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Disclaimer

I have written down these notes (mostly) “on the fly” during the 26th

Summer School in Jyväskylä. Their main purpose is a personal use for
the future, thus they may not be really clear, they can be a bit messy and
they are NOT (in any possible way) the official notes of the course, held by
Professor Johannes Kraus. Feel free to contact me for any mistake and/or
suggestions at negriporzio@student.unipi.it. You can find these notes at
http://poisson.phc.unipi.it/~negriporzio/amat.html (the main site
is in italian).
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1 MGM for variational problems

1.1 Linear stationary iterative methods

We want to consider a system of linear algebraic equations

Ax = b (1.1)

where A ∈ Rn×n is a symmetric positive definite matrix (SPD) (or Hermitian
in the complex case). Let B be an approximation of A−1 and consider the
iteration

xk+1 = Gxk + d k = 0, 1 . . . , (1.2)

where G = I −BA is the iteration matrix/iterator or the error propagation
matrix. If x∗ is a solution of (1.1), then x∗ is a fixed point of (1.2). The
error is given by

ek = xk − x∗ = Gek−1,

thus
ek = Gke0 (1.3)

Definition 1.1. The iteration (1.2) is called convergent if for any initial
point x0 ∈ Rn,

lim
k→∞

xk = x∗

Definition 1.2 (Spectral radius). Let A ∈ Rn×n and let λi for i = 1, . . . , n.
Then the spectral radius is defined by

ρ(A) = max
i
λi.

Proposition 1.3. Let G ∈ Rn×n. Then iteration (1.2) is convergent if and
only if limk→∞G

k = 0 and if and only if ρ(G) < 1.

Proof. Easy. Exercise

Remark 1.4. It can be shown that limk→∞

∥∥∥Gk∥∥∥1/k
= ρ(G).

Classical iterative methods (Gauss-Seidel, Jacobi) are based on the split-
ting A = M −N . In this case G = M−1N = I −M−1A.

Example 1.5. Let A = D−L−U , where D, −L, −U are the diagonal, the
lower and the upper triangular part of A respectively. The Jacobi method is
characterized by M = D and N = L+U . The Gauss-Seidel is characterized
by M = D − L. For example, the iteration of GS becomes

(D − L)xk+1 = Uxk + b (1.4)
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Definition 1.6. A matrix A = (aij) is called weakly diagonally dominant if

|aii| ≥
∑
i 6=j

∣∣aij∣∣
and there exists an index i0 such that the inequality is strict

Definition 1.7. A matrix A is called irreducible if there exists no permuta-
tion matrix P such that

P TAP =

[
A11 0
A21 A22

]

where A11 ∈ Rk×k, with k ≥ 1.

Theorem 1.8 (Row sum criterion). Let A ∈ Rn×n be an irreducible weakly
diagonally dominant matrix. Then GSS and Jacobi methods converge.

Proof. Easy. Check the spectral radius of the iteration matrix and use Ger-
schgorin theorem. It can be found in D.B̃reuss, Finite elements, Cambridge
University Press.

Example 1.9. The successive over-relaxation method (SOR) is defined by

Dxk+1 = ω(Lxk + Uxk + b) + (1− ω)Dxk, k = 0, 1, . . . , (1.5)

with ω ∈]0, 2[.

Theorem 1.10. If A ∈ Rn×n is a symmetric matrix with positive diagonal
entries, then the SOR method converges if and only if A is symmetric positive
definite.

Proof. Same book as before.

1.2 A model problem by Courant

We want to solve the following Poisson problem{
−∆u = f in Ω =]0, 1[2

u = 0 in Γ = ∂Ω
. (1.6)

Ω̄ is partitioned by a uniform mesh of isosceles right-angled triangles T as
depicted in 1. For (1.6) we want to use an appropriate Galerkin methods
with piece-wise continuous trial and test functions

vh ∈ Vh := {u ∈ C(Ω̄) : u|T is linear ∀T ∈ Th}.

Every function vh ∈ Vh is determined on every triangle T ∈ Th uniquely
by its three function values in the vertices of T . Moreover, every vh ∈ Vh is
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Figure 1: Partitioning of the unit square [0, 1]2.
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determined uniquely globally by its values in all the N := (n− 1)2 interior
vertices (nodes) of Th. We then choose a basis {Ψi}Ni=1 of Vh such that
Ψi(xj , yi) = δij and thus we have dimVh = N .

The Galerkin method then reads: Find vh ∈ Vh such that

a(uh, vh) :=

∫
Ω
∇uh∇vh dx =

∫
Ω
fuh dx =: F (uh) ∀uh ∈ Vh (1.7)

Substituting uh in the basis coordinates and testing for all the vector of the
basis one finds that (1.7) is equivalent to the linear system

Au = f, (1.8)

where A is the stiffness matrix Aij = a(Ψi,Ψj). In order to determine the
entries Aij we observe that for a basis function Ψc that takes the value 1 in
the node (vertex) c we have

Aii = a(Ψc,Ψc) =

∫
1...8

(∇Ψc)
2 dxdy

=

∫
1+3+4

[∂1Ψ2
c + ∂2Ψ2

c ] dxdy = · · · = 4

For the off-diagonal entries we obtain

a(Ψc,ΨN ) = a(Ψc,ΨN ) = a(Ψc,ΨN ) = a(Ψc,ΨN ) = −1 (1.9)

a(Ψc,ΨNW ) = · · · = a(Ψc,ΨSE) = 0 (1.10)

In summary the linear system reads

4xij − x(i+1)j − x(i−1)j − xi(j+1) − xi(j−1) = bij for 1 ≤ i, j ≤ n− 1,
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where the convention is to drop all the indices 0 and n (boundary condition).
Obviously the matrix A is irreducible and weakly diagonally dominant,

therefore GSS and Jacobi methods are convergent, but extremely slow. We
may also note that A is the same matrix we would obtain from the finite
differences method.

1.3 Smoothing property of classical iterative methods

We study the Jacobi methods as a typical example. For the model problem
we considered, we have that

Gj = D−1(L− U) = I −D−1A = I − 1

4
A,

so Gj has the same eigenvectors of A. We can denote them by zl,m, with
1 ≤ l,m ≤ n− 1. Using trigonometric identities, it can be easily shown that

Azl,m = (4− 2 cos
lπ

n
− 2 cos

mπ

n
)zl,m

zl,mi,j = sin
ilπ

n
sin

jmπ

n

(1.11)

The spectral radius of Gj is obtained in l = m = 1 and ρ(Gj) = cos πn =
1−O(n−2). One can also show that GSS has the same asymptotic rate of
convergence, although is a bit faster.

