}
  $\forall e\in F\;\exists s\in T\;\forall n>h(s)\; e(n)\notin T_s(n)$
\end{claim}
Suppose the Claim was false, as witnessed by $e$. Then there is $x\in [T]$ such that $\exists^\infty n\; x(n)=e(n)$. But then $x\in [T]\cap H_e$, contradicting the choice of $T$ and proving the Claim.

For each $e\in F$, let $s\in T$ be given by the Claim. List the $s$'s as $s_1,s_2,\ldots$, and denote $\phi_n(m)=T_{s_n}(m)$. Then, by~\eqref{eq:pmen},
\[
\prod_{m=1}^\infty \frac{\abs{\phi_n(m)}}{f(m)}>0
\]
Modify the first few $\phi_n(m)$'s if necessary, to get
\[
\prod_{m=1}^\infty \frac{\abs{\phi_n(m)}}{f(m)}>1-2^{-n-1}
\]
and let $\phi(m)\coloneqq \bigcap_n\phi_n(m)$. We now have 
\[
\prod_{m=1}^\infty \frac{\abs{\phi(m)}}{f(m)}>0
\]
and $\psi_n\coloneqq f(n)\setminus \phi(n)$ is the slalom we were looking for.
\end{proof}

\begin{co}
   $\operatorname{add}(\mc N)\le \mf h$.
\end{co}
\begin{proof}
  By $3\allora 1$ in Proposition~\ref{pr:oprhanimplication}.
\end{proof}
}
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{\color{red}Remember that Chicon's diagram, without assuming inaccessibility, is
 \begin{center}
 \begin{tikzpicture}[scale=3]
 \node(nw) at (0,1){$\operatorname{non}(\mc M_\ka)$};
 \node(ne) at (2,1){$\operatorname{cof}(\mc M_\ka)$};
 \node (sw) at (0,0) {$\operatorname{add}(\mc M_\ka)$};
 \node(se) at (2,0){$\operatorname{cov}(\mc M_\ka)$};
 \node(c) at (0.75, 0.5){$\mf b$};
 \node(d) at (1.25, 0.5){$\mf d$};
 \node(a) at (0.5, 0.75) {$\mf b(\ne^*)$};
 \node(b) at (1.5, 0.25) {$\mf d(\ne^*)$};
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (nw) edge node {} (ne)
 (sw) edge node {} (se)
 (sw) edge node {} (nw)
 (se) edge node {} (ne)
;

 \path[->, thick,  font=\scriptsize,>= angle 90]
 (se) edge node {} (b)
 (a)  edge node {} (nw)
 (c)  edge node {} (d)
 (c)  edge node {} (a)
 (b)  edge node {} (d)
;
\end{tikzpicture}
\end{center}
Today we want to see what happens to Chicon's diagram after Cohen forcing.
\begin{thm}[$\ka=\ka^{<\ka}$]\label{thm:cohensplits}
If $\lambda>\ka^+$ is such that  $\lambda^\ka=\ka$, the poset $\operatorname{Add}(\ka, \lambda)$ forces $\operatorname{non}(\mc M_\ka)=\ka^+$ and $\operatorname{cov}(\mc M_\ka)=2^\ka=\lambda$. In particular, Chicon's diagram splits as follows, where everything in the left part is $\ka^+$ and everything in the right part is $\lambda=2^\ka$
 \begin{center}
 \begin{tikzpicture}[scale=3]
 \node(nw) at (0,1){$\operatorname{non}(\mc M_\ka)$};
 \node(ne) at (2,1){$\operatorname{cof}(\mc M_\ka)$};
 \node (sw) at (0,0) {$\operatorname{add}(\mc M_\ka)$};
 \node(se) at (2,0){$\operatorname{cov}(\mc M_\ka)$};
 \node(c) at (0.75, 0.5){$\mf b$};
 \node(d) at (1.25, 0.5){$\mf d$};
 \node(a) at (0.5, 0.75) {$\mf b(\ne^*)$};
 \node(b) at (1.5, 0.25) {$\mf d(\ne^*)$};
 \node (dps) at (2.75,1) {$\mf{d}(\in^*_{\mathrm{p}})$};
 \node (dp) at (2.75,0.5) {$\mf{d}(\in^*)$};
 \node (bps) at (-0.75,0) {$\mf{b}(\in^*_{\mathrm{p}})$};
 \node (bp) at (-0.75,0.5) {$\mf{b}(\in^*)$};
 \path[->, thick,  font=\scriptsize,>= angle 90]
 (nw) edge node {} (ne)
 (sw) edge node {} (se)
 (sw) edge node {} (nw)
 (se) edge node {} (ne)
 (ne) edge node {} (dps)
 (dps) edge node {} (dp)
 (bp) edge node {} (bps)
 (bps) edge node {} (sw)
;

 \path[->, thick,  font=\scriptsize,>= angle 90]
 (se) edge node {} (b)
 (a)  edge node {} (nw)
 (c)  edge node {} (d)
 (c)  edge node {} (a)
 (b)  edge node {} (d)
;

\draw(1, 1.25)--(1, -0.25);
\end{tikzpicture}
\end{center}
\end{thm}
Before the proof, we need some preliminaries.


  Recall that $\operatorname{Add}(\ka, \lambda)$ is the poset of partial functions from $\ka\times\lambda$ to $\ka$ with $\abs{\dom}<\ka$. Equivalently, it is a $\lambda$-fold product of $\operatorname{Add}(\ka, 1)$ with $<\ka$ support. As $\operatorname{Add}(\ka,1)$ is $\ka$-directed-closed, it adds no new subsets of ordinals $<\ka$. Equivalently it is, up to forcing equivalence, a $\lambda$-length iteration of $\operatorname{Add}(\ka, 1)$ with $<\ka$ support.
\begin{fact}
$\operatorname{Add}(\ka, \lambda)$ has the $\ka^+$-c.c. (This uses $\ka^{<\ka}=\ka$).    
\end{fact}
\begin{proof}
  Exercise: re-read the $\Delta$-system Lemma from Kunen (II-.1.6.\ in the original edition, $49$ in some other one).
\end{proof}
\begin{lemma}
  If $\mu<\lambda$ and $X\ssq \mu$ in the $\operatorname{Add}(\ka, \lambda)$-generic extension, then there is a subset $B$ of $\lambda$ of size at most $\mu$ such that $X$ is already added by $\operatorname{Add}(\ka, B)$.
\end{lemma}
\begin{proof}
  Every such $X$ has a ``nice name'' of the form 
\[
\bigcup_{\alpha<\mu}\set{(\check \alpha, p)\mid p\in A_\alpha}
\]
where each $A_\alpha$ is an antichain. Each $p$ has $\abs{\operatorname{dom}(p)}<\ka$, and $\operatorname{Add}(\ka, \lambda)$ has the $\ka^+$-c.c, so letting 
\[
B\coloneqq \bigcup_{\alpha<\mu}\bigcup_{p\in A_\alpha}\dom (p)
\]
we have $\abs B\le\mu$, and $X$ is completely determined by the $B$ coordinates of the forcing.
\end{proof}
\begin{rem}
  If $\mu=\ka$, since $\lambda^\ka=\lambda$ there are only $\lambda$ many such nice names, so $(2^\ka)^{\operatorname{Add}(\ka, \lambda)}\le \lambda$. Also, each coordinate gives a different subset of $\ka$, so $(2^\ka)^{\operatorname{Add}(\ka, \lambda)}\ge \lambda$.
\end{rem}
\begin{proof}[Proof of Theorem~\ref{thm:cohensplits}]
For any nowhere dense set $X\ssq 2^\ka$ there is $f\from 2^{<\ka}\to 2^{<\ka}$ such that $\forall \sigma\in 2^{<ka}\; f(\sigma)\supseteq \sigma$ and 
\[
X\ssq \set{s\in2^\ka\mid \forall \sigma\in 2^{<\ka}\; \underbrace{f(\sigma)\centernot\ssq x}_{x\notin [f(\sigma)]}}\eqqcolon A_f
\]
Let $f\from 2^{<\ka}\to2^{<\ka}$ be such that $\forall \sigma\; f(\sigma)\supseteq \sigma$ in the $\operatorname{Add}(\ka, \lambda)$-generic extension\footnote{Note that $2^{<\ka}$ is unchanged in the generic extension.}. By our assumptions $\abs{2^{<\ka}}=\ka$, so by the previous Lemma there is a set $B_f$ of size $\ka$ such that $f$ is added by $\operatorname{Add}(\ka, B_f)$. Moreover, for $\beta\notin B_f$, the $\beta$ coordinate Cohen subset  $c_\beta$  of $\ka$ is \emph{not} in $A_f$ in the extension, by a genericity argument. Namely, split the poset as a product of $B_f$ with all the rest and think of it as a two-step extension, and notice that it is dense for $c_\beta$ to include some $f(\sigma)$. So now if we have $\mc X$ a set of nowhere dense sets of the form $A_f$ in the $\operatorname{Add}(\ka, \lambda)$-generic extension with\footnote{One can also show (exercise) that it is possible to find a name for $\mc X$ of cardinality $<\lambda$.} $\abs{\mc X}<\lambda$, then 
\[
\abs[\Bigg]{\underbrace{\bigcup_{f\in \mc X} B_f}_{\eqqcolon \mc B}}<\lambda
\]
and therefore any $\beta\notin \mc B$ has $c_\beta\notin \bigcup_{f\in \mc X} A_f$. This shows that in the extension $\operatorname{cov}(\mc M_\ka)\ge \lambda$, and as $2^\ka=\lambda$ we have equality.