For the Jacobi method with relaxation parameter the eigenvalues read

λl,m = (
1

4
cos

lπ

n
+

1

4
cos

mπ

n
+

1

2
) for ω =

1

2
(1.12)

Remark 1.11. After a few iteration with the Jacobi method (i.e. ω = 1) the
error contains only components for which l and m are both small (close to 1)
or both large (close to n). The latter error components will also be reduced
efficiently if one inserts a step with ω = 1

2 . Then only smooth components
(components with large wave length) or low frequency components of the error
will remain after a few relaxation steps. For these smooth error components
the reduction factor will only be 1−O(h2)

For smoothing in practice one uses the Richardson method (which is
characterized by Gr = I− 1

λmax
A), Jacobi, GSS, SOR and the linear stationary

iterative methods based on incomplete factorization (or block variants of the
above mentioned).

1.4 Two-grid methods

MG methods are based on the following idea: First one carries out a few
iterations with the classical iterative scheme, which is called relaxation; after
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the high-frequency components have been “removed” (significantly reduced
in amplitude) the residual is transferred to a coarser grid and the equation
is solved there (eventually we solve it by the same method recursively).

Leading principles:

1. Smooth functions can be well approximated on coarse grids

2. Smooth error components “appears” more oscillatory on coarse grids
and can be reduced more efficiently there by relaxation.

Assume we want to solve the problem

a(uh, vh) = F (uh) ∀uh ∈ Vh ⊂ V

that comes from a conforming FEM for an elliptic boundary value problem
(BVP). Note that if a(·, ·) is a symmetric, coercive and bounded bilinear
form and F (·) ∈ V ′, then by Lax-Milgram lemma it has a unique solution
vh ∈ Vh which is also the unique solution of the minimization problem

min
uh∈Vh

J(uh), (1.13)

where J(u) = 1
2a(u, u)− F (u).

Notation: We denote the smoothing operator by S. The k-th cycle of
the two-grid method is then defined by the following algorithm (Two-grid

methods). Let u
(k)
h ∈ Vh be a given approximation of the solution uh of

(1.7):

1. Smoothing: Apply ν smoothing steps to u
(k)
h and obtain u

(k,1)
1 := Sνu

(k)
h

2. Coarse-grid correction: Compute the solution ωH of the variational
problem on a coarser grid with mesh size H > h using the minimization
form:

J(u
(k,1)
h + ωH) = min

uH∈VH
J(u

(k,1)
h + uH),

(or solving the variational problem itself) where VH ⊂ Vh and set

u
(k+1)
h = u

(k,1)
h + wH .

Remark 1.12. The parameter ν determines the number of smoothing (re-
laxation) steps the algorithm performs. For elliptic problems and conforming
FEM it is usually sufficient to use ν ≤ 3.

1.5 The multigrid algorithm

For simplicity we consider here Lagrangian Finite Elements and conforming
discretization using nested FE spaces.

We start with a coarsest triangulation Th0 with mesh size h0 of the
domain Ω. For simplicity we assume Ω is a polygonal domain, therefore the
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triangulation is exact. Next, every triangle T ∈ Th0 is refined by subdividing
it in 4 congruent triangles in the following triangulation Th1 with mesh
size h1 = h0

2 . Repeating this procedure, we define a sequence of nested
triangulation {Thi}. For sake of notation, from now on we will set Tl :=
Thl . For each triangulation, we create a finite element space of piece-wise
polynomial (piece-wise linear) functions Vi with the property of nestedness:

V1 ⊂ V2 ⊂ · · · ⊂ VL ⊂ V. (1.14)

We call {Vi}Li=1 the nested spaces, while V is a conforming space of continuous
functions, usually H1(Ω). The following algorithm describes the k-th cycle

of the approximate solution of (1.14) at level l, i.e., in Vl [MGMl]. Let u
(k)
l

be an approximation of the solution of (1.14) ul in Vl:

1. Pre-smoothing : Apply ν1 smoothing steps to u
(k)
l , u

(k,1)
l = Sν1u

(k)
l .

2. Coarse-grid correction: Compute the solution ωl−1 of the variational
problem

J(u
(k,1)
l + ωl−1) = min

vl−1∈Vl−1

J(u+ vl−1) (1.15)

If l = 1 we compute the solution of (1.15) exactly and set vl−1 = ωl−1.
Otherwise we compute an approximate solution by applying ν steps

of MGMl−1 at level l − 1 using initial guess u
(0)
l−1 = 0. Set u(k,2) =

uk,1l + vl−1.

3. Post smoothing : Apply ν2 steps of smoothing to u(k,2) and obtain

u
(k,3)
l = Sν2u

(k,2)
l

We set u
(k+1)
l := u

(k,3)
l .

Remark 1.13. For l = 1 we solve the coarse-grid problem exactly. For l > 1
the coarse-grid problem is solved approximately and thus the MG iteration
can be viewed as a perturbed two-grid iteration.

Remark 1.14. The parameter ν determines the amount of work is spent
on the coarse-grid correction steps. If we set ν = 1 we have the so-called
V-cycle, while ν = 2 is the so-called W-cycle. If ν = 1 the coarsest grid is
visited once, while if ν = 2, it is visited 2L−1 times.

Remark 1.15. Sometimes post-smoothing is skipped, i.e., one chooses
ν2 = 0. The V-cycle is often performed symmetrically, with ν1 = ν2.

The problem (1.15) to be solved in the coarse-grid corresponding step can
be written as

a(u
(k,1)
l + wl−1, vl−1) = F (v−1) ∀vl−1 ∈ Vl−1 (1.16)
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and in a matrix form as
Al−1yl−1 = bl−1. (1.17)

In order to find Al−1 and bl−1 we use that Vl−1 ⊂ Vl, i.e., each basis function
Ψj ∈ Vl−1 can be represented as a linear combination of the basis functions
Φi ∈ Vl:

Ψj =

Nl∑
i=1

rijΦi (1.18)

Due to (1.16) we have

a(ωl−1, ul−1) = F (ul−1)− a(u
(k,1)
l−1 , ul−1) ∀ul−1 ∈ Vl−1 (1.19)

Using (1.18) in (1.19) and rearranging the sums one finds that 1.18 takes
the form of

RAlR
T yl−1 = Rdl, (1.20)

where dl = d is the vector defined by its components

di = F (Φi)−
Nl∑
k=1

a(Φk,Φi)xk

with u
(k,1)
l =

∑Nl
k=1 xkΦk. The matrix R is defined by the relation (1.18).

Denoting by P the matrix representation of the injection I : Vl−1 → Vl ,
we have that R = P T is the matrix representation of the adjoint operator
I∗ : V ∗l → V ∗l−1. Then

Al−1 = RAlP = P TAlP

and bl−1 = P Tdl with the defect dl = bl −Ax
(k,1)
l . So coarse grid correction

in matrix form can be written as

x
(k,2)
l = x

(k,1)
l + Pyl−1, (1.21)

where yl−1 is the solution of Ayl−1 = P Tdl. We can now rewrite the algorithm
in a matrix form: given an approximation xkl of the solution of Alxl = bl

1. Pre-smoothing : x
(k,1)
l = Sν1x

(k)
l

2. Coarse-grid correction: compute the defect dl = bl − Ax
(k,1)
l and its

restriction bl−1 = P Tdl. Let y∗l−1 be the solution of Ayl−1 = bl−1 where

Al−1 = P TAP . If l = 1 we set yl−1 = y∗l−1, otherwise we compute an
approximation yl−1 of y∗l−1 by performing µ steps of MGMl−1 at level

l − 1 with the initial guess x
(0)
l−1 = 0. Set x

(k,2)
l = x

(k,1)
l + Pyl−1.

3. Post smoothing :

x
(k,3)
l = Sν2x

(k,2)
l

x
(k+1)
l = x

(k,3)
l
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2 Convergence analysis of MG methods

Classical convergence analysis is based on a smoothing property of the form

‖Sνvh‖X ≤ CSh
−β‖vh‖Y

νγ
(2.1)

and an approximation of the form

‖vh − vH‖Y ≤ CAh
β‖vh‖X ∀vh ∈ Vh, (2.2)

where vH is a coarse-grid correction of vh. For ν large enough CSCA
1
ν ≤ 1.

From now on we will use the following

Assumption 2.1. 1. The BVP is H1 (or H1
0 ) elliptic.

2. The BVP is H2 regular, i.e. the solution is in H2.

3. The spaces Vl come from conforming discretization and are nested

4. We use a nodal basis for Vl, with l = 0, 1, . . . , L.

2.1 Discrete norms and smoothing property

Definition 2.2. Let A ∈ RN×N be SPD and s ∈ R. With the euclidean
inner product (·, ·) in RN , we define the norm

|||x|||s = (x,Asx)1/2. (2.3)

Let {(zi, λi)}Ni=1 be the orthonormal eigenpairs of A. The eigenvectors
form a basis of RN due to our hypothesis, thus

Asx =
N∑
i=1

ciλ
szi (2.4)

and further

(x,Asx) =
N∑
i=1

c2
iλ

s (2.5)

From (2.5) it follows that |||x|||s =
∥∥∥As/2x∥∥∥.

Remark 2.3. The norm ||| · |||s has the following properties:

1. ||| · |||0 =‖·‖.

2. Let t, r ∈ R and s = t+r
2 . Then∣∣(x,Asy)
∣∣ =
∣∣∣(At/2x,Ar/2y)

∣∣∣ ≤ |||x|||t|||y|||r
Thus

|||x|||s ≤
√
|||x|||t|||x|||r
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3. Let α > 0 be the ellipticity (coercivity) constant. Then

|||x|||t
α−t/2

≥ |||x|||s
α−s/2

for t ≥ s

4. If Ax = b then |||x|||s+2 =‖b‖

Lemma 2.4. Let ω ≥ ρ(A) and s ∈ R, t > 0. Then, for the Richardson
iteration x(ν+1) = (I − 1

ωA)x(ν) there holds

|||x(ν)|||s+t ≤ cν−t/2|||x(0)|||s with c =

(
tω

2e

)t/2
,

with e being the Euler number.

Proof. Exercise.

Now we would like to answer how the discrete norms ||| · |||s are related to
Sobolev norms. We consider first the case s = 0, i.e. the standard euclidean
norm.

Lemma 2.5. Let Th be a uniform triangulation of Ω ⊂ Rn and Vh denote
the corresponding space associated with a family of affine finite elements.
The nodal basis functions are assumed to be scaled such that

Ψ(zj) = hn/2δij (2.6)

For vh ∈ Vh let |||vh|||0 =‖vh‖ be the euclidean norm of the coefficient vector
and ‖vh‖0,Ω be the L2(Ω) norm of the corresponding function. Then we have

c−1‖vh‖0,Ω ≤‖vh‖ ≤ c‖vh‖0,Ω

i.e. the L2(Ω) and the euclidean norm are equivalent. In addition the constant
c does not depend on h.

Proof. In the following we identify finite element functions vh ∈ Vh and their
vectors of expansion coefficient with respect to the basis {Ψi}Ni=1. Details of
the proof are left as exercise. On the reference element Tref ⊂ Rn one has

‖vh‖20,Ω ' h
n
∑
zi∈T

(uh(zi))
2

i.e.,

c1‖vh‖20,T ≤ h
n
∑
zi∈T

(vh(zi))
2 ≤ c2‖vh‖0,T
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Now we consider the case of s = 1. This is even easier. Indeed, we have:

|||vh|||12 = (vh, Avh) = a(vh, vh) .

From the ellipticity and boundedness of the bilinear form a(·, ·) we get
immediately

c−1‖vh‖1,Ω ≤ |||vh|||1 ≤ c‖vh‖1,Ω , (2.7)

where

‖vh‖21,Ω =

∫
Ω
vh +∇v2

h dx

is the usual Sobolev norm.

Lemma 2.6. Let the hypothesis of Lemma 2.5 be satisfied. Then the extremal
eigenvalues of the stiffness matrix of an H1-elliptic BVP satisfy

λmin ≥ c−1, λmax ≤ ch−2, K(Ah) ≤ c2h−2. (2.8)

Proof. Exercise.

Using Lemma 2.4 with s = 0 and t = 2 and the estimate from Lemma
2.6, it follows the smoothing property given in Proposition 2.7.

Proposition 2.7. The Richardson iteration x(ν+1) = (I − 1
ωAh)x(ν), with

ω = ρ(Ah), satisfies

|||x(ν)|||2 ≤
c

ν
h−2|||x(0)|||0 (2.9)

2.2 Approximation property

Assuming H2-regularity of the BVP, the error of the coarse-grid correction
can be estimated in the ||| · |||s norm. An important tool in the proof is an
estimate of the form

‖u− uh‖0,Ω ≤ ch‖u− uh‖1,Ω , (2.10)

which follows from finite element analysis (Aubin-Nitsche duality argument)

Lemma 2.8 (Approximation property). For u ∈ Vh, let uH be the solution
of the variational problem

a(u− uH , ω) = 0 ∀ω ∈ VH

(for example H = 2h). Moreover, let Ω be convex or let its boundary be
smooth. Then we have

‖u− UH‖1,Ω ≤ cH|||v|||2 (2.11)

‖u− UH‖0,Ω ≤ cH|||v − UH |||2 (2.12)

Proof. Left as exercise.
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2.3 Convergence of the two-grid method

We have already shown in the last section that there holds the smoothing
property (2.1) and the approximation property (2.2) in the particular case

‖·‖ =‖·‖2 , ‖·‖Y = ||| · |||0, β = 2, γ = 1. (2.13)

Theorem 2.9 (Convergence of the two-grid method). Under the usual
assumptions 2.1, with Richardson smoother and ρ(Ah) ≤ ω ≤ c̄ρ(Ah) satisfies∥∥∥u(k,1)

1 − u1

∥∥∥
0,Ω
≤ c

ν1

∥∥∥uk1 − u1

∥∥∥
0,Ω

, (2.14)

where the constant c is independent by h and ν1.