To conclude, we need to show that $\operatorname{non}(\mc M_\ka)\le \ka^+$. We explicitly give a non-meagre set of size $\ka^+$, namely\footnote{Or any $\ka^+$-size subset of the $\lambda$-many Cohen reals we added.}
\[
\set{c_\beta\mid \beta<\ka^+}
\]
To see this is non-meagre, consider any $\ka$ many nowhere dense sets $A_f$ in the extension. By the previous Lemma there is $B\ssq \lambda$ adding all of them and with $\abs B=\ka$. Take $\beta\in \ka^+\setminus B$. Then $c_\beta\notin \bigcup A_f$, and so $\set{c_\beta\mid \beta<\ka^+}$ is not contained in any (extension) meagre set.
\end{proof}
}%redend
\chapter{04/11}
\section{Hechler Forcing}
\begin{defin}[1-step version]
The conditions of  $(\mb H, \le)$ are pairs $(s,f)$ such that
\begin{itemize}
\item $s\in \ka^{<\ka}$
\item $f\in\ka^\ka$
\item $s$ is an initial segment of $f$; we denote this with $s\sqsubseteq f$
\end{itemize}
The order is $(s,f)\ge (t,g)$ iff\footnote{Again, this means that $t$ is an initial segment of $s$.} $t\sqsupseteq s$ and $\forall\alpha\;g(\alpha)\ge f(\alpha)$.
\end{defin}
\begin{rem}
  Note that in particular $t$ dominates $s$ on $\dom s$.
\end{rem}
We can think of conditions as a ``stem'' $s$ and a ``promise'' $f$.
\begin{defin}
  A partial order $\mb P$ is
  \begin{itemize}
  \item \emph{$(1, <\ka)$-centred} iff every $<\ka$ many conditions have a common extension;
  \item \emph{$(\lambda, <\ka)$-centred} iff $\mb P=\bigcup_{\alpha<\lambda} P_\alpha$, where each $P_\alpha$ is $(1,<\ka)$-centred;
  \item \emph{$\ka$-centred} iff it is $(\ka, <\ka)$-centred.
  \end{itemize}
\end{defin}
{\color{red}
\begin{eg}
  Hechler  forcing at $\ka$ is $\ka$-centred.
\end{eg}
\begin{proof}
  Each ``stem'' defined a $P_\alpha$, i.e.\ for all $s\in \ka^{<\ka}$ the set $\set{(s,f)\mid f\in \ka^\ka}$ is $(1,<\ka)$-centred: just take the supremum of the $f$'s, which can be done as we have $<\ka$ of them.
\end{proof}
}%redend
\begin{rem}
  If $\mb P$ is $\ka$-centred, then $\mb P$ is $\ka^+$-c.c.
\end{rem}
The following notion is not needed in the $\omega$ case, but it is necessary in general to deal with small cofinality limit stages.
\begin{defin}
  Assume $\mb P$ is ($<$)$\ka$ closed and $\ka$-centred, say $\mb P=\bigcup_{\gamma<\ka} P_\gamma$, where each $P_\gamma$ is $(1,<ka)$-centred. We say that $\mb P$ is \emph{$\ka$-centred with canonical lower bounds} iff there is $f_{\mb P}\from \ka^{<\ka}\to \ka$ such that whenever $\lambda<\ka$ and $(p_\alpha\mid \alpha<\lambda)$ is a decreasing sequence from $\mb P$ with $p_\alpha\in P_{\gamma_\alpha}$, there is $p\in P_{f_{\mb P}(\gamma_\alpha\mid \alpha<\lambda)}$ such that for all $\alpha<\lambda$ we have $p\le p_\alpha$.
\end{defin}
{\color{red}
\begin{eg}
  For Hechler forcing, if $p_\alpha=(s_\alpha, f_\alpha)$ and $p_\beta\le p_\alpha$, then $s_\beta\sqsupseteq s_\alpha$, so we can take
\[
f_{\mb H}\from (s_0, s_1,s_2,\ldots,s_\alpha, \ldots \mid \alpha<\lambda)\mapsto \bigcup_{\alpha<\lambda} s_\alpha
\]
\end{eg}
\begin{fact}
  Hechler forcing adds a function $h\ka\to \ka$ eventually dominating all ground model functions: it is dense for $(s,f)$ to have $f\ge^* g$ for any given $g$, so we can just take $h=\bigcup_{(s,f)\in G} s$.
\end{fact}
}%redend
\section{Slalom Forcing}
\begin{defin}
  Define $(\mb S_h, \le)$ to as have conditions pairs $(s, \mc F)$ such that
  \begin{itemize}
  \item there is $\lambda<\ka$ such that $s\from \lambda [\ka]^{<\ka}$ and $\abs{s(\alpha)}\le h(\alpha)$
  \item $\mc F$ is a  set of functions $\ka\to\ka$ of size $h(\lambda)$
  \end{itemize}
The order is $(s,\mc F)\ge (t,\mc G)$ iff
\begin{itemize}
\item $t\supseteq s$, $\mc G\supseteq \mc F$, and
\item $\forall \alpha \in   \dom t\setminus \dom s\;\forall f\in\ mc F\; f(\alpha)\in t(\alpha)$.
\end{itemize}
\end{defin}
Think of $\mc F$ as a ``promise to localise all $f$ in $\mc F$ hereafter''. And in fact,
\begin{fact}
  $\bigcup_{(s, \mc F)\in G} s$ is a slalom localising all ground model functions.
\end{fact}
Note that the requirement of $\mc F$ gets in the way of $\ka$-centredness: the point is that the domain of a common extension of a family actually depends on the stems, and not just on their domains. This is where partial slaloms are more handy to manage.
\begin{defin}
  \emph{Partial $h$-slalom forcing} is defined analogously, except $s$ can be partial and $\mc F$ can have any size $<\ka$.
\end{defin}
\begin{pr}
  This is $\ka$-centred with canonical lower bounds.
\end{pr}
\begin{proof}
  You can now take the union of the promises and just keep the same stem: we can extend that later.
\end{proof}
\begin{lemma}\label{lemma:densestems}
Suppose $(\mb P_\alpha, \mb Q_\alpha\mid \alpha <\mu)$ is an iteration of $\ka$-closed,  $\ka$-centred with canonical lower bounds forcings $\mb Q_\alpha$ with $<\ka$ support and such that for each $\alpha$ the function $f_{\dot{\mb Q}_\alpha}$ is in the ground model\footnote{The original ground model.} and $\mathds 1_{\mb P_\alpha}\forces {\dot{\mb Q}}_\alpha=\bigcup_{\gamma<\ka}{\dot {\mb Q}}_{\alpha, \gamma}$. Then the set of conditions $p\in \mb P_\mu$ such that for all $\beta\in\operatorname{supp}(p)$ there is $\gamma <\ka$ such that $p\restr \beta\forces p(\beta)\in \mb Q_{\beta,\check\gamma}$ is dense.
\end{lemma}
In other words, it is dense that for everything in the support the stem lives in the ground model (or: it is dense to choose a stem).
\begin{proof}[Proof Sketch]
  Given $p\in \mb P$, list $\operatorname{supp}(p)$ as $(\beta_\delta\mid \delta<\abs{\operatorname{supp}(p)})$ such that each $\beta\in\operatorname{supp}(p)$ appears cofinally often\footnote{Here we are assuming that the support is infinite. If it is not, extend arbitrarily. In the $\omega$ case,   conditions have finite support, so take the maximum $\beta$ in the support, [extend that?] and go backwards.}. Go through, at stage $\delta$, extending to get $p_\delta(\beta_\delta)$ in a specific $Q_{\beta_\delta, \gamma}$.
\end{proof}
\chapter{05/12}
{\color{red}
\section{Iterations of Centred Forcings}
\begin{lemma}\label{lemma:itercentr}
  Let $\mu<(2^\ka)^+$ be an ordinal. Assume $(\mb P_\alpha, {\dot{\mb Q}}_\alpha$ is an iteration of length $\mu$ with $<\ka$ supports of ($<\ka$-closed) $\ka$-centred with canonical lower bounds forcings $\mb Q_\alpha$ such that the functions $f_{{\dot{\mb Q}}_\alpha}$ are in the ground model. Then $\mb P_\mu$ is $<\ka$-closed and (forcing equivalent to something) $\ka$-centred (so, in particular, $\ka^+$-c.c.).
\end{lemma}
\begin{proof}
  $\ka$-closure is standard. To see it is $\ka$-centred, take an injection $f\from \mu\to 2^\ka$. Let $\mc F$ be the collection of all functions $F$ such that there is $\delta_F<\ka$ such that
  \begin{itemize}
  \item  $\dom F\ssq 2^\delta_F$
  \item $\abs{\dom F}<\ka$
  \item $\operatorname{codomain}F=\ka$
  \end{itemize}
These will correspond to the ``stems'', and partition our iteration. Since $\ka^{<\ka}=\ka$, we have\footnote{use that then $2^{\delta_F}\le \ka$.} $\abs{\mc F}=\ka$. Define the partition piece for $F$ as
\[
P_F\coloneqq \set{p\in\mb P_\mu\mid \forall \beta\in\operatorname{supp}(p)\;f(\beta)\restr \delta_F\in \dom F\wedge p\restr \beta\forces p(\beta)\in {\dot{\mb Q}}_{\beta, F(f(\beta)\restr \delta_F)}}
\]
  We now just need to  show that
  \begin{enumerate}
  \item each $P_F$ is $(1,<\ka)$-centred, and
  \item $\bigcup_{F\in \mc F} P_F$ is dense\footnote{Which is enough up to forcing equivalence.} in $\mb P_\mu$
\end{enumerate}
For the first part, assume we have $\lambda<\ka$ many elements $p_\xi$ of $P_F$. We find a common extension $p\restr \beta$ by recursion in $\beta<\mu$. If $\forall \xi<\lambda\;\beta\notin \operatorname{supp}(p_\xi)$, then take $p(\beta)=\mathds 1$. If $\beta\in \operatorname{supp}(p_\xi)$, then\footnote{It is forced by $p_\xi$, and $p\restr \beta$ is a common extension of all of them.}
\[
p\restr \beta\forces p_\xi(\beta)\in \dot{\mb Q}_{\beta, F(f(\beta)\restr \delta_F)}
\]
Since $\dot{\mb Q}_{\beta, F(f(\beta)\restr \delta_F)}$ is $(1, <\ka)$-centred, there is a (forced by $p\restr \beta$ to be)   common extension, call it $p(\beta)$. As we only had $\lambda<\ka$ many $p_\xi$ to consider and each had size $<\ka$, the support of $p$ has size $<\ka$.

For the second part, let $p\in \mb P_\mu$; up to extending it, assume it \tc{wlog} to be as  per Lemma~\ref{lemma:densestems}. Since $\abs{\operatorname{supp}(p)}<\ka$. By the identification given by $f$, think of this as $<\ka$ many $\ka$-length bit strings, all different, and find $\delta<\ka$ such that $\forall \beta, \gamma\in \operatorname{supp}(p)\;f(\beta)\restr \delta\ne f(\gamma)\restr \delta$. This is our $\delta_F$. Let $F\in \mc F$ be the function with domain $\set{f(\beta)\restr \delta\mid \beta\in \operatorname{supp}(p)}$ such that $\forall\beta\in \operatorname{supp}(p)\; F(f(\beta)\restr \delta)\coloneqq \iota_\beta$, where $p\restr\beta\forces p(\beta)\in {\dot{\mb Q}}_{\beta, \iota_\beta}$. Then $p\in P_F$.
\end{proof}
\section{Iterations of Hechler Forcing}
We saw that $\ka$-Hechler forcing is $<\ka$-closed and $\ka$-centred with canonical lower bounds. We want to do a long iteration of it.

Let $\lambda\ge \ka^+$ be regular, and consider a $\lambda$-length iteration of $\ka$-Hechler forcing. If $\lambda$ is big enough, it will not be $\ka$-centred anymore, but it will still be $\ka^+$-c.c: use Lemma~\ref{lemma:densestems} and a $\Delta$ system argument.
\begin{exr}[Prove this by the 12th of January as second part of the assessment for this course.]
  Prove this.
\end{exr}
}%redend
\chapter{11/12}
\section{Iterations of Hechler Forcing, continued}
{\color{red}
Take $\lambda\ge \ka^+$ regular. Take  a $<\ka$-support iteration of Hechler forcing of length $\lambda$. We already said that this is $\ka$-closed and $\ka^+$-c.c. 

Start with \tf{GCH} and have $\lambda>\ka^+$.
\begin{pr}
  This forcing makes $\operatorname{add}(\mc M_\ka)=2^\ka=\lambda$.
\end{pr}
\begin{proof}
  We showed (Corollary~\ref{co:minmax}) that $\operatorname{add}(\mc M_\ka)\ge\min\set{\operatorname{cov}(\mc M_\ka), \mf b_\ka}$.  Notice that the $\alpha$th Hechler $\ka$-real, mod $2$ componentwise, is a Cohen $\ka$-real. So in the forcing we (cofinally) add $\lambda$ many Cohens, so in the extension we have, by previous resulst,  $\operatorname{cov}(\mc M_\ka)=2^\ka$. 

The point of Hechler forcing is dealing with the $\mf b_\ka$ part, i.e.\ we want to show that $\mf b_\ka^{V[G]}=(2^\ka)^{V[G]}=\lambda$. If $B$ is a subset of $\ka^\ka$ in $V[G]$ of size $<\lambda$ then, by what we saw in the previous lectures,  $B$ occurs after some initial segment of the forcing, and the next Hechler real dominates it. So $\mf b_\ka^{V[G]}=\lambda$.
\end{proof}
}%redend
{\color{blue}
Let now $\ka$ be inaccessible and $\lambda=\ka^{++}$, and recall Lemma~\ref{lemma:itercentr}. We want to show that
\begin{pr}\label{pr:inacchecler}
For any $h$ in $V[G]$ we have $b(\in^*_h)^{V[G]}=\ka^+$.
\end{pr}
\begin{question}[Open]
  What happens with $\mf b(\in^*_{\mathrm p})$?
\end{question}
\begin{lemma}
  Let $\ka$ be strongly inaccessible, $\mb P$ be $\ka$-centred and $<\ka$-closed, and $h\in \ka^\ka$. Assume $\dot \phi$ is a $\mb P$-name for an $h$-slalom. Then there are $h$-slaloms $\phi_\alpha$, for $\alpha<\ka$, in the ground model such that  if $f\in (\ka^\ka)^V$ is not localised by any $\phi_\alpha$, then 
\[
\forces_{\mb P} \dot\phi\tn{ does not localise }\check f
\]
\end{lemma}
\begin{proof}
  Let $\mb P=\bigcup_{\alpha<\ka} P_\alpha$; where each $P_\alpha$ is $(1,<\ka)$-centred. Suppose $\dot \phi$ is a $\mb P$-name for an $h$-slalom, and for $\alpha<\ka$ define
\[
\phi_\alpha(\beta)\coloneqq \set{\gamma\in \ka\mid \exists p\in P_\alpha\; p\forces \check \gamma\in\dot\phi(\check\beta)}
\]
We claim that for every $\alpha, \beta$ we have $\abs{\phi_\alpha(\beta)}\le h(\beta)$. In fact, if this does not happen we can take $h(\beta)^+$ many $\gamma$ in $\phi_\alpha(\beta)$ such that $p_\delta\in P_\alpha$ and $p_\delta\forces \check\gamma_\delta\in \dot\phi(\check\beta)$. But then\footnote{As $\ka$ is inaccessible, $h(\beta)^+<\ka$. Also, $h(\beta)^+$ is still a cardinal in the generic extension by $<\ka$-closure (the only thing we need is that $\ka$ does not collapse to $h(\beta)$).} $\set{p_\delta\mid \delta<h(\beta)^+}\ssq P_\alpha$ has cardinality $<\ka$, so those conditions have a common extension $q$. By definition of $\phi_\alpha(\beta)$, we have $q\forces \abs{\dot\phi(\check\beta)}>\check h(\check \beta)$. This contradicts the definition of $\phi$, which was supposed to be a name for an $h$-slalom. Therefore every $\phi_\alpha$ is an $h$-slalom.