Proof. After ν1 pre-smoothing steps with the Richardson method we have

u
(k,1)
1 − u1 = (I − 1

ω
Ah)ν1(u

(k)
1 − u1)

and Lemma 2.8 (smoothing property) yields∥∥∥u(k,1)−u1
1

∥∥∥
2
≤ c

ν1
|||u(k)

1 − u1|||0. (2.15)

The approximation u
(k,2)
1 = u

(k,1)
1 + uH after coarse-grid correction solves

a(u
(k,1)
1 + uH , vh) = F (vh) ∀vh ∈ Vh.

Moreover, the exact solution u1 = uH satisfies

a(u1, vH) = F (vH) ∀vH ∈ VH .

Since VH ⊂ Vh subtraction on VH yields:

a(u
(k,1)
1 + uH − u1, vH) = 0 ∀vH ∈ VH

Now Lemma 2.8 (approximation property) results in∥∥∥u(k,2)
1 − u1

∥∥∥
0,Ω

=
∥∥∥u1 − u(k,1)

1 − uH
∥∥∥

0,Ω

≤ c̃H‖v − UH‖1,Ω
≤ cH2|||v|||2

= cH2
∥∥∥u(k,1)

1 − u1

∥∥∥
2
,

(2.16)

where v := u1 − u(k,1)
1 . Here we neglect the effect of post-smoothing, i.e., we

just use

|||(I − 1

ω
Ah)ν2x|||s ≤ |||x|||s,
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from which follows

|||u(k,3)
1 − u1|||0 ≤ |||u(k,2)

1 − u1|||0.

In view of the equivalence of the discrete and the continuous norm we
therefore have ∥∥∥u(k,3)

1 − u1

∥∥∥
0,Ω
≤ c
∥∥∥u(k,2)

1 − u1

∥∥∥
0.Ω

(2.17)

and finally, combining (2.15), (2.16), (2.17), we have∥∥∥u(k+1)
1 − u1

∥∥∥
0,Ω

=
∥∥∥u(k,3)

1 − u1

∥∥∥
0,Ω
≤ c0

∥∥∥u(k,2)
1 − u1

∥∥∥
0,Ω

≤ c1H
2|||u(k,1)

1 − u1|||2 ≤
c2

ν1
|||u(k)

1 − u1|||0

≤ c2

ν1

∥∥∥u(k)
1 − u1

∥∥∥
0,Ω

In matrix form the two-grid method can be also written in the form

u(k+1) − u1 = G(u
(k)
1 − u1), (2.18)

with

G = Sν2(I − PA−1
H P TAh)Sν1

= Sν2(A−1
h − PA

−1
H P T )AhS

ν1 .
(2.19)

So coarse-grid correction has the propagation matrix

I − PA−1
h P TAh.

The smoothing property can be written as

‖AhSν1‖ ≤
cs
ν1
h−2 (2.20)

and the approximation as∥∥∥A−1
h − Pa

−1
H P T

∥∥∥ ≤ h2cA. (2.21)

Together with the assumption that the smoother is convergent in the norm
‖·‖

‖S‖ < 1

we get

‖G‖ < cscA
1

ν1
< 1

if ν1 is large enough. In view of |||Ax|||0 =‖x‖2 one deduces from (2.20) and
(2.21) the smoothing and approximation property from before.
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2.4 Convergence of multigrid method

2.4.1 Convergence of the W-cycle MG method

The goal is to estimate the convergence rate ρl in∥∥∥u(k+1)
l − ul

∥∥∥ ≤ ρl∥∥∥u(k)
l − ul

∥∥∥ , (2.22)

where ul ∈ Vl is the solution of (1.14) in Vl. Obviously∥∥∥u(k,1)
l − ul

∥∥∥ ≤∥∥∥u(k)
l − ul

∥∥∥ , (2.23)

where u
(k,1)
l is the approximation after the Richardson approximation and

‖·‖ = ||| · |||s. Denote by u
(k,2)
l the approximation after real (approximate)

coarse-grid correction and by û
(k,2)
l the approximation after the exact coarse-

grid correction. We have∥∥∥û(k,2)
l − ul

∥∥∥ ≤ ρ1

∥∥∥u(k)
l − ul

∥∥∥ (2.24)

with the two-grid rate ρ1. Using triangular inequality, one has∥∥∥u(k,2)
l − ul

∥∥∥ ≤∥∥∥u(k,2)
l − û(k,2)

∥∥∥+
∥∥∥û(k,2) − ul

∥∥∥ (2.25)

Now we assume that we know the convergence rate ρl−1,i.e, the following
inequality ∥∥∥u(k+1)

l+1 − ul+1

∥∥∥ ≤ ρl−1

∥∥∥u(k)
l−1 − ul−1

∥∥∥ ul−1 ∈ Vl−1

and conclude ∥∥∥u(k,2) − û(k,2)
l

∥∥∥ ≤ ρµl−1

∥∥∥u(k,1) − û(k,2)
l

∥∥∥ . (2.26)

Inserting (2.25) in (2.26) yields∥∥∥u(k,2) − û(k,2)
l

∥∥∥ ≤ ρµl−1(1 + ρ1)
∥∥∥u(k) − ul

∥∥∥ (2.27)

and together with (2.24)∥∥∥u(k,2)
l − ul

∥∥∥ ≤∥∥∥u(k,2)
l − û(k,2)

∥∥∥+
∥∥∥û(k,2) − ul

∥∥∥
≤ [ρµl−1(1 + ρ1) + ρ1]

∥∥∥u(k)
l − ul

∥∥∥ ,
so with post smoothing it follows

ρl ≤ ρ1 + ρµl−1(1 + ρ1). (2.28)

With (2.28) we can prove the following theorem. Its hypothesis are a bit too
strong and often they don’t hold.
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Theorem 2.10. Assuming that the two-grid rate ρ1 satisfies ρ1 ≤ 1
5 , the

W-cycle method converges at a rate

ρl ≤
5

3
ρ1 ≤

1

3
for l = 2, 3, . . . .

Proof. You need to use (2.28). It’s really short.

We want to improve the previous result by drawing an estimate in the
energy norm. Since

a(u
(k,1)
l + û(k,2) − u(k,1)

l , vl−1) = F (vl−1) ∀vl−1 ∈ Vl−1

and
a(u

(k,1)
l + u(k,2) − u(k,1)

l , vl) = F (vl) ∀vl ∈ Vl,

it follows
a(û(k,2) − ul, vl−1) = 0 ∀vl−1 ∈ Vl−1

and hence
a(û(k,2) − ul, u

(k,1)
l − û(k,2)

l ) = 0.

We have thus∥∥∥u(k,1)
l − û(k+2)

l

∥∥∥2

a
=
∥∥∥u(k,1)

l − ul
∥∥∥2

a
−
∥∥∥û(k+2)

l − ul
∥∥∥2

a
. (2.29)

This means that the error after coarse-grid correction is a-orthogonal to the
coarse-space. Now from (2.26) and this orthogonality relation just mentioned,
it follows∥∥∥u(k+2)

l − ul
∥∥∥2

a
=
∥∥∥û(k,2)

l − ul
∥∥∥2

a
+
∥∥∥u(k,2)

l − û(k,2)
l

∥∥∥2

a

≤
∥∥∥û(k,2)

l − ul
∥∥∥2

a
+ ρ2µ

l−1

∥∥∥u(k,1)
l − û(k,2)

l

∥∥∥2

a

≤
∥∥∥û(k,2)

l − ul
∥∥∥2

a
+ ρ2µ

l−1(
∥∥∥u(k,1)

l − ul
∥∥∥2

a
+
∥∥∥û(k,2)

l − ul
∥∥∥2

a
)

= (1− ρ2µ
l−1)

∥∥∥û(k,2)
l − ul

∥∥∥2

a
+ ρ2µ

l−1(
∥∥∥u(k,1)

l − ul
∥∥∥2

a
)

(2.30)

Using additionally (2.24) and (2.23) we finally obtain from (2.30)∥∥∥u(k,2)
l − ul

∥∥∥2

a
≤ [(1− ρ2µ

l−1)ρ1 + ρ2µ
l−1]
∥∥∥u(k)

l − ul
∥∥∥2

a
,

and thus
ρ2
l ≤ ρ2

1 + ρ2µ
l−1(1− ρ2

1) (2.31)
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Theorem 2.11. Assuming that the two -grid rate satisfies ρ1 ≤ 1
2 , the

W -cycle method converges at a rate

ρl ≤
6

5
ρ1 ≤ 0.6 for l = 2, 3, . . . (2.32)

Proof. For l = 1 there is nothing to prove. Assume now it is true for l = k−1.
Then we have

ρ2
k ≤ ρ2

1 + ρ2·2
k−1(1− ρ2

1)

≤ ρ2
1 +

(
6

5

)4

(1− ρ2
1)

= ρ2
1

[
1 +

(
6

5

)4

(ρ2
1(1− ρ2

1))

]
≤ 36

25
ρ2

1 ≤
9

25

2.4.2 Convergence analysis of the V-cycle MG method

In order to prove a uniform bound ρl ≤ ρ∞ < 1 for the convergence of the
V-cycle, we need to refine our analysis. As before, let ‖·‖ denote the energy
norm. Our goal is to prove the following theorem.

Theorem 2.12. Under the assumptions 2.1 and if the Richardson smoother
is used, the V-cycle MG method satisfies the estimate∥∥∥u(k+1)

l − ul
∥∥∥ ≤ ( c

c+ 2ν

)1/2∥∥∥u(k)
l − ul

∥∥∥ , (2.33)

thus ρ2
l ≤ ρ2

∞ ≤ ( c
c+2ν ). Here c is a constant independent by h and ν.

First we need to establish three preliminary results. We start with
introducing a measure for the smoothness of a finite element function. For
any vh ∈ Vh let

β = β(vh) :=

 1− ρ(Ah)−1 |||vh|||22

|||vh|||12
vh 6= 0

0 vh = 0
(2.34)

Obviously β ∈ [0, 1[. For smooth functions (|||vh|||2 ≈ |||vh|||1) we have that β
is close to 1. For high-oscillatory functions (|||vh|||2 ≈ ρ(Ah)|||vh|||1) we have
that β is close to 0.

Lemma 2.13. Let S denote the iteration matrix of the Richardson smoother.
Then

|||Sνv|||1 ≤ [β(Sνv)]ν |||v|||1 ∀v ∈ Vh
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Proof. Let v =
∑N

i=1 ciΦi, where {Φi} denote the set of the orthonormal
eigenvectors of A := Ah. Moreover let µi = 1− λi

ρ(A) . Now we set

p :=
2ν + 1

2ν
, q := 2ν + 1,

so p−1 + q−1 = 1, and

ai := λ1/pu2ν
i |ci|

2/p , bi := λ
1/q
i c

2/q
i

such that

|ai|p = λiµ2ν+1
i |ci|2 , |bi|q = λi|ci|2

|aibi| = λiµ
2µ
i |ci|

2 .

Now we have

N∑
i=1

λiµ
2ν
i |ci|

2 ≤

∑
i=0

λiµ
2ν+1
i |ci|2

 2ν
2ν+1

∑
i=0

λi|ci|2
 1

2ν+1

(2.35)

Then, by definition of Sν , we find that (2.35) is equivalent to

‖Sνv‖2ν+1 ≤
∥∥∥Sν+1/2v

∥∥∥‖v‖ (2.36)

Substituting w := Sνv we obtain from (2.36)

‖Sνv‖ ≤

∥∥∥S1/2w
∥∥∥

w2

2

‖v‖ . (2.37)

The particular choice of S = I − Ah
ρ(Ah) implies that S is self-adjoint and S

and A commute. Hence∥∥∥S1/2v
∥∥∥2

= |||S1/2w|||1
2

= (w,ASw)

= (w,Aw)− 1

ρ(A)
(w,A2w) = β(w)‖w‖2

(2.38)

We obtain the thesis inserting (2.37) in (2.38).

The measure β can also be used to get a refined estimate of the error
after coarse-grid correction.

Lemma 2.14. The error after exact coarse-grid correction satisfies∥∥∥û(k,2)
l − l

∥∥∥ ≤ min{cρ−1/2(Ah)|||û(k,2)
l − ul|||2,

∥∥∥u(k,1)
l − ul

∥∥∥}
= min{c

√
1− β(u

(k,1)
l − ul), 1}

∥∥∥u(k,1)
l − ul

∥∥∥ , (2.39)

where ‖·‖ denotes the energy norm.
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Proof. The approximation property (2.11) reads in the present situation∥∥∥û(k,2)
l

∥∥∥ ≤ c1h|||u(k,1)
l − ul|||2

because
‖v − uh‖ ≤ c1h|||v|||2

gives for v = −u(k,1)
l +ul and uH = −u(k,1)

l + û
(k,2)
l the exact equation above.