If $f\in (\ka^\ka)^V$ is such that $\forall\alpha<\ka\;\exists^\ka \beta\;f(\beta)\notin \phi_\alpha(\beta)$, fix $p\in\mb P$ and $\beta_0<\ka$. Let $\alpha$ be such that $p\in P_\alpha$. Take $\beta>\beta_0$ such that $f(\beta)\notin \phi_\alpha(\beta)$, i.e.\ there is no $p'\in P_\alpha$ such that $p'\forces \check f(\check \beta)\in \dot\phi(\check\beta)$. In particular, $p\centernot\forces \check f(\check \beta)\in \dot\phi(\check\beta)$, and therefore there is $q\le p$ such that $q\forces \neg \check f(\check \beta)\in \dot\phi(\check\beta)$.
\end{proof}
\begin{proof}[Proof of Proposition~\ref{pr:inacchecler}]
For any $h$ in $V[G]$, we know that $h$ appears in an initial segment of the forcing say by stage $\alpha_0$. Consider stage $\alpha_1\coloneqq\alpha_0+\ka^+$. Then we have added $\ka^+$ many Hechler\footnote{Maybe a similar argument works with Cohen $\ka$-reals as well.} $\ka$-reals  ``since'' $V[G_{\alpha_0}]$, and a Hechler is not localised by any ground model slalom.  These $\ka^+$ many Hechlers are $\in^*$-unbounded in $V[G_{\alpha_1}]$, and by the previous Lemma they remain so in $V[G]$: any $\phi$ in $V[G]$ fails to localise them all because any $\phi$ in $V[G_{\alpha_1}]$ fails to localise more than $\ka$ many of them. To see why the last sentece is true, encode a slalom as a subset of $\ka$, look at the stage where it appears and then consider the next Hechler.
\end{proof}
Dual arguments [with the same forcing?] apply to  $\operatorname{cof}(\mc M_\ka)$  and $\mf d(\in^*)$.
}
\end{document}
`` ''
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Chapter 1

02,/10

Assumptions are color coded: black (white on the board) means x regu-
lar, red means x~" = x and blue means x inaccessible.

Cardinal characteristics of the continuum have been studied a lot, but
there is still work ongoing. E.g. it was recently shown that p = t, and there
is a recent preprint with 10 different cardinals in Chicont’s diagram.

This course is about generalisation to higher cardinals: replace w with &
and finite with < k.

We are going to start from scratch from cardinal characteristics of the
continuum in a uniform approach for what will come later.

1.1 Good References

e For classical cardinal characteristics of the continuum, Blass’s article
inside Handbook of set theory.

e For large cardinals, Kanamori’s book.

1.2 Bounding and Dominating Number

Definition 1.1 (k regular). For functions f,g: k — &, write f <* ¢ (f is
eventually dominated by g) to mean

Jo < kB >k f(B) < g(B)

Remark 1.2. As k is regular, this is equivalent to ask that f < g on all but
< K many points.

Another reason for choosing k to be regular is because otherwise the
increasing functions wouldn’t be dense (cofinal) in this preorder.

1



2 CHAPTER 1. 02/10

Definition 1.3. We define
by = min{|F| | F C k" AVg: & =k If € F f <" g}
0, =min{|G| |G CKk"AVYf:k—>krkdgeG f< g}

In other words, by is the least size of an unbounded set, while 0, is the
least size of a dominating set.

Remark 1.4. <* means —(<*). Later in the course we will also consider
(= <)*, which is a different object.

Remark 1.5. Every dominating set is unbounded. In particular, b, < 0.
These notions can be generalised:

Definition 1.6. Suppose (P, <) is a preorder such that! Vp € P3Ig € P ¢ >
p. Then U is an unbounded set iff Vg € P dp € U p £ q, and D is a
dominating set iff Vp € P dqg € D p < q. We define

b(P) := min{|U| | U unbounded} 0(P) := min{|D| | D dominating}

Example 1.7 (k-meagre sets). The generalised Baire space is k" with the
box topology, generated by sets of the form

[s| ={f er™ | f1ls|=s}

as s varies in k<%, Similarly, the generalised Cantor space is 2" with the box
topology.
Remark 1.8. In x" and 2"

e The intersection of fewer than x many open sets is open?.

e There is an open base of size k, because k<" =

K.
e In the w case, the Baire space w® is a Baire space® (definition later).
Definition 1.9. In a topological space,

o A set X is nowhere dense iff for any open set V' there is an open subset
U C V such that UN X = 0.

o X is k-meagre iff it is a union of k-many nowhere dense sets. Let M,
be the set of k-meagre subsets of the topological space at hand. If x is
clear from context we may just say meagre.

LOtherwise you get boring stuff: the singleton a maximal element is a dominating set,
and there are no unbounded sets.

2This only works because & is regular. Also, the box topology has a universal property
similar to the one enjoyed by the product topology, but subject to this requirement.

3 Apparently people manage to avoid confusion even in languages with no articles.
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Remark 1.10. M, is a k-ideal, since subsets of a nowhere dense sets are
nowhere dense, and the union of k-many meagre sets is k-meagre.

Example 1.11. Consider (M, C). What are b and d for this partial order?
b(M,, Q) =min{|U| | U C M AVY e M, IXeUX LY}

In other words, it is the least cardinality of a set of meagre sets whose union
is not meagre. This is known as the additivity add(M,) of the meagre
ideal. Dually, 9(M,, C) is the least cardinality of a cofinal subset of M,
and is denoted with cof(M,). Under the “red” assumptions?, add(M,) <
cof (M,,).

Remark 1.12. The things above apply to both 2% and x*. But let’s say®
we are working in 27,

Proposition 1.13. Let (P, <) be a preorder such that Vp 3¢ ¢ > p. Then
b(P) = cf(b(P)) < cf(d(P)) < o(P) < [P|

Proof. If B is unbounded with |B| = b(IP) but the latter is singular, then
we can write B = (J, cofp(p) Ba, Where Vo |Bs| < b. Then we can choose
do such that p < g, for all p € B,, and {qo | « € cf(b(P))} would be
unbounded, contradicting minimality of | B].

The rest of the proof is left as an exercise. O

4Also we need the non-existence of maximal elements.
5Actually, if x is not weakly compact, the two spaces are homeomorphic.
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2.1 Singular Dominating Numbers
Question 2.1. Can d(PP) be singular?

Let’s elaborate on that with an example.

Example 2.2. Let 3,6 be infinite cardinals such that! cf(8) = 8 < cf(§) <
§ = 6<F. Consider the partial order Q with underlying set 8 x []<° and
(p,x) < (o,y) iff p<oandzCy.

Claim. b(Q) = $ and ?2(Q) = 6.

Proof. It B C Q and |B| < f, take 0 = sup{p | 3z (p,x) € B} and
let y == UJ{x | Ip (p,z) € B}. Then (o,y) is an upper bound for B, so
b(Q) > . To show equality, notice that {(«,?) | o < 8} is unbounded.
Now suppose D C Q is a dominating set such that |D| < §. Consider
X =z | (p,z) € D}. If § is regular, then obviously | X| < §. Otherwise,
by the previous Proposition, |X| < |D|- 8 < 0. Take v € § \ X. Then
(0,{v}) is not dominated by any element of D, and this shows 9(Q) > 4.
But |Q| = x <8 = 4. O

Definition 2.3. A function f: P — Q is a cofinal embedding iff
o Vp,p €Pp<p < f(p) <q f(p'), and

e VgeQIpeP(q< f(p)).

Lemma 2.4. If f: P — Q is a cofinal embedding, then b(P) = b(Q) and
o(P) =2(Q).

Proof. Chase around unbounded or dominating sets. O

1E.g. under GCH let 8 =N; and § = NN%‘

5
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So we may try to embed our contrived example above into a more natural
object.

Theorem 2.5 (Hechler). In the case w, if P is such that every countable
subset of P has an upper bound, then there is a forcing extension of the
universe in which P cofinally embeds into (w®, <*).

Theorem 2.6 (Cummings, Shelah, kK = k<"). Suppose P is a well-founded
poset with b(P) > x*. Then there is a forcing D(k,P) such that

1. D(k,P) is k-closed and k*-c.c. In particular it preserves cardinals and
cofinalities.

2. VR(EP) £ p cofinally embeds into (K", <*).
3. If VEb(P) = 3, then VPP Ep, =3

4. IV E(P) =6, then VPP Ep =6

Lemma 2.7. Every poset has a well-founded dominating subset.
Proof. Just keep on choosing elements by induction. O

Since then the inclusion map will be a cofinal embedding, the well-
foundedness hypothesis in the Theorem above is not really restrictive.

2.2 Beyond Preorders: Galois-Tukey Connections

Consider triples A = (A_, A4, A), where A is a binary with domain A_
and codomain Ay, ie. AC A_ x AL,

Definition 2.8. The norm ||A| of A is defined as
Al =min{|Y]|Y C A, AVze A_JyeY (z Ay)}

So, basically, ||A]| is @ for A. In fact, another notation is 9(A). What
about b? The nice thing about Galois-Tukey connections is that they allow
you to dualise things:

Definition 2.9. The dual of Ais At == (A, A_,=A), wherey Az =z A y.

Pictorially, the dual of R is . Now we have, by spelling out the defini-
tions,

|AL| =min{|Y||Y CA_AVz € AT yeY ~(y Az)}

and that’s exactly b(A). This is the sense in which b and 0 are dual.
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Definition 2.10. A morphism ®: A — B is a pair of functions ® = (®_, )
such that

° <I>+:A+—>B+
e &_:B_ — A_
e Vac A Vbe B ®_(b) Aa==bB &,(a).

Terminology of Vojtas: a Galois-Tukey connection from B to A is a
morphism? from A to B.

Exercise 2.11. If there is a morphism A — B (we write that as A < B),
then [|A|| > ||B| and |[AL] < ||BL], i.e. 9(A) > 0(B) and b(A) < b(B).

Remark 2.12. This is easier to apply than cofinal embeddings: the condi-
tion is an “if... then”, not an “if and only if”.

Exercise 2.13. Express the least cardinality non(M,) of a non-meagre set
as b of something and the least number cov(M,) of meagre sets require to
cover all of K™ as 0 of something.

2Yes, these things do form a category.
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3.1 Examples of Triples and Morphisms

Example 3.1. D := (k" k", <¥)

Example 3.2. Let Cof(M,) = (My, M,,C). Then d(M,) = cof(M,)
and b(M,;) = add(M,).

Solution of Ezercise 2.13. Let Cov(M,) = (2", M,,, €). Then d(Cov(M,))
equals
min{|U| | U CM;AVzxe2"IX ez € X}

i.e. the least size of a set of meagre sets that covers 2%, i.e. cov(My).
On the other hand, b(Cov(M,)) is the least size of a non meagre set, i.e.
non(M,), as can be seen by writing it as

min{|Y]|Y C2°"AVX e M, FyeY y ¢ X} O
Proposition 3.3. There is a morphism ®: Cof(M,) — Cov(My)
Proof. We have to find maps
D M, — M, d_: 2" 5 M,

such that if ®_(z) C Y then x € &, (Y). Take &, = idy, and ®_(z) =
{z}. O

From this and Exercise 2.11 we immediately get

Corollary 3.4. b(Cof) < b(Cov) and d?(Cof) > 9(Cov). In other words,
add(My) < non(M,) and cof (M) > cov(M,).

Exercise 3.5. Try to proof the above inequalities directly from the defini-
tions. It should boil down to the morphism above.

9
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Proposition 3.6. There is a morphism! ¥: Cof(M,) — Cov(M,)*.
Proof. We have to find maps
‘IJJ’»:M/@HQK \Pf:M/{*)M,Q

such that if ¥_(X) CY then X # U, (Y). Let V_ =idp, and let U, (Y)
be any element? y € 27\ Y. O]

We therefore have the following picture, where arrows mean <:
non(M,,) ———— > cof (M)

=

add(M,) ———— > cov(M,,)

Example 3.7. Let £ = (K", k", #"), where for f,g: Kk — k we say that f is
eventually different from g, written f #* g, if Ja < kK VB > a f(B) # g(B).

Remark 3.8. #* is symmetric, but here we are thinking of it in a “partial
order” sense. Distinguishing left and right in this context is very important.

We have
HeLH = b(#£*) = min{|F| | F C k" AVg € k" If € F ~f £* g}
Recall that ~f #£* g means Yo < x 38 > a f(8) = g(8). Also
[El =0(#") =min{|G| | G CK"AVfer"IgeG f# g}

Proposition 3.9. D < €.

Proof. One morphism is given by @ := k" — k" defined as d — (P4 (d)(«) :
d(a)+1) and ®_: k" — k" the identity. If ®_(e) <* d then e #* &, (d). O
Proposition 3.10. D < & < Cov(My)

Proof. We want ®: k* — M, and ®_: k" — k" such that if ®_(x) #* ¢
then z € &, (g). Let ®_ = id.~, and define

S (f)={g9lg# [}

'Recall that Cov(M,)t = (M, 2%, ).
2Here we hare using the k<" = &, because if 2° turned out to be meagre. ..
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The point is that for every f € " the set {g | ¢ #* f} is meagre. The reason
for this is that

{g1g# 1= {g|V8=agB) # f(B)}

a<k

And each of the sets we're taking the union of, i.e. for fixed «, is nowhere
dense, because if s € k<" defines an open set, extend s to t € k" taking the
value f(5) on some (> «. O

Remark 3.11. Pay attention to the last step in the proof above, since we
are going to use similar tricks often.

As a result of the Proposition, the diagram becomes

non(M,) cof (M)
<
b(#")
K
b—>0
K
o(#%)
<
add(M,) cov(M,)

Spoiler 3.12. We will show later that (2%, M, €) = (k", M,, €).
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4.1 K" vs 2F

Claim. Meagre sets in " are “basically the same” as meagre sets in 27. More
precisely, there is an homeomorphic embedding of k* into 2% with comeagre
image.

Proof. Consider the function ¢: k" — 2" sending f to f(0) many 0’s, then
14+ f(1), many 1’s, then 1+ f(2) many 0’s etc. More formally, define p(f) :=
Ua<r Sp(a), where sp: 6 — 2<%, 5¢(8) 2 syp(a) for B > a is defined by
recursion by letting s¢(3) be Ua<6 sf(a) followed by 1+ f(8) many 0’s if 3
is even and nonzero, and (1 + f(5)) many 1’s if 8 is odd, or f(0) many 0’s
if 3=0.

This is an homeomorphism to its range. To see this, consider that the
open base set [t], for ¢t € k" maps to [s¢(|t|]) 7 r], where r is 0 if |¢| is even
and 1 if |¢| is odd. So our map is open. To see it is continuous, notice that
anyting in 2<% is of the form s.(|t|) ~ r, where r is @ many 0’s or 1’s. So,
for t € k<", this has inverse image Uiipsalt ™ Bl Since, clearly, the map is
injective, it’s an homeomorphism to its range.

We now show that 2\ Ran(y) is meagre; to see this, let C' be the set of
x € 2" such that x eventually stops alternating. We have

C=J{ze2r|VB>aua(B)=0tu | J{z 2" |VB>az() =1}

and each of the sets we are taking the union of is nowhere dense: just extend
something beyond « forcing it to be out of the set.
Therefore, up to a meagre set x* is the same as 2~. ]

Remark 4.1. There is another encoding one could use: use 1’s as separators
and put f(a) many 0’s each time. This may even be easier to work with.

Corollary 4.2. (28, M?2" €) = (k", M €)

13
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Proof. To see =<, let @ : M2 — M= be ¢!, and let ®_: k* — 27 be ¢.
If o(f) € X then f € ¢~ 1(X), so this is a morphism.

The morphism in the other direction is given by ®, : M%" — M2" being?
X = "X UC and ®_: 2% — k" being ! if defined, arbitrary otherwise.
If ®_(z) €Y, then z € &, (Y), so we are done. O

The objects above were called Cov(M,). What about Cof(M,)?
Corollary 4.3. (M2, M2',C) = (M, M, C)

Proof. To see =, let ®, be ¢! and ®_ be ¢”. Clearly, if ¢”X C Y then
X Coply.

For the other direction, let ®, be CU¢” and ®_ = o~ L. If o~ }(Y) C X,
then Y C ¢” X U C, so we are done. O

4.2 Baire’s Category Theorem

We were actually tacitly using the following result, which we are now
going to prove:

Theorem 4.4 (Baire’s Category Theorem). Every meagre set has empty
interior.

Proof. Work in? 2°. Let X be meagre, as witnessed by writing X =, <r Xa
with X, nowhere dense, and let () # U C 2% be open. We want to show that
U\ X #0.

Since X is nowhere dense, take sy € 2<% such that [so] C U \ Xy. Take
s1 € 2<% strictly extending so, such that [s1] C [so] \ X1. Go on like this for
successor steps, and for limit A take sy strictly extending |, sa such that
[$)] € [Uacr 5] \ X Then take = J ., Sa- Then z € U \ X. O

4.3 Interval Partitions

Definition 4.5. Let (iq | @ < k) be a strictly increasing, continuous se-
quence of ordinals less than k. Then ([in,ia+1) | @ < k) is an interval
partition. Denote the set of all interval partitions by IP.

Definition 4.6. For interval partitions I = (I, | @ < k) and J = (J, | a <
k), say that I dominates J, written J <* I iff for some v < k and all o > ~
there is a 3 € x such that Jg C I,.

In other words, eventually each I, is big enough to contain some Jg.

LC is the complement of the range of .
2Note that to do something similar to the classical case (“complete metric spaces”’) one
should figure out what “metric” means.
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Proposition 4.7. D = (IP,IP, <*) (recall that D := (k", k", <¥)).
Proof. Consider ¥ : IP — " sending

([iasiat1)) = (7 ¥ daq2 for the « such that v € [ig,iq + 1))
Then let ¥y: k¥ — IP be defined as

[ some J = ([ja, ja+1)) such that v < jo = f(7) < jat1

Exercise 4.8. These work as @, and ®_ for both directions.
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5.1 Interval Partitions and Meagreness

Definition 5.1. A k-chopped function is a pair (z,I) with € 2 and I an
interval partition. We say that y € 2% matches (x,I) iff for cofinally many
a€krkwehavey [ I =z | I,.

The idea is that matching is the negation of #*, but in chunks.

Definition 5.2. Let
Match(z, I) .= {y € 2" | y matches (z,I)}

Call M C 2% combinatorially meagre iff there is some k-chopped (z,I) such
that M N Match(x, I) = 0.

Basically, we are thinking of Match(z, ) as the basic combinatorially
comeagre sets. The reason is the following. Consider

2%\ Match(z,I) = | J{y |VB > ay [ Iz # = | Is}

a<k
Claim. Each set in that union is nowhere dense.

Proof. For any open set, go a little bit further and make it match some
x| Ig. O

Corollary 5.3. Combinatorially meagre sets are meagre.

Question 5.4. Does the other implication hold?

Proposition 5.5 (Blass, Hyttinen, Zhang). If x is strongly inaccessible or
Kk = w, then meagre implies combinatorially meagre.

17
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Proof. Suppose that A is meagre, as witnessed by A = |J, 1, Aa, With
each A, nowhere dense. We can WLOG assume the union is increasing,
ie. a < f = A, C Ag, because as s is inaccessible or w, in particular
k~% = k. We want to construct a k-chopped function (z,I) not matched by
any member of A.

Construct a continuous, strictly increasing sequence of ordinals i,,, which
will give us the interval partition I, and a sequence o, for a < K, such that
Oa: i, iat+1) — 2. Then the concatenation (union) of the o, will be our x.

Because & is inaccessible or w, we can just choose ¢,4+1 and o, such that
for all T € 2%« we have 7" 04N A, = 0. E.g. enumerate 2%« = {79, 71, 70,...},
then extend 1y by on0 to avoid A,, extend 71 7~ 040 by 041 to avoid A,, etc,
and let 04 = 000" 001" 0a2” . ... By construction, ANMatch(z,I) =0. [

Theorem 5.6. If « is regular, but not strongly inaccessible and not w, then
there is a meagre set that is not combinatorially meagre.

Proof. By hypothesis, there is some u < £ < 2#. Say that y repeats at «
it V&€ < a y(§) = yla+ ). Recall that an ordinal v is indecomposable iff ~
cannot be written as a+ 8 for o, 5 < . In other words, v is of the form w®,
or 0. Defin

X = {y € 2" | y repeats at an indecomposable a € [, K)}

We now show that 2%\ X is meagre but not combinatorially meagre. In
fact, X is open dense: given any sequence, extend up to the next inde-
composable ordinal and then repeat. To show that, for every (z,[I), we
have X 2 Match(zx, ), for every (z,I) we are going to construct some
y € Match(z, I) \ X. First note that if J is coarser than I, then y matching
(x,J) implies that y matches (z,I), so WLOG we can thin out the i,.

The i, form a club, and the indecomposables > p form another club.
Therefore, WLOG every i, other than ¢g = 0 is an indecomposable > pu.
Proceed by induction: for the base case, on Iy U I1 set y(§) to be 1 iff
¢ = 0, and 0 otherwise. This ensures that we do not get repetitions at
indecomposables in IoUI;. To define y on [isg, i2541) and [igg11, i2g42), first
let y | [i28+1,98+2) = @ | [i28+1,98+2), to ensure matching. Then we use
the bit on [iag,423+1) to ensure there are no repetitions at indecomposables:
if o € Iy is indecomposable, set y(a) = 0 to prevent repetitions at «
(because y(0) = 1); this takes care of the indecomposables in [igg,i25+1),
but what about the ones in [iog41,i842)7 We have not defined y yet on
(i2,725 + p1); by indecomposability, i254, will not be indecomposable!. For
a an indecomposable in Irg 1, define fo: p — 2 as

fa(z) =yla+izp+1+¢)

'Recall that i; is already > p.
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There are at most |igga| < £ < 2# of these, so we can choose g: p — 2
different from every f,. Then define y(iog + 1 + &) = ¢(&), and define y
arbitrarily on other elements of I5g.

We are now left to check that for every o indecomposable in Irg41 we do
not have repetition at . Indeed, for £ with g(§) # fa(&) we have

yla+izg +1+&) = fa(€) # 9(§) = ylizgp +1+§) =
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6.1 Two Lemmas, One Lovely, One Not

Recall that we had D < £< Cov(M,), so

Also, recall that if I, J are interval partitions, then I <* J means that for
all but < x many o there is a 3 such that J, 2 Iz.

Note that there is an asymmetry between D and interval partitions: <
is a total order, C is not. But we can get around that:

Lemma 6.1. Suppose that I,.J are interval partitions, and let I’ be the
interval partition (Iog U Izgy1 | B < k). If =(I" >* J), then for cofinally
many « there is a 8 such that Iz C J,.

Proof. —(I" >* J) means that cofinally many Ij; do not contain a Jq,.

i28 2641 i26+2 02643 2644 i26+5

If no j, is in [2‘277,127”) we are done. If it contains one j,, we’re done
anyway (look at the picture). O

Definition 6.2. Let Fn(k,2, ) be the set of partial functions x — 2 with

domain of size < k (not necessarily an initial segment).

Lemma 6.3. There are functions ®_: CF x IP — ((Fn(k, 2, k))<%)", where
CF stands for “chopped functions”, and ®: IP x ((Fn(k,2,k))<F)" — 2
such that if

21
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(z,I) € CF
J elIP

y € ((Fn(k,2,£))=")"

cofinally many J,, contain an Ig, (i.e. =(I' >* J))

o &_((x,1),J)(B) = y(B) for cofinally many 3, i.e. ~®_((z,1),J) #* y)
then @, (J,y) matches (x,I).

Spoiler 6.4. We will use this to show that non(M,) < b(#£*) and cov >
0(#%) (so that will be equalities, since we already know the opposite inequal-
ities.).

Proof. First, construct ®_. Suppose I,J € IP are such that for cofinally
many « we have J, D Ig for some 5. Let A = {a, | v < &} be the
increasing enumeration of these a. For each v < &, let d, be such that
Ja, 2 Is,. Define

O ((z,1), ))(B) = (x| Is, | v < wpt1)

(replace wgy1 with f+1 in the w case). For other I, J, define ®_ arbitrarily.
We define @ recursively, defining ®(J,y) | a subset of J, for at most
one « at every stage. At stage § < k:

e if y(B) is a sequence of length wgy; (or f + 1 in the w case) of
partial functions, all of whose domains are included in distinct J,’s,
then choose such an « that has not been considered yet!; say J, 2

dom(y(8)(7)). Let

@, (Jyy) [ dom(y(B)(7)) = y(B)(7)

e if not, do nothing.

At the end, extend @, (J,y) arbitrarily to get a total function in 2.