Using ρ(Ah) ≤ c2h
−2 ⇔ c1h ≤ cρ(Ah)−1/2 we obtain∥∥∥û(k,2) − ul
∥∥∥ ≤ min{cρ−1/2(Ah)|||û(k,2)

l − ul|||2,
∥∥∥u(k,1)

l − ul
∥∥∥}

and we get the second equality eliminating ||| · |||2 using the definition (2.34)
of β.

The previous lemmas 2.13 and 2.12 allow to establish an improved
recursion formula for ρl.

Lemma 2.15 (Improved recursion formula). Let the assumptions of Theorem
2.12 be satisfied, then we have the following relation

ρ2
l ≤ max

0≤β≤1
β2µ[ρ2µ

l−1 + (1− ρ2µ
l−1) min{1, c2(1− β)}] (2.40)

where µ = 1 corresponds to the V-cycle, while µ = 2 corresponds to the
W-cycle, and c is the same constant of lemma 2.14.

Proof. From Lemma 2.13 we have∥∥∥u(k,1) − ul
∥∥∥ ≤ βν∥∥∥u(k)

l − ul
∥∥∥ (2.41)

with β = β(u
(k,1)
l − ul) defined as in (2.34). Lemma 2.14 for the same β

yields∥∥∥û(k,2)
l − l

∥∥∥ ≤ βν min{c
√

1− β(u
(k,1)
l − ul), 1}

∥∥∥u(k,1)
l − ul

∥∥∥ . (2.42)

Inserting(2.42) and (2.41) in the estimate (2.30) we finally get∥∥∥u(k,2)
l − ul

∥∥∥2
≤ (1− ρ2nu

l−1 )
∥∥∥û(k,2)

l − ul
∥∥∥2

+ ρ2
l−1

∥∥∥u(k,1) − ul
∥∥∥2

≤ β2ν [(1− ρ2µ
l−1) min{c

√
1− β, 1}+ ρ2µ

l−1]
∥∥∥u(k)

l − ul
∥∥∥ ,
(2.43)

which proves our thesis since 0 ≤ β ≤ 1.
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One can computes the convergence factors (i.e., bounds for ρl) according
to formula (2.40). We have (l→∞ is the upper bound):

c V-cycle l = 1 V-cycle l =∞ W-cycle
0.5 0.1418 0.243 0.1437
1.0 0.217 0.448 0.2904

Now we can finally prove Theorem 2.10.

Theorem 2.10. We note that ρ0 = which proves the Theorem for l = 0. Now
we assume that (2.33) holds for l = k − 1. So we insert ρ2

k−1 ≤
c2

c2+2ν
in the

formula (2.40) to get

ρ2
k ≤ max

0≤β≤1
{β2ν [

c2

c2 − 2ν
+ (1− c2

c2 + 2ν
)c2(1− β)]}

≤ c2

c2 + 2ν
max

0≤β≤1
{β2ν [1 + (

c2 + 2ν

c2
− 1)c2(1− β)]}

=
c2

c2 + 2ν
max

0≤β≤1
{β2ν [1 + 2ν(1− β)]}

=
c2

c2 + 2ν

where we can choose c2 = max{c1, c
2
2} and c1 is constant in (2.33) and c2

2

is the constant in (2.40). The last equality stands because the max{. . . } is
achieved for β = 1 and it equals 1.

2.4.3 Complexity of multigrid methods

The estimation of the computational work for one MG cycle is based on
estimating the number of arithmetic operations for:

1. Smoothing in Vk.

2. Prolongation (i.e., interpolation) from Vk−1 → Vk.

3. Restriction from Vk → Vk−1.

These components of the MG methods require a number of arithmetic
operations that can be bounded by C · Nk, where Nk = dim(Vk). The
number of arithmetic operations for one application of the smoother is
proportional to the number of nonzero entries in Ak, which in case of affine
family of finite element is proportional to Nk, i.e., O(Nk). Prolongation
and Restriction typically have sparse matrix representations and hence the
amount of work for each visit at level k can be bounded by (ν + 1)C ·Nk,
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where ν = ν1 + ν2 denotes the number of smoothing steps. The total work
for one cycle can therefore be estimated by

(ν + 1)C
L∑
i=0

Ni ≤
1

1− q
(ν + 1)CNL

for the V-cycle, and

(ν + 1)C

L∑
i=0

µL−iNi ≤
1

1− qµ
(ν + 1)CNL (2.44)

for the ν-fold V-cycle, e.g., by

1

1− 2q
(ν + 1)CNL

for the W-cycle. Here q < 1 denotes a bound for the reduction factor for the
number of the unknowns when proceeding to coarser and coarser levels, i.e.,

Nl−1 ≤ qNl for l = 1, 2, . . . , L .

As we see from (2.44) the condition q < 1 will be in general sufficient to
guarantee that each cycle has optimal computational complexity, i.e, the
number of the operations is of order O(NL).

3 A more abstract view on multigrid theory

Consider a finite-dimensional complete vector space, which is endowed with
two inner products (·, ·) and a(·, ·), and corresponding norms ‖·‖0 and ‖·‖
respectively. Now let VL = V and assume that we are given a sequence of
nested spaces

V0 ⊂ V1 ⊂ · · · ⊂ VL = V .

Next consider the operators Ak : Vk → Vk defined by

(AkΨ,Φ) = a(Ψ,Φ) ∀Ψ,Φ ∈ Vk.

Moreover, let the projections Pk : VL → Vk and Qk : VL → Vk be defined by:

a(Pku, v) = a(u, v) ∀v ∈ Vk, u ∈ V

and
(Qku, v) = (u, v) ∀v ∈ Vk, u ∈ V.

Remark 3.1. If a(·, ·) is the bilinear form in (1.14) then Pk is often referred
to as elliptic projector or Ritz projector. If (·, ·) denotes the L2-inner product,
then Qk is called L2-projector.
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Furthermore, let Rk;Vk → Vk denote smoothing operators, which in
general do not have to be symmetric and let RTk be denote their adjoint
operators with respect to (·, ·). As in Section 1 consider a linear stationary
iteration method of the form

x(k+1) = x(k) +B(f −Ax(k)). (3.1)

We want to study the V-cycle MG method, which corresponds to the choice
B = BL, where BL is recursively defined via the following algorithm, called
V-cycle MG preconditioner: recursive definition of Bk

1. If k = 0 set B0 = A−1
0 ; otherwise we define the action of Bk on a vector

g recursively by the following three steps, assuming Bk−1 is known.