Let’s now check that these actually work. Suppose we have (x, ), J,y as
in the hypotheses, and fix 8 such that ®_((x, I),J)(5) = y(B) (by assump-
tion, there’s cofinally many of them). Then y(f3) is, by definition, a length?
wpy1 of partial functions (x [ I5) all of whose domains are contained in
distinct J,’s. So, for some v dependent on f3,

Dy (Jy) [ 1s, =y(B)(v) =2 [ Ls,
and different g give different «, therefore different . So @, (J,y) matches
(@, 1). O

!This is ok because |8] < wp < wpi1.
2841 in the w case.
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Remark 6.5. In the proof above, we only needed x to be closed under the
N function, so it also works for weakly inaccessible k. Anyway, the next
Corollary requires strong inaccessibility.

Corollary 6.6.
1. (Blass, Hyttinen, Zhang) non(M,) = b(#*)
2. (Landver) cov(M,) = d(#*)

Proof.

1. As we already know >, it suffices to show <. Suppose Y C ((Fn(k, 2, k))<")".
By strong inaccessibility, we can identify (Fn(k,2,x))<" with &, and
therefore the whole thing with x". Suppose |Y| = b,(#*) is un-
bounded with respect to #*. We will use this to construct a non-
meagre set. Suppose J is a (<*)-unbounded family of partitions of
size by < b (#%).

Claim. M ={®(J,y) | J € H,y € YV} is non-meagre.

To prove the claim and conclude the proof of this point, if (x, ) is a
chopped function, since combinatorially meagre is the same as mea-
gre (by strong inaccessibility), take J € J such that —(J <* I'),
which exists because J is unbounded. By Lemma 6.1 we know that
Jo contains some Ig for cofinally many «. Take y € ) such that
O_((z,1),J)(B) = y(B) for cofinally many fS; this exists because Y
is unbounded in #*. By Lemma 6.3, we know that ®4(.J,y) matches
(x,I). So M Z Match(z, I)E. Now, this is true for any (z, I'), and since
combinatorially meagre is the same as meagre, this tells us that M is
non-meagre. As |M| = b(#*), we have non(M,) < b(#£*).

2. We already know <. Suppose X C CF is of size < 9(#*) < 9(<¥). In
particular, we have

{I'] (z, 1) € X} <d(<7) =2(IP, <)

So we can choose J € IP such that J, contains an I for cofinally many
a. Identify (Fn(k,2,))" with k. Then, modulo this identification,

{2 ((x, 1), J) € 6 | (x,1) € K}| < d(#")
so pick y € (Fn(k,2,£)<")" such that for all (z,I) € X we have
O_((z,1),J)(B) = y(pB) for cofinally many £.

We are therefore in a position to apply Lemma 6.3, and so ®(J,y) €
2% matches (z,1). In particular, @, (J,y) ¢ U, nex 2° \ Match(z, I).
This means that {27 \ Match(x,I) | (z,I) € X} does not cover 2".
This shows that cov(M,;) > d(#£").

O
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7.1 b, and b, (£)

[Proof of the second point of Corollary 6.6; written directly in the previ-
ous chapter]
Let’s update our diagram:

non(M,) cof (M)
hY
N o)
) b—>0
K
o) &
add(M,) \3 cov(My)

Question 7.1. We have b, < b, (#*) and 2, > 0,(#"). Can the inequality
be strict?
Fact 7.2. In the inequalities above,

1. If kK is w then < is consistent in both cases

2. (Baumhauer, Goldstern, Shelah, in preparation) If x is supercompact,
consistently b, < non(My)(= b(£")).

3. (Shealah, preprint) If x is supercompact, consistently, (3(#£*) =) cov(M,) <
0.

On the other hand,
Fact 7.3. [Hyttinen] If £ is a successor cardinal, then b, = b, (#").

Note how this could interfere with the equalities we have in the “blue”
case and the consistency results above, in the supercompact case.

25
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Fact 7.4 (Matet, Shelah). If x is a successor and 2<% = k, then d, = 0 (#£*).
Proposition 7.5.

1. For any o € 2<%, the set A, of y € 2 with no occurrences of o, i.e.

Ay ={ye2"|Vre2~ 170 Zy}
is nowhere dense.

2. (Landver) 2<% > r implies that k* = add(M,;) = cov(M,),

3. (Blass, Hyttinen, Zhang) non(M,;) > 2<*
Proof.

1. Immediate.

2. Any 2 € 2% has only kK many < k substrings. If A < k is such that
2} > K, take X C 2* with |X| = x+. Then

{4, | o € ¥}
is a kT -sized covering set.

3. non(M,) > k holds by definition, so we may assume 2<% > x. Let
X C 2% with |X| < 2<%. We want to show that X is meagre. Let
A < k be such that |X| < 2*. Then X C A, for some o € 2*, which is
nowhere dense.

O

This allows us to consistently break the equalities seen before: using this,
we can get

Proposition 7.6. Consistently, b, (#"*) < non(M,) and d,(#*) > cov(M,).

Proof. To force by(#*) < non(M,) start with a model of GCH, let xk be
a successor and force to add x**T-many Cohen reals!. In V[G] we have
2<F = gTT = 2% So from the last point of the previous Proposition we get
that non(M,) = x™T. But by the Hyttinen result (Fact 7.3), b, (#*) = by.
Since the forcing notion has c.c.c. it is K"-bounding, i.e. any g: kK — & in the
extension is dominated by a h: kK — & in the ground model; to see this, if §
is a name for a function Kk — &, for every v € x there is a maximal antichain
of conditions p such that p IF ¢(§) = &, so we can just define h(y) to be
the sup of these a’s. Then 11IF g < h. So if B is unbounded in the ground
model, B remains unbounded int he extension. So

b(#")VI0 = V1G] — it < &+ = non(M,,) =

It is open if this can be done with 2<F = k.

'Real reals, i.e. subsets of w, not k-reals.
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8.1 More on Combinatorially Meagre Sets

Proposition 8.1. Match(x, ) C Match(y, J) if and only if for all but < &
many intervals I, of I there is bn such that Jg C Iy and x [ Jg =y | J3.

Remark 8.2. Thinking of the sets in the first statement as as the “comeagre”
sets, the statement in terms of the “meagre” ones is 2% \ Match(y,JJ) C
2%\ Match(zx, I).

Proof.

&> Suppose there are x many intervals I, such that for every Jg con-
tained in I,, we have z [ Jg # y [ Jg. Also, assume that successive I, ’s
have a Jg in between. Define

R () if Iy a € ly,
za) = { 1—y(a) otherwise

To conclude, it is sufficient to show that ' € Match(x, I) \ Match(y, J). It
is clear that 2’ matches z on I. For the other part, if Jsz is contained in
some I, , our assumption tells us that ' ¢ Match(y, J). Otherwise, use the
assumption above to find a Jg between two successive I, ’s.

G Suppose z € Match(z,I). Then there are x many I intervals o,
such that z [ I, =z | I,,. For k many v, WLOG for all v there is 8 such
that Jg C Iy and y [ Jg=x [ Jg =2z [ Jg. ]

Definition 8.3. Say that (z,1) is engulfed by (y,J) iff' Match(x,I) D
Match(y, J).

We have seen that essentially Cof(M,) = (M, My, C) is equivalent to
Cof’ (M) = (CF,CF, is engulfed by). The morphism from the former to

190 the complements, the “meagre” sets, are engulfed.

27
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the latter is given by

&, : M — some (y,J) with M C 2%\ Match(y, J)
&_: (z,I)— 27\ Match(z, I)
While the morphism in the other direction is given by ®, and ®_ swapped:
if ®(M) is less than some “bigger” (z,I) and is engulfed by (y,.J), then
M C 2%\ Match(y, J). This is a particular case of the following:

Exercise 8.4. If D is cofinal in P, then (D, D, <) = (P, P, <).

Corollary 8.5. Cof(M,,) < D,.

Proof. We know Cof(M,) = Cof'(M,) and D, = IP. By Proposition 8.1,
if (x, ) is engulfed by (y, J), then I <* J. We can then take as morphism

Sy (z,J)—J ®;: [+ (x,I) (some x)
since what we just said say exactly that this maps give us a morphism. [J
Corollary 8.6. cof(My) > 9, and add(M,) < by.

So we have the following picture

non(M,) cof (M)
hY
N ()
" — 0,
AN
add(M,,) 5 cov(My)

Also, [someone, I missed the name| claims in a preprint that the last arrows
we added to the diagram can be black, i.e. are true just assuming regularity.

In the w case, Chicon’s diagram also involves other posets related to the
ideal of Lebesgue null sets. The problem in the x case is, for now, that
nobody has still come up with a suitable generalisation of the Lebesgue null
sets.

8.2 Slaloms

Definition 8.7. A slalom is a function ¢: k — [k]<" such that Va ¢(a) €
[ﬁ]§|0‘|. If h: k — k is a function with lim,—, h(a) = K, an h-slalom is a
function ¢: k& — [k]<* such that Ya () € [£]=/MI,
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Definition 8.8. For f € k", we say that f is localised at @, written f €* ¢
iff for all but < kK many a we have f(a) € p(a).

Proposition 8.9 (Bartzynski, x = w). If A/ is the Lebesgue null ideal,
add(N') = b(€*) and cof(N) = d(e™).

Definition 8.10. A partial h-slalom is a partial function ¢: k — [k]<" with
|dom | = & such that Ya € dom ¢ ¢(a) € [£]SM]. We say that f €y p iff
for all but < x many a € dom(yp) we have f(a) € p(a).

Spoiler 8.11. In the w case, we have b(€*) — b,(€*) — add(M,,). Also,
p=t—by(e”).
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9.1

The goal of today is getting the diagram here:

non(M,) 3 —2 cof (M)
N6
K[J,.Q —> 0
0
add(/\/lﬂ)min \> cov(My)

For convenience, think of 2% as the group with coordinatewise addition mod-
ulo 2. Think of any o € 2<% in 2" as ¢ on its domain and 0 elsewhere. With
these conventions, B + 2<% means {b+ o | b € B,o € 2<}, i.e. B modulo
small differences.

Lemma 9.1 (k regular, 2<% = k). Denote with NWD,; the collection of
nowhere dense sets in 2. There are functions

® ;2" x K" tp M, 28 x N\WD,, — K"
such that if B € NWD,, x € 2 and f € k" are such that

o lim, ., f(a) =k

o r ¢ B+2°

o f>"d_(z,B)
then B C & (z, f).

Once we have the Lemma, we have
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Corollary 9.2. The following hold:
1. add(M,) > min{b,, cov(M,)}
2. cof(M,;) < max{d,,non(M,)}
Proof.

1. If 2<% > g, by Proposition 7.5 we have add(M,) = cov(M,) = k™.
If 2<% = k, if B C NWD, is such that |[B| < min{b,,cov(My)}, we
can find x € 27\ (B + 2<") and then f >* ®_(z, B) for all B € B.
Then for all B € B we have B C & (z, f), so |J B is meagre.

2. Let F C k" be dominating, X C 2" be non-meagre. We are now going
to show that {®4(z, f) | f € F,z € X} is cofinal in M,,. If M is
meagre, say M = J, ., Ya, choose z € X \ M and f >* ®_(x,Y,) for
all' a. Then Ya Y, C @, (z, f), so M C & (z, f).

O

Remark 9.3. In the proof above, we used tacitly the fact that the functions
in a dominating family can be chosen to be increasing.

Corollary 9.4. add(M,) = min{b,, cov(My)} and cof (M) = max{0,, non(M,)}
and

Proof of Lemma 9.1. Enumerate 2<% as {0, | @ < k}. For f such that
limg, f(@) = R, set

= 2"\ (es+2) | £(B)]

a<k >«

We are now going to show that each of those intersections is nowhere dense.
If 7 € 2%, choose o3 such that og +x | |7| = 7 and f(8) > |7|. Then
(og+x) [ f(B) is an extension of 7. For other f’s, let &, (x, f) be arbitrary.

Let now B € NWD,, and = ¢ B + 2<". As every nowhere dense set is
contained in a closed one, we may assume WLOG that B is closed. For such
B and 2 ®_(z, B)(«) to be an ordinal v such that BN [(o4 + ) | 7] = 0.
Let ®(x, B) be arbitrary for other (z, B).

Assume x, B, f satisfy the hypotheses of the Lemma. Let y € B. Then
y & [(ca+z) | ®_(x, B)(«)] by definition of ®_. Since f >* &_(z, B), there
is a such that for all § > a we have y € 2%\ [(o0n + ) | f(B)]. But, by
definition, this means y € &, (z, f). O]

'There’s only x many of them
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10.1 On Slaloms

We would like to deal with something similar to the ideal of Lebesgue
null sets, but no one has come up with a suitable generalisation of that ideal
for general k. So we talk about slaloms instead.

Definition 10.1. Let Locy, = {p: k — [k]<" | Va < k |o(a)| = |h(a)]}.

Remark 10.2. In the w case requiring |¢(a)| < |h()| instead does not make
a difference. But for now let us be cautious and work with the definition
above.

Notation 10.3. V*«a < k means “for all but < x many”.
Definition 10.4. For f: k — Kk, say f €* ¢ iffl V*a < k f(a) € p(a).
We are now going to consider by,(€*) and d,,(€*).

Fact 10.5. In the w case we have bjq,, (€*) = add(N) and dig, (€*) = cof (N),
where N is the ideal of Lebesgue null sets.

In the w case, there is a famous result stating
Fact 10.6 (Bartoszynsky, Raissonnier, Stern). Cof(N') < Cof (M)

Unpacking the proof Gives that Cof(N) = LOCjq, = (w*,Lociq,,, €),
and this induces a morphism from the latter to Cof(M).This does generalise,
so we are going to look at it.

Definition 10.7. Call pLoc,, the set of partial h-slaloms, and denote pLOC;y =
(w*, pLocyq,,, €7)

Proposition 10.8. LOC;, < pLoc;, < Dy
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Proof. For the first morphism ®, : Loc;, — pLocy, is inclusion, and ®_: k% —
k" is the identity.
For the second one, ®, : pLoc; — " is

P, () () sup(p(least f > a in dom p))

and ®_: k® — k" is the identity. To check that this works we need to
see that if ®_(f) € ¢ then f <* ®,(yp), ie if f €5 ¢ then f <*
sup(p(least 8 > a in domy)). For f increasing this works. Using the fact
that the increasing f are dense, the proof can be completed. O

Corollary 10.9. by(€*) < bp(€f) < by and 0,(€7) > 0p(€5) > 5.

Remark 10.10. In the w case, 0;(€}) has a name too. We will come back
to that.

Lemma 10.11. For k = AT we have D, < LOC),. So LOC;, = pLOC,, =
D..

Proof. For k = A*, |h(a)| is almost always equal to X\. Define @, : k" —
Locy, as
g (a— g(a) + 1 (as a set of ordinals))

This is ¢: k — [k]* = [£]"(®). Then take ®_ := id.~, and we have that if
O_(f)=f <*gthen f €* &, (g) (unpacking the definitions shows that this
is equivalent to f <* g). O]

Proposition 10.12. Let g,h: K — k be such that lim,,,g(a) = kK =
limg— h(a). Then pLOC, = pLOC,,.

Proof. We will show pLOC, < pLOC,,, i.e. (", pLoc,, €}) = (s, pLocy, €5
). Choose a strictly increasing (o )yex subset of domh = &k such that
h(cy) > g(7y). Define ®_: % — k% by ®_(f)(y) = f(ay). Define ., : pLoc,
pLoc,, by

dom((®1)(¢)) = {ay |y €domp} Dy (p)(ay) 2 ";(l),

elx)lenl  e[r]ls)

*

by extending arbitrarily the set if need be. Now assume ®_(f) €* ¢, i.e.
vy € dom @ (£)(7) = f(a) € ¢(7). Then ¥a € dom(®+(¢)) f(a) €
@1 (p)(@), and V*y € domp f(ay) € Dy (p)(ay), as p(7) € P4 (p)(ay). O
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11.1 Towards the xk-B.R.S. Theorem

We are aiming towards showing that pLOC < COF(M,,).

Lemma 11.1 (Main Lemma). Let X C 2" be a non-empty open set, and
let A < k. Then there is a family ) of open subsets of X such that

(i) Yl <k
(ii) Every open dense subset of 2% includes a member of ) as a subset.
(iii) For any )’ C Y with |V’| < X we have ) # 0.

[the proof was actually started in the previous lecture, but I have pre-
ferred to keep it all in one chapter]

Proof. Let (X4)a<r enumerate subsets of 2<% of size < k. This can be done
because, for each «, 3, is (induced by) a collection of ¢ € 2<% and by strong
inaccessibility (2<%)<% = k, so there are k£ many X, at most. For each « let
Xo = Uses, [0], i-e. (Xa)a lists the union of basic open sets, relative to X.
From now one, assume WLOG X = 2%, For § < k, let

Ag={a|Voc2?3Irc2<" 1 Do AT E Xy}
Now define
Y= UXac aOERAaCEAgcfor(>0whereﬁ§:U U dom o
C<At §<Co€Xa,

To help digesting what ) is, think of it as a recursive construction where
« € k is arbitrary, a¢ € Ag, for ¢ > 0, and f; = UE<C Uaez% dom o (think

of the | as a sup).
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Note that |V| < &*" = k, so we have the first point of the thesis. For
the second one, let D C 2" be open dense. Notice that, for any 3,

{a € Ag| Xa C D} #0

because, for any fixed 3, for all o € 2% we can take 7, D o such that [r,] C D
and then let a be such that ¥, = {7, | 0 € 2°}. Note that if # < 7 then
Ag D A,. Recursively, construct ac, for ¢ < AT, such that a¢ € Ap. and
X% C D. The member of Y for this construction is U<<>\+ Xacz as each
Xa, 1s included in D, so is their union.

For the last point, suppose V' = {Y5 | § < A} is given. We find a point
in the intersection through diagonalisation as follows. Suppose that

Ys = U Xa(5.0)
Caat

as per the recursive construction above, i.e. a(d,0) is arbitrary in x and
a(d¢) € Aps,e)- Analogously, let

B6.0=) |J domo

§<C o€ (5,6)
Define a partial injective function n: AT — X recursively by
7(0) = min{d | v= < X B(6,1) < B(e, 1)}
n(¢+1) =min{6 ¢ {(n(€) | € < C} | ¥e ¢ {n(€) 1€ <} BO.C+1) < Ble, ¢+ 1)}

Eventually, we run out of d’s, so this is a function from a proper initial
segment of AT to A. Specifically, if we let A\g be such that {n(zi) | £ < Ao} =
A, then 1 a bijection’ \g — A\. We now sow that (Y5 # ) by recursively
constructing (¢ € 2<% | ¢ < A\g) such that

e 00 =)

o if £ < ( then ¢ C o¢

e and o; = U§<< o¢ for limit ¢
® 0¢+1 € Ba(n(¢).€)

[ dOHlO’g Q U§<C 6(”(&)75 + 1)

Once this is done, just let o = UC <)o O¢, and observe that

o] € () Xawm©.0) € [ Yo
¢ ¢

!Basically, the point of the all construction is that \ is the wrong ordering for ', the
correct one is Ag.
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To conclude, let’s show that the construction above can actually be carried
out. For this, notice that for £ < ¢ we have 8(n(£),£ +1) < B(n((), £ + 1)
by minimality of 1(&). But since [ is increasing we have

Bn(), € +1) < B(n(C),§+1) < B(¢),¢) < BM(C),¢+1)

Let’s look at the recursion defining o in the case ¢ = 1 for simplicity. Let
01 € Yq(n(0),0) be arbitrary. So dom(c1) € B(n(0),1) by definition of 3. In
the general successor case, assume we have o as required, so

dom(o¢) C U Bn(€).§+1)
£<¢

RHS is at most 3(n(¢),¢) by (11.1). By definition, a(n(¢),¢) € Ag(yc),c)- S0
we can find o¢y1 € Xyy(0),¢) extending o¢. To conclude, just notice that by
definition of

dom(o¢y1) € B(n(C),¢+1)

and that at limit stages the conditions are trivially satisfied. O






Chapter 12

13/11

12.1 The x-B.R.S. Theorem

Theorem 12.1. pLOC < Cof(My), i.e. there are ®_: M, — k" and
¢, : pLoc — M, such that if ®_(A) €* ¢ then A C P ().

Proof. Identify x? with x; actually work with functions f: k — k<" with
f(B) € k7. So, instead of k", work with [x<"]" and partial slaloms ©: K —
[£<%]<% where ¢(B) € [x°]8].

Let (X, | @ < k) be a base for the topology on 2*. For a,f < k, let
Yag =1{Ya,B8,7 | v < k} be given by the Main Lemma with X, as X and
8] as A

To define ®_, suppose A is meagre, as witnessed by A = J,,. A, each
A, nowhere dense, and wLoc! A, C Ap for o < B. As said above, we want
to define an element of (k<%)", instead of one of k. Stipulate that2

As N Yo () @)@ =0
Such a Y, g o_(4)(8)(a) €Xists because YV, g comes from the Lemma and Ag

is nowhere dense, so its complement contains an open dense subset.
Given a partial slalom ¢ with (3) € [P]/?l, put

2. =2\ (N U U N Yasow)

o<k fB>6 a<Bocp(B)
BeEdom ¢

Let’s show this is meagre. maég&(ﬂ) Y, 8,0(a) 18 the intersection of |3|-many
Y’s from ), g, so by the Main Lemma the intersection is a non-empty subset
of X,. Also, it’s open, because each Y is and the open sets in this topology
is stable under intersections of size < k. So the set

U U N Yesew

B>  a<Bocp(B)
Bedom ¢

!Exercise: the union of < x nowhere dense subsets of 2° is nowhere dense.
2% _(A)(B) should be a B-tuple, so we just need to define it on all the o < S.
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is open dense, as for each «, there is f € ¢ such that g > «, and so the
union meets X,. It follows that &, (¢) is meagre.

Now, assuming ®_(A) €* ¢, we need to show that A C &, (p). As
O_(A) €* o, there is By such that for all 5> By we have ®_(A)(B) € ¢(p).
Let x € A, say € Ag for some® § > fy. Fix B € domyp, 8 > §. For
a < B, we have © ¢ Y, 35_(4)(8)(a) Py choice of ®_. In particular, z ¢
ﬂow(ﬁ) Yo 8,0(a)- As this holds for all & < 8 and 8 > 4, we have

eg | U [ Yasow

B>6  a<pocp(B)
Bedom ¢

So x is not in the intersection as 0 varies, i.e. © € @4 (p). O
Corollary 12.2. b(€}) < add(M,) and d(€})) > cof (M,,).

So for inaccessibles we have

non(M,,) > cof (M) —> 0(€p)
b () / l
b(*) b, —> 0% o(e*)
l / g(7'5*) -
b(e;) — add(M,) > cov(My)

Question 12.3. Is b(€;) < add(M,) consistent? It is know to be in the
case w, but the proof uses a rank argument with Heckler forcing, that does
not generalise well to the inaccessible case.

3 As the union is increasing, then x € Ag for all 8 > 6.
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14/11 — Stamatis Dimopoulos

13.1 Iterated Forcing — Basic Facts

We are going to assume familiarity with the basics of forcing.
Question 13.1. How to force GCH while preserving inaccessibles?
References:

1. Cummings', Iterated forcing and elementary embeddings, inside Hand-
book of set theory.

2. Baumgartner, Iterated forcing, Surveys in Set Theory. Beware of the
fact that the notation here is oldish.

Definition 13.2. Let x be an infinite cardinal, and A >  an ordinal. Cohen
forcing is defined as

Add(k, A) :== {p | p partial function kK x A — 2, |p| < k}
ordered by reverse inclusion, i.e. p < q iff p 2 q.
Another notation for Add(k, \), e.g. in Kunen’s book, is Fn,(k x A, 2).

Definition 13.3 (Closure properties). Let P be a forcing notion and x an
infinite cardinal. We say that

1. P is k-closed iff every decreasing sequence of length < x has a lower
bound.

2. P is k-directed closed iff every downward directed subset of P of size
< K has a lower bound.

3. P is k-distributive iff for all generic filter G, for all A < k every function

f: A= Vin V[G] exists already in V.
!Check his web page.
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Remark 13.4. If P is separative, then P is x-distributive if and only if the
intersection of < k-many open dense subsets of P is open dense.

Remark 13.5. In this list of properties of IP, each one implies the next one:
1. being k-directed closed
2. being k-closed
3. being k-distributive
4. preserving cardinals < k.
Moreover, the first two implications are strict.
Example 13.6. Add(k, \) is k-directed closed.

Proposition 13.7. For x infinite regular cardinal, Add(x™, 1) forces 2¥ =
+
K.

Proof. Add(k™,1) is kT -closed, so it does not add any new subset of k. Let
G C kT be the new set added, i.e. the union of the generic filter. For any
A C k, it is dense to find a segment in G that looks like A. More formally,
for any A this set is dense:

Da={peP|Ja<k pla,a+)codes A}

where “codes A” means that if you look at that function it is the characteristic
function of A translated by a. As G intersects all of these, the function
f: kT — P(k) defined by f(a) = G N [a,a+ k) is surjective. O

Another way of showing this is proving that that forcing notion is iso-
morphic to Add(k™, 2).

Remark 13.8. Add(k, \) is (2<%)T-c.c. If k<% = &, then Add(k, \) has the
kT-c.c, so it preserves cardinals > k7.