2. Pre-smoothing : x(1)RTk g.

3. Coarse-grid correction: x(2) = x(1) + y, with

y = Bk−1Qk−1 (g −Akx(1))︸ ︷︷ ︸
∈Vk−1

.

4. Post-smoothing : Bkg := x(2) +Rk(g −Akx(2)).

3.1 Product formula for the error propagation operator

We want to derive a formula for E = I − BLAL. For that reason denote
by Kk : Vk → Vk the error propagation operator (EPO) of Rk, i.e., Kk =
I − RkAk and by K∗k the adjoint operator with respect to the a(·, ·) inner
product, i.e., (after some computations), K∗k = I − RTkAk. In view of the
identity (exercise for the reader)

Qk−1Al = Ak−1Pk−1 on Vl for k ≤ l (3.2)

and following the Algorithm defined above, we find

x− x(2) = x− x(1) −Bk−1Qk−1( g︸︷︷︸
=Akx

−Akx(1))

= (I −Bk−1Qk−1Ak)(x− x(1))

= (I −Bk−1Ak−1Pk−1)K∗kx

(3.3)

From step 4) of the algorithm, using g = Akx, we obtain

(I −BkAk)x = x− x(2) −RkAk(x− x(2)
x )

= Kk(x− x(2))

= Kk(I −Bk−1Ak−1Pk−1)K∗kx

= Kk[(I − Pk) + (I −Bk−1Ak−1)Pk−1]K∗kx
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and because x was arbitrary we get

(I −BkAk) = Kk[(I − Pk) + (I −Bk−1Ak−1)Pk−1]K∗k . (3.4)

We extend the operator Kk to be defined on the entire space VL (and
denote the extended operator again as Kk):

Kk = I −RkAkPk = I − Tk,

with
Tk := RkAkPk.

In a similar way we can write

K∗k = I −RTkAkPk = I − T ∗k ,

with
T ∗k := RTAkPk.

Using (3.4) it follows

I −BkAkPk = I − Pk + (I −BkAk)Pk
= I − Pk +Kk[(I − Pk−1) + (I −Bk−1Ak−1)Pk−1]K∗kPk

(3.5)

Pk is a projection, thus P 2
k = Pk and (I −Pk)2 = I −Pk. Obviously we have

TkPk = Tk,

and thus
(I − Tk)(I − Pk) = I − Pk.

Moreover

a(Tku, v) = a(u, T ∗k v︸︷︷︸
∈Vk

) = a(Pku, T
∗
k v)

= a(Pku, T
∗
k v) = a(u, PkT

∗
k v)

, i.e., T ∗k = PkT
∗
k . Hence, (I − Pk)(I − T ∗k ) = I − Pk. We therefore have

(I − Pk) = (I − Pk)(I − T ∗k )

= (I − Tk)(I − Pk)(I − T ∗k )

= K∗k(I − pk)K∗k .

Due to (3.5) it follows that
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I −BkAkPk = (I − Tk)(I − Pk)(I − T ∗k )

+ (I − T ∗k )[I −Bk−1Ak−1Pk−1](I − T ∗k )Pk

= (I − Tk)[I − Pk + Pk −Bk−1Ak−1Pk−1](I − T ∗k ),

where we use, among other equalities, (I − T ∗k )Pk = Pk(I − T ∗k ). Finally we
get, using Bo = A−1

0 and PL = I.

I −BLALPL =

 1∏
i=L

(I − Ti)

 (I − P0)

 L∏
i=1

(I − T ∗i )

 (3.6)

Proof of Identity (3.2). We remember that

(Qk−1u, Vk−1) = (u, Vk−1) ∀u ∈ Vk−1

(Alul, vl) = a(ul, vl) ∀vl ∈ Vl
.

Thus it follows

(Qk−1Alu, vk−1) = (Alu, vk−1)

= a(ul, vk−1)

= a(Pk−1ul, vk−1)

= (AkPk−1ul, vk−1)

3.2 Assumptions for convergence analysis of the V-cycle MG
method

Assumption 3.2. There exists a constant CR ≥ 1, independent of k (and
thus independent of h) such that

|||v|||02

λk
≤ CR(R̄ku, u) ∀u ∈ Vk, (3.7)

where

R̄k = (I −K∗kKk)A
−1
k

= RTk +Rk −RTkAkRk

denotes the symmetrized smoother.

Remark 3.3. Let Rk,α = αλ−1I and Kk,α = I −Rk,αAk, then Assumption
3.2 is equivalent to the following statement: There exist a constant α ∈]0, 1]
such that

a(Kku,Kku) ≤ a(Kk,α)u,Kk,αu) ∀u ∈ Vk.

. The proof is left as exercise .
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A generalization of Assumption 3.2 requires the property (3.7) to be
satisfied only on a surface V̂k ⊂ Vk (we are still assuming that {Vk} are
nested, but not necessarily {V̂k}). In this case one can define

Âk : V̂k → V̂k

(ÂkΦ,Ψ) = a(Φ,Ψ) ∀Φ,Ψ ∈ V̂k

and P̂k, Q̂k similarly. The weakened 3.2 then reads

Assumption 3.4. Assume that Rk = RkQ̂k and

|||u|||02

λk
≤ CR(R̄ku, u) ∀u ∈ V̂k, (3.8)

where
R̄k = RTk +Rk −RTk ÂkRk

Obviously Rk = RkQ̂k if Rk is symmetric since

(RkΦ,Ψ) = (Φ, RkΨ︸︷︷︸
∈V̂k

)

= (Q̂k, RkΨ) = (RkQ̂kΦ,Ψ)

Assumption 3.5. There exists a constant θ ≤ 2 such that

a(Tku, Tku) ≤ θa(Tku, u) ∀v ∈ Vk, (3.9)

where Tk = I −RkAkPk. Note that we will assume the same inequality in
the case V̂k

Remark 3.6. The following consideration shows that Assumption 3.5 is
quite natural: For the choice Tk = α

λk
AkPk, i.e., Rk = α

λ 3.5 requires α ∈]0, 2[
because

a(Tku, Tku) ≤ α

λ
a(Tk, u, Aku)

≤ αa(Tku, u) ≤ θa(Tku, u)

This is reasonable because for the eigenfunction vk corresponding to the
largest eigenvalue λk of Ak, we have (I − Tk)vk = (I − α)vk and thus I − Tk
does not reduce the components for α ≥ 2.