Let’s look at a two-step iteration: we want to do forcing a second time
in the forcing extension; the point is that the poset we force with the second
time may be in V[G] \ V, yet we want to be able to speak of this directly
from the point of view of V.

Definition 13.9 (Two-Step Iteration). Suppose P is a forcing notion, and
IFp Q is a forcing notion. We define

PxQ:={(p.q) | p€P.IFpgecQ}

(pre?)ordered in the following way

(p1,d1) < (p2:42) = p1<p2Ap1lkdi <o

2See later.
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There is a variant where you replace IFp ¢ € Q with p IFp ¢ € Q, but they
turn out the be equivalent.
There are some issues to address here, anyway:

1. P % Q can be a proper class. This is solved by choosing ¢ as a rep-
resentative for some equivalence class®, e.g. the name with the least
rank.

2. Actually, the < we defined is not antisymmetric. This is solved by
using preorders instead of posets?.

Definition 13.10. PP is an a-iteration, also denoted P, iff P = ((Pg | 8 <
a),(Qg | f < a)) and for all § < «

1. Pg is a forcing notion whose elements are 3-sequences
2. ifpePgand vy < B, thenp [ v € P,

3. If B < a, then I-p, Qg is a forcing notion

4. If p € Pg and v < 3, then p(7) is a P,-name for an element of Q«,
5. Pgy1 = Ps + Qg (the isomorphism is canonical)

6. for all p,q € Pg we have p <p, q iff Vy < B p [ v IFp, p(7) <o, q()

7. for all ¥ < 3 we have® Ip,(v) = ].1(@7

8. ifpePg, y<Bandq<p plvythenqg pl[y,53)cPs.

Remark 13.11. As a consequence of the definition, if G C P is a generic
filter, then Gg = {p | B | p € G} is a generic filter for Pg and gg =
{(p(B))as | p € G} is a generic filter for (Qg)q,-

Definition 13.12. If p € P, the support of p is defined by

supp(p) = {8 < a | p(B) # 1g,}

Definition 13.13. Suppose A < « is a limit stage.
e P, is the inverse limit of {P, | v < A} iff
Py ={p| pis a A-sequence,Vy < Ap[~yeP,}
o P, is the direct limit of {P, | v < A} iff

Py = {p| pis a A-sequence,Vy < Ap [y €P,, and I35 < AVy > B p(y) = jl@w}

3The equivalence relation is “1 forces the conditions to be equal”
40r one could take quotients.
®In preorders we may have more equivalent maximal elements. We distinguish one.
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e We say we use < k-support iff inverse limits are taken at stages of
cofinality x and direct limits at cofinality > &

e We say we use Faston support iff inverse limits are take at singular
limit stages, and direct lmits are taken at regular limit stages.
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Proposition 14.1. Suppose P, = P is the direct limit of {P3 | § < a}, &
regular > w. If

e V3 < «, Pg has the k-c.c.
e if cf(a) = K then direct limits are taken at a stationary subset of «
Then P, has the k-c.c.

Proposition 14.2. If P has the k-c.c. and IFp Q has the x-c.c., then P x Q
has the k-c.c.

Proposition 14.3. Let s be regular, k > w, P, as in Definition 13.10. If
o VB <« lp, Qg is k-directed closed

e all limits are either inverse or direct and inverse limits are taken at
stages of cofinality < k

then P, is x-directed closed.

14.1 Factoring an iteration

Let B<a. IfpePy,letp’ =p | {y|B<~v<a}l LetPs = {p° |
p € Py} If Gg C Pg is V-generic, then pP < ¢fiff Ir € G such that
rUp® <p, ruUq’. Let P>p =Pgo = Pig o) be a Pg-name for Pg,.
Proposition 14.4. P, = Pg * PZB-

Proposition 14.5. IFp, P-4 is (isomorphic to) an (a — f)-iteration (i.e.
defines on {7y | 8 < v < a})

Proposition 14.6. Let x > w be regular. If
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e every A C Ord of size < x in the forcing extension by Pg, is covered
by aset BC Ord, BeV, |B| <k

e VB<vy<a lp, QﬂY is k-directed closed.
e inverse limits are taken at stages of cofinality < &
then IFp, Pg, is k-directed closed (also for x-closed).
Proposition 14.7. If k is inaccessible, P, is a x-iteration and
o Va < K Qa e Vi
e a direct imit is taken at k and at a stationary subset of stages < k

then P, C V., P, is k-c.c. and Va < k for P, = Pa * Pza, I'P’za is forced to
be k-c.c. and to have size k.

Definition 14.8. The GCH forcing is the (class) iteration P = ((P, | o €
Ord), (Q, | @ € Ord)) with Easton support such that Yo € Ord, if P,
has been defined and IFp, « is a cardinal, then let Q, be a P,-name for
Add(a™,1); otherwise let Q4 name the trivial forcing?.

Theorem 14.9. After forcing with P, GCH holds and all inaccessible cardi-
nals are preserved.

Proof. One should take care of the extra technicalities in class forcing; in
this case everything works fine and we skip those details.

Let G C P be a V-generic filter. To see that GCH holds, let o be a
cardinal in V[G]. Split P = P, % P>,, so V[G4] is a sub-universe of V[G].
Now, « is still a cardinal in V[G,]. But then the next step forces GCH at
a, ie. V[Gar1] F 2 = a™. By two of the previous propositions, Pza is
aT-directed closed, hence a-distributive, so 2* = o still holds in V[G].

Now suppose k is inaccessible in V. Suppose that s is not regular in
VIG], and let A = cf(k) < k. Split P = Py x P>y. As Py has size < &,
it cannot change cof(x), and as P>y is A*-closed it cannot collapse cof ().
This is a contradiction, so x is still regular in V[G]. Suppose now that & is
not strong limit anymore in V[G], and let A < & be such that 2* > «. Split
PP, IP’Z,\. Now P, is too small to force 2* > k, and PZA is AT-closed, so
it does not add any new subsets to A, resulting in a contradiction. O

Remark 14.10. As being inaccessible is downward absolute, forcing cannot
create new inaccessibles.

'The poset with just one element.
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Work with k = w. Today we want to prove add(N) = b(€*), where A is
the idea of Lebesgue null sets. We need this fact:

Theorem 15.1. add(N) < b.

Definition 15.2 (/A Beware: non-standard notation A). For this lecture!,
let a converging series be some f: w — Q20 such that Y icw J(i) < o0, and
let b be the least cardinality of a set of converging series such that no one
converging series dominates (summand-wise in all but finitely often places)
all of them.

Proposition 15.3. add(N) > b.

Proof. Take a family {G¢ | £ < A < b} of Lebesgue null sets. We want to
show that U§<>\ G¢ is Lebesgue null. As G¢ is Lebesgue null, it as a subset

of
NUn

new m>n

where the I5, are some intervals with rational endpoints such that »_>°_, ,u,(Lgn) <
oo. Fix an enumeration (I,)ne, of the intervals with rational endpoints and
define

(1 ifImIL, =18
Je(n) = { 0 otherwise

So we have

> fe(n) - pull) <

new

As these are converging series and there are A <  of them, we can dominate
(summand-wise, all but finite) all of these, and clearly we can assume that

1Usually both “series” and “” mean something else.
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the dominating series is the product of a {0, 1}-function, say f € 2%, with

w(Iy,). Take
G= U Im

neEw m>n

f(m)=1

Gec(VJ Eca

n m>n

and this shows h < add(N). O

Then we have
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[what follows was actually started in the previous lecture, but I have
preferred to keep it all in one chapter]
We now want to show that h > add(N'). We need the following fact.

Proposition 16.1. The following are equivalent:

1. k<h

2. Any set of x many functions f: w — w is localised by an n + n*-

slalom.

3. kK < b and for any set of kK many functions w — w and any ¢g: w —
w such that Zn Ty < dominating them all there is a slalom ¢

localising them all with >, _ |§(”))| < 0.

Proof.

Q2= D Let F = {fe | £ < K} be a set of converging series of size &, i.e.
for all £ < k we have fe: w — Q7% and Y, ., fe(n) < co. Define, for each
&, a sequence (ni | k € w) such that

vk ng ) <27k

z>nk

By assumption, there is w: w — w that dominates all of these sequences
k + nj. Define f{(k) = fe | [w(k), w(k + 1)) € w<*. Identify w<* with w,
and use the hypothesis again to get a slalom ¢ such that for all k£ we have
lo(k)| < k? and for all £ < k we have f¢ € ¢. Define f:w — Q2% by

w(k+1)—1

f(n) :==supy s(n) | s € p(k) for the k s.t. n € [w(k),w(k + 1)) and Z s(i) <27k

i=w(k)
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(the idea is keeping track of the fact that n is in [w(k), w(k + 1))). So

Z f(n) < Zvalues in the k-inteval < Z k227%F < o

new kew kEw

@ Suppose we have x < b many functions w — w, say f¢ for
¢ < k. Define a¢: w — Q=Y as

max 2 =n i
awwz{ (/K] felk) =n} if #0

0 otherwise

Since £ < B, by definition there is a(n) such that ) a(n) < oo that
eventually dominates every ae. Assume WLOG that ) a(n) < 1, and let
(k) ={nla(n) >k=2} As >, a(n) < 1, for every k we have |p(k)| < k?,
and so where a¢ is dominated by a, fg is guessed by ¢.

@ Take any set F' of k many functions w — w. As kK < b by
hypothesis, there is f: w — w dominating everything in F. Let (kp)new
be such that Vn k,/f(n) = n=2. For g € w*, define ¢’ € w* by repeating
g(k;) times the value g(i): start with! k1 times g(1), then ks times g(2), etc.
As the elements of {¢/ | e € F'} are all dominated by f and } 1/f(n) =
Zmew\{o} 1/m? < oo we can apply our hypothesis and get a slalom ¢ with
those properties. Take 1, = ¢(¢) of least cardinality amongst those for ¢ in
the k,, interval. Then we have

)] - = Ealtnl = [l
> ) 2 )

In particular, we almost always have |1, |/n? < 1.
@ We will not see the proof of this part, as we are not going to
need it in what follows. O

Corollary 16.2. h =b,,_,,2(€").

Proof. This is 1 < 2 in Proposition 16.1. O

Proposition 16.3. If x < add(N) then condition 3 in Proposition 16.1
holds.

Proof. By Theorem 15.1, we know x < b. Take F' C w* with |F| =
and f dominating everything in F' with)  1/f(n) < co. Consider X :
[I.c. f(n), where we think of f(n) as the set of ordinals less than f(n).
Every g € X is by definition dominated by f, so we can define H, := {x

~— I =

m

'"We do not start with 0 because of k. /f(n) = n™2.
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X | 3*°n x(n) = g(n)}. Equip each f(n) with the equidistributed probability
measure and let p be the induced product measure on X. We have

n(H,) = u(ﬂ | {z € X | a(m) = g(m)})

n m>n

gu(u{xemx(m):g(m)}) <Y o 50

m>n

Therefore? pu(Hy) = 0. As |,y He is null, we can take a tree® T" such that
its set of branches [T'] has positive measure above every node  (16.1)

and [T] N Upep He = 0. Define T'(n) = {x(n) |z € [T]} and T, == {t € T |
s < t}.

Claim. Ve € F'3s € T 'Vn > h(s) e(n) ¢ Ts(n)

Suppose the Claim was false, as witnessed by e. Then there is x € [T
such that 3°n z(n) = e(n). But then x € [T|N H,, contradicting the choice
of T" and proving the Claim.

For each e € F, let s € T be given by the Claim. List the s’s as s1, $o, . .
and denote ¢, (m) = Ts, (m). Then, by (16.1),

e

= [pu(m)|
1156y =0

Modify the first few ¢, (m)’s if necessary, to get

7 len(m)
11 o) >1-2

m=1

and let ¢(m) ==, ¥n(m). We now have

7 le(m)]
11 5y >0

and ¥, == f(n) \ ¢(n) is the slalom we were looking for. O
Corollary 16.4. add(N) < b.

Proof. By 3 = 1 in Proposition 16.1. O

2Tt is an instance of Borel-Cantelli.
3In X.
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Remember that Chicon’s diagram, without assuming inaccessibility, is

non(My) cof (M)
<
b(#")
K
b—>0
K
o(#)
<
add(M,) cov(M,)

Today we want to see what happens to Chicon’s diagram after Cohen forcing.

Theorem 17.1 (k = £<%). If A > kT is such that \* = &, the poset
Add(k, \) forces non(M,) = k* and cov(M,) = 2F = X. In particular,
Chicon’s diagram splits as follows, where everything in the left part is ™
and everything in the right part is A = 2%

non(M,) cof (M) —> (&)
<
b(#" l
N
b(e*) b——0 < o(e¥)
l 20
b(e;) —> add(M,,) cov(My)

Before the proof, we need some preliminaries.

Recall that Add(k, A) is the poset of partial functions from kX A to k with
|dom| < k. Equivalently, it is a A-fold product of Add(k, 1) with < k support.
As Add(k, 1) is k-directed-closed, it adds no new subsets of ordinals < k.
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Equivalently it is, up to forcing equivalence, a A-length iteration of Add(k, 1)
with < x support.

Fact 17.2. Add(k,\) has the x™-c.c. (This uses k<F = k).

Proof. Exercise: re-read the A-system Lemma from Kunen (II-.1.6. in the
original edition, 49 in some other one). O

Lemma 17.3. If 4 < XA and X C p in the Add(k, A)-generic extension, then

there is a subset B of A of size at most p such that X is already added by
Add(k, B).

Proof. Every such X has a “nice name” of the form

(@) [ pe Aa}

a<p

where each A, is an antichain. Each p has |[dom(p)| < k, and Add(k, \) has

the kT-c.c, so letting
B = U U dom(p)
a<ppeAq

we have |B| < p, and X is completely determined by the B coordinates of
the forcing. O

Remark 17.4. If u = k, since A* = X there are only A many such nice
names, so (27)444(%A) < X\ Also, each coordinate gives a different subset of
K, SO (2R)Add(n,/\) >\

Proof of Theorem 17.1. For any nowhere dense set X C 2% thereis f: 2<% —
2< such that Yo € 2<%¢ f(0) D ¢ and

X C{s€2"|Voe2%" f(o) L a} = Ay
¢Lf (o)

Let f: 2<% — 2<% be such that Vo f(o) 2 o in the Add(k, \)-generic
extension!. By our assumptions |2<%| = &, so by the previous Lemma there
is a set By of size s such that f is added by Add(k,By). Moreover, for
B ¢ By, the 8 coordinate Cohen subset cg of  is not in Ay in the extension,
by a genericity argument. Namely, split the poset as a product of By with
all the rest and think of it as a two-step extension, and notice that it is dense
for cg to include some f(o). So now if we have X a set of nowhere dense
sets of the form Ay in the Add(k, \)-generic extension with? |X| < A, then

U By
fex

——
=B

<A

!Note that 2<% is unchanged in the generic extension.
2One can also show (exercise) that it is possible to find a name for X of cardinality
<A
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and therefore any 8 ¢ B has c¢g ¢ [Jpcy Af. This shows that in the extension
cov(M,) > A, and as 2" = X\ we have equality.

To conclude, we need to show that non(M,) < k*. We explicitly give a
non-meagre set of size x¥, namely?

{cg| B<r}

To see this is non-meagre, consider any x many nowhere dense sets Ay in
the extension. By the previous Lemma there is B C A adding all of them
and with |B| = k. Take 3 € k™ \ B. Then ¢z ¢ |JAy, and so {cg | B < T}
is not contained in any (extension) meagre set. O

30r any k*-size subset of the A-many Cohen reals we added.
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18.1 Hechler Forcing

Definition 18.1 (1-step version). The conditions of (H, <) are pairs (s, f)
such that

o sE€ RS

o fern

e s is an initial segment of f; we denote this with s C f
The order is (s, f) > (t,g) ifft t s and Va g(a) > f(a).
Remark 18.2. Note that in particular ¢ dominates s on dom s.

We can think of conditions as a “stem” s and a “promise” f.
Definition 18.3. A partial order PP is

o (1,< K)-centred iff every < x many conditions have a common exten-
sion;

o (\, < k)-centred iff P =,_, P, where each P, is (1, < k)-centred;

a<

o r-centred iff it is (K, < K)-centred.

Example 18.4. Hechler forcing at k is k-centred.

Proof. Each “stem” defined a P,, i.e. for all s € k<" the set {(s, f) | f € K"}
is (1, < k)-centred: just take the supremum of the f’s, which can be done as

we have < k of them. O

Remark 18.5. If P is x-centred, then P is k™ -c.c.

! Again, this means that t is an initial segment of s.

o7
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The following notion is not needed in the w case, but it is necessary in
general to deal with small cofinality limit stages.

Definition 18.6. Assume P is (<)x closed and x-centred, say P =, _ Py,
where each P, is (1, < ka)-centred. We say that IP is k-centred with canonical
lower bounds iff there is fp: k<" — k such that whenever A\ < k and (p, |
a < \) is a decreasing sequence from P with p, € P, , thereisp € Proyala<)
such that for all o < A we have p < p,.

Example 18.7. For Hechler forcing, if p, = (Sa, fo) and pg < p,, then
58 - 54, SO we can take

Ju: (S0,81,82 -+ Say--- | < A\) — U Soy
a<<

Fact 18.8. Hechler forcing adds a function hx — k eventually dominating
all ground model functions: it is dense for (s, f) to have f >* g for any given
g, so we can just take h = U(s.f)eG s.

18.2 Slalom Forcing
Definition 18.9. Define (S, <) to as have conditions pairs (s, F) such that
e there is A < k such that s: A[k]<" and |s(a)| < h(a)
e F is a set of functions k — k of size h(\)
The order is (s, F) > (t,G) iff
e tDs, GDF, and
e Va € domt\ domsVf e mcF f(a) € t(a).
Think of F as a “promise to localise all f in F hereafter”. And in fact,
Fact 18.10. U( s F)ec S s a slalom localising all ground model functions.

Note that the requirement of F gets in the way of k-centredness: the
point is that the domain of a common extension of a family actually depends
on the stems, and not just on their domains. This is where partial slaloms
are more handy to manage.

Definition 18.11. Partial h-slalom forcing is defined analogously, except s
can be partial and F can have any size < k.

Proposition 18.12. This is k-centred with canonical lower bounds.
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Proof. You can now take the union of the promises and just keep the same
stem: we can extend that later. O

Lemma 18.13. Suppose (P,,Q, | @ < ) is an iteration of k-closed, k-
centred with canonical lower bounds forcings Q, with < k support and such
that for each o the function an is in the ground model? and 1p, I- Qn =
U7<n Qaﬁ. Then the set of conditions p € P, such that for all 5 € supp(p)
there is v < & such that p [ B IF p(8) € Qg5 is dense.

In other words, it is dense that for everything in the support the stem
lives in the ground model (or: it is dense to choose a stem).

Proof Sketch. Given p € P, list supp(p) as (8s | § < |supp(p)|) such that each
B € supp(p) appears cofinally often®. Go through, at stage §, extending to

get ps(Bs) in a specific Qg; . O

2The original ground model.

3Here we are assuming that the support is infinite. If it is not, extend arbitrarily. In
the w case, conditions have finite support, so take the maximum S in the support, [extend
that?] and go backwards.
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19.1 TIterations of Centred Forcings
Lemma 19.1. Let p < (25)* be an ordinal. Assume (P, Q, is an iteration
of length p with < k supports of (< k-closed) k-centred with canonical lower
bounds forcings Q. such that the functions f@a are in the ground model.
Then P, is < k-closed and (forcing equivalent to something) x-centred (so,
in particular, k™-c.c.).
Proof. rk-closure is standard. To see it is k-centred, take an injection f: p —
2%, Let F be the collection of all functions F' such that there is 0y < & such
that

e dom F' C 25F

o |dom F| < K

e codomain I' = k

These will correspond to the “stems”, and partition our iteration. Since
k<F = Kk, we have! |F| = k. Define the partition piece for F as

Pp={p P, | V3 esupp(p) f(B) | 6r € dom FAp | B I p(B) € QB,F(f(B)[éF)}
We now just need to show that
1. each Pp is (1, < k)-centred, and

2. Uper Pr is dense? in P,

Luse that then 2°F < k.
2Which is enough up to forcing equivalence.
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For the first part, assume we have A < x many elements pe of Pp. We find
a common extension p [ # by recursion in 8 < p. If V& < A 3 ¢ supp(pe),
then take p(8) = 1. If B € supp(pe), then?

p 1B pe(B) € Qs r(r(s)6m)

Since Qﬁ7F(f(/3)[5F) is (1,< k)-centred, there is a (forced by p | 5 to be)
common extension, call it p(5). As we only had A < x many p¢ to consider
and each had size < k, the support of p has size < k.

For the second part, let p € PP,;; up to extending it, assume it WLOG to
be as per Lemma 18.13. Since |supp(p)| < k. By the identification given
by f, think of this as < k¥ many k-length bit strings, all different, and find
0 < k such that V3,v € supp(p) f(58) | 6 # f(v) | 6. This is our dp.
Let I' € F be the function with domain {f(8) [ 6 | B € supp(p)} such

that V3 € supp(p) F(f(B) | 0) == tp, where p | B IF p(8) € Qg,,- Then
p € Pr. O

19.2 TIterations of Hechler Forcing

We saw that k-Hechler forcing is < r-closed and k-centred with canonical
lower bounds. We want to do a long iteration of it.

Let A > kT be regular, and consider a A-length iteration of x-Hechler
forcing. If A is big enough, it will not be k-centred anymore, but it will still
be kt-c.c: use Lemma 18.13 and a A system argument.

Exercise 19.2 (Prove this by the 12th of January as second part of the
assessment for this course.). Prove this.

3Tt is forced by pe, and p | B is a common extension of all of them.
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20.1 Iterations of Hechler Forcing, continued

Take A > kT regular. Take a < k-support iteration of Hechler forcing of
length \. We already said that this is x-closed and xk*-c.c.
Start with GCH and have A\ > k™.

Proposition 20.1. This forcing makes add(M,) = 2 = A.

Proof. We showed (Corollary 9.2) that add(M,) > min{cov(My), b, }. No-
tice that the ath Hechler x-real, mod 2 componentwise, is a Cohen x-real.
So in the forcing we (cofinally) add A many Cohens, so in the extension we
have, by previous resulst, cov(M,) = 2.

The point of Hechler forcing is dealing with the b, part, i.e. we want
to show that by, (¢ = (2%)VIG] = X, If B is a subset of * in V[G] of size
< A then, by what we saw in the previous lectures, B occurs after some
initial segment of the forcing, and the next Hechler real dominates it. So

br @ = A, .

Let now x be inaccessible and A\ = ™1, and recall Lemma 19.1. We
want to show that

Proposition 20.2. For any h in V[G] we have b(c})VI¢) = k7.
Question 20.3 (Open). What happens with b(€])?

Lemma 20.4. Let x be strongly inaccessible, P be k-centred and < x-closed,
and h € k. Assume ¢ is a P-name for an h-slalom. Then there are h-slaloms
¢a, for a < K, in the ground model such that if f € (k%)" is not localised
by any ¢, then

IFp ¢ does not localise f
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Proof. Let P = ., Pa; where each P, is (1, < k)-centred. Suppose ¢ is a
P-name for an h-slalom, and for oo < k define

pa(B) ={y€k|Ipe PaplFye B}

We claim that for every «, 8 we have |, (8)] < h(B). In fact, if this does
not happen we can take h(3)" many v in ¢.(8) such that ps € P, and
ps IF 55 € ¢(F). But then! {ps | 6 < h(B)*t} C P, has cardinality < x,
so those conditions have a common extension ¢. By definition of ¢, (8), we
have ¢ IF |¢(B)| > h(B). This contradicts the definition of ¢, which was
supposed to be a name for an h-slalom. Therefore every ¢, is an h-slalom.

If f € (k%)Y is such that Vo < k 38 f(B) ¢ ¢a(B), fixp € Pand By < k.
Let « be such that p € P,. Take g > [y such that f(8) ¢ va(B), i.e. there
is no p’ € P, such that p' IF f(8) € ¢(B). In particular, p I f(5) € ¢(f),
and therefore there is ¢ < p such that ¢ IF =f(3) € ¢(5). O

Proof of Proposition 20.2. For any h in V[G], we know that h appears in an
initial segment of the forcing say by stage ag. Consider stage ag = ag+ ™.
Then we have added x many Hechler? x-reals “since” V[Gy,], and a Hechler
is not localised by any ground model slalom. These ™ many Hechlers are
€*-unbounded in V[G,,], and by the previous Lemma they remain so in
V[G]: any ¢ in V[G] fails to localise them all because any ¢ in V[Gy, ] fails
to localise more than x« many of them. To see why the last sentece is true,
encode a slalom as a subset of k, look at the stage where it appears and then
consider the next Hechler. O

Dual arguments [with the same forcing?| apply to cof(M,) and d(€*).

! As k is inaccessible, h(8)" < k. Also, h(8)" is still a cardinal in the generic extension
by < k-closure (the only thing we need is that x does not collapse to h(f8)).
2Maybe a similar argument works with Cohen x-reals as well.
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