Assumption 3.7. There exist linear operators Q̄k : V → Vk, with Q̄L = I
and ∥∥(Q̄k − Q̄k−1)u

∥∥2 ≤ cλk−1a(u, u) for k = 1, 2, . . . , L

and
a(Q̄ku, Q̄ku) ≤ ca(u, u)

Remark 3.8. In some application the operators Q̄k may be chosen as the
L2-projection operators. Sometimes, however, a more “careful” choice is
required in the convergence analysis.
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3.3 A convergence result for the V-cycle

Theorem 3.9 (Quasi-optimal convergence). Let BL be the V-cycle precon-
ditioner defined in the corresponding algorithm and let the Assumptions 3.4,
3.5, 3.7 be satisfied, and Range (Q̄k − ¯Qk−1) ⊂ V̂k. Then

a(I −BLAL)v, v) ≤
(

1− 1

c(L+ 1)

)
a(v, v) ∀v ∈ VL (3.10)

Proof. First, using Q̄L = I, we rewrite

a(v, v) =
L∑
i=1

a(v, (Q̄k − Q̄k−1)v) + a(v, Q̄0v)

=

L∑
i=1

a(Ek−1v, (Q̄k − Q̄k−1)v)︸ ︷︷ ︸
:=S1

+ a(v, Q̄0v) +
L∑
i=1

a((I − Ek−1)v, (Q̄k − Q̄k−1)v)︸ ︷︷ ︸
:=S2

,

(3.11)

where E−1 = I and Ei = (I − Ti)Ei−1. Finally

EL = (I − TL)(I − TL−1) . . . (I − T0),

where, in view of (3.6)
I −BLAL = ELE

∗
L

since (I − T0)(I − T ∗0 ) = (I − P0)(I − T ∗0 ) = I − P0. We estimate S1 first:

S1 =

L∑
k=1

a(Ek−1v, (Q̄k − Q̄k−1)v)

=
L∑
k=1

a(ÂkP̂kEk−1v, (Q̄k − Q̄k−1)v)

≤
L∑
k=1

λ
1/2
k |||ÂkP̂kEk−1v|||0

1

λ
1/2
k

|||(Q̄k − Q̄k−1)v|||0

≤ (

L∑
k=1

λk|||ÂkP̂kEk−1v|||0
2
)1/2(

∑ 1

λk
|||(Q̄k − Q̄k−1)v|||02

)1/2

(3.12)

Due to the assumption 3.7 we have

(

L∑
k=1

λk|||ÂkP̂kEk−1v|||0
2
)1/2 ≤ c(L+ 1)1/2a(v, v)1/2
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and in view of T̄k = R̄kAkPk = R̄kÂkP̂k and using Assumption 3.4

(
∑ 1

λk
|||(Q̄k − Q̄k−1)v|||02

)1/2 ≤ c1/2
k (

L∑
k=1

(T̄kEk−1v︸ ︷︷ ︸
R̄ku

, ÂkP̂kEk−1v︸ ︷︷ ︸
u

))1/2

Hence we obtain from (3.12)

S1 ≤ c(L+ 1)1/2a(v, v)

 L∑
k=1

(T̄kEk−1v, ÂkP̂kEk−1v)

1/2

(3.13)

It remains to estimate the second term S2. For this purpose the following
identities will be useful:

Ek − Ek−1 = TkEk−1 ⇔ Ek = (I − Tk)Ek−1 (3.14)

and

I − Ek =
k∑
l=0

TlEl−1, (3.15)

which is obtained by summation of (3.14) for l = 0 to l = k. Rearranging S2

yields

S2 =
L∑
i=1

a((I − Ek−1)v, (Q̄k − Q̄k−1)v):=S2 + a(v, Q̄0v)

=
L∑
i=1

a((I − Ek−1)v, Q̄kv):=S2 −
L−1∑
k=0

a((I − Ek)v, Q̄kv) + a(v, Q̄0v)

=

L−1∑
k=1

a((Ek − Ek−1)v, Q̄kv) + a((I − EL−1)v, Q̄L︸︷︷︸
=I

v)

− a((I − E0︸︷︷︸
=0

)v, Q̄0v) + a(v, Q̄0v)

=︸︷︷︸
(3.14)+(3.15)

−
L−1∑
k=1

a(TkEk−1v, Q̄kv) +

L−1∑
k=0

a(TkEk−1v, Pkv)

=

L+1∑
k=1

a(TkEk−1v, (Pk − Q̄k)v) + a(T0E−1v, P0v)︸ ︷︷ ︸
=a(T0v,v)=a(P0v,v)

.

Applying Cauchy-Schwarz inequality we obtain
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S2 =

L+1∑
k=1

a(TkEk−1v, (Pk − Q̄k)v)

≤

L−1∑
k=1

a(TkEk−1v, TkEk−1v)

1/2L−1∑
k=1

a(Pk − Q̄k)v, (Pk − Q̄k)v

1/2

+ a(P0v, P0v)1/2a(v, v)1/2

≤

√√√√L−1∑
k=0

a(TkEk−1v, TkEk−1v)

√√√√L−1∑
k=1

a((Pk − Q̄k)v, (Pk − Q̄k)v) + a(v, v)

,

(3.16)

where in the last inequality we have used a1b1 +a2b2 ≤ (a2
1 +a2

2)1/2(b21 +b22)1/2

(note that in the last line the sum starts at k = 0). From the boundedness
of Pk and assumption 3.7 we conclude

a((Pk, Q̄k)v, (Pk, Q̄k)v) ≤ a(Pkv, Pkv) + a(Q̄kv, Q̄kv)− 2a(Pkv, Q̄kv)

≤ 2a(Pkv, Pkv) + a(Q̄kv, Q̄kv)

≤ ca(v, v),

(3.17)

and the last inequality holds because Pk is a projection with respect to a(·, ·).
On the other hand, Assumption 3.5 allows us to estimate

a(T̄kEk−1v, TkEk−1v) ≤ ca(T̄kEk−1v,Ek−1v). (3.18)

One can prove c = θ
2−θ (Exercise). Using (3.18) and (3.17) in (3.16) we

obtain

S2 ≤ c(L+ 1)1/2a(v, v)1/2

 L∑
k=0

a(T̄kEk−1v,Ek−1v)

1/2

(3.19)

Finally, from (3.13) and (3.19) in (3.11), we get

a(v, v) ≤ c(L+ 1)

L∑
k=0

a(T̄kEk−1v,Ek−1v)

=︸︷︷︸
Exercise

c(L+ 1)
[
a(v, v)− a(ELv,ELv)

] (3.20)
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From (3.20) if follows immediately

a(ELv,ELv) ≤
(

1− 1

c(L+ 1)

)
a(v, v),

which, in view of I −BLAL = ELE
∗
L completes the proof.

Remark 3.10. This theorem tells us that

ρ(I −BLAL) ≤
(

1− 1

c(L+ 1)

)
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