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Abstract. Given a Ck-smooth closed embedded manifold N ⊂ Rm, with k ≥ 2, and a compact
connected C∞-smooth Riemannian surface (S, g) with ∂S 6= ∅, we consider 1

2
-harmonic maps

u ∈ H1/2(∂S,N ). These maps are critical points of the nonlocal energy

(1) E(f ; g) :=

∫
S

|∇ũ|2 dvolg,

where ũ is the harmonic extension of u in S. We express the energy (1) as a sum of the 1
2
-energies at

each boundary component of ∂S (suitably identified with the circle S1), plus a quadratic term which
is continuous in the Hs(S1) topology, for any s ∈ R. We show the Ck−1,δ regularity of 1

2
-harmonic

maps. We also establish a connection between free boundary minimal surfaces and critical points of
E with respect to variations of the pair (f, g), in terms of the Teichmüller space of S.
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1. Introduction

Let (S, g) be a connected C∞-smooth surface with nonempty boundary ∂S, equipped with a smooth
metric g (S is not necessarily oriented) and let N ⊂ Rm be an embedded closed (i.e. compact
without boundary) C2-smooth submanifold.

We set

H1/2(∂S,N ) :=
{
f ∈ H1/2(∂S,Rm) : f(x) ∈ N for a.e. x

}
.

Given a map f ∈ H1/2(∂S,N ), we define the 1
2 -energy of f to be

(2) E(f ; g) :=

∫
S

∣∣∇f̃ ∣∣2 dvolg.

Here f̃ denotes the harmonic extension of f , i.e. the unique harmonic map f̃ ∈ H1(S,Rm) such that

f̃
∣∣∣
∂S

= f . We observe that E(f ; g) depends only on the conformal class of g.

Definition 1.1. A map u ∈ H1/2(∂S,N ) is called 1
2 -harmonic if u is a critical point for the 1

2 -energy
E = E(·; g), in the following sense: for any φ ∈ C∞(∂S,Rm) we have

(3)
d

dt
E(Π(u+ tφ))

∣∣∣∣
t=0

= 0,

where Π : U → N is any fixed C2 projection, defined on some tubular neighborhood U of N .

Definition 1.1 extends the one introduced for the first time in [DLR09] in the case S = D or in
the noncompact case S = H (D and H being the unit disk and the upper half-plane, respectively).

One can check that Π(u+ tφ) = u+ tv + o(t) in H1/2(∂S,Rm) as t→ 0, where v := dΠ(u)[φ], and
therefore1

d

dt
E(Π(u+ tφ))

∣∣∣∣
t=0

= 2

∫
S
〈∇ũ;∇ṽ〉 dvolg = 2

∫
∂S
dΠ(u)[φ] · ∂ũ

∂ν
dvolg.

By a standard density argument, u is 1
2 -harmonic if and only if

(4)

∫
∂S
dΠ(u)[φ] · ∂ũ

∂ν
dvolg = 0,

for any φ ∈ L∞∩H1/2(∂S,Rm) (which is a Banach algebra), which is in turn equivalent to ask

(5)

∫
∂S

∂ũ

∂ν
· v dvolg = 0

for any v ∈ L∞ ∩H1/2(∂S,Rm) satisfying v ∈ TuN a.e. In particular, the definition is independent
of the choice of Π.

Let P T (ξ) denote the orthogonal projection onto the tangent space TξN , for ξ ∈ N , and observe that

P T ∈ C1(N ,Rm×m). In the paper we will also call PN := I − P T the projection onto the normal
space. The same argument showing the equivalence of (4) and (5) proves that one can replace dΠ

1The normal derivative ∂ũ
∂ν
∈ H−1/2(∂S,Rm) is defined precisely by asking that, for any v ∈ H1/2(∂S,Rm),∫

S

〈∇ũ;∇ṽ〉 dvolg =

∫
∂S

∂ũ

∂ν
· v dvolg.
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with P T in (4) (notice that, on N , P T is the differential of the nearest point projection, canonically
defined near N , but we cannot use this projection in (3) as it is merely C1). Hence,

u is
1

2
-harmonic ⇔

∫
∂S

∂ũ

∂ν
· P T (u)v dvolg = 0, ∀v ∈ L∞ ∩H1/2(∂S,Rm)

⇔ P T (u)
∂ũ

∂ν
= 0 in D′(∂S).

(6)

Solutions to the last equation are of special geometric interest because they are strictly connected to
the so-called free boundary minimal surfaces, in the following sense.

Definition 1.2. We say that a map ũ ∈ C2(S,Rm) is a free boundary (branched) minimal immersion
with supporting manifold N if it is a harmonic map which is also conformal (with the possible
exception of finitely many points where dũ vanishes) and meets N orthogonally, i.e.

P T (u)
∂ũ

∂ν
= 0 on ∂S.

In the case S = D the following connection between 1
2 -harmonic maps u : S1 → N and free boundary

minimal disks is now a well-known fact (see e.g. [DaL15, MS15, DaL17] and Remark 3.3).

Proposition 1.3. The harmonic extension ũ of a 1
2 -harmonic map u ∈ H1/2(S1,N ) is conformal.

Geometrically, this means that u is the boundary of a free boundary (branched) minimal disk.

We point out that Proposition 1.3 has been at the origin of the study of 1
2 -harmonic maps.

In this paper we are going to investigate the regularity of 1
2 -harmonic maps u ∈ H1/2(∂S,N ).

Besides showing the Hölder continuity of such maps, we will illustrate how to bootstrap to higher
regularity. Precisely we will show the following.

Theorem 1.4. Let N ⊂ Rm be a Ck-smooth closed embedded manifold, with k ≥ 2, and let
u ∈ H1/2(∂S,N ) be 1

2 -harmonic. Then

u ∈
⋂

0<δ<1

Ck−1,δ(∂S,N ).

In particular, if N is C∞ then u ∈ C∞(∂S,N ).

The proof of Theorem 1.4 is rather technical and we defer it to the appendix.

We point out that one of the key steps to prove the regularity of 1
2 -harmonic maps is the representation

of the energy E(f ; g) as a sum of the fractional 1
2 -energies at each boundary component (according

to a suitable identification with S1), plus a quadratic term which is continuous in the Hs-topology,

for any s ∈ R. The identification of the energy of f̃ with a fractional energy on the boundary in the
case of the flat disk D is a well-known fact.

In the model case where S = At := Bt \B1, t > 1, we have the following decomposition.



4 FRANCESCA DA LIO AND ALESSANDRO PIGATI

Lemma 1.5. Let a, b ∈ H1/2(S1,Rm) and define f ∈ H1/2(∂At,Rm) by setting f(eiθ) := a(eiθ),

f(teiθ) := b(eiθ). Then the Dirichlet energy of the harmonic extension f̃ ∈ H1(At,Rm) is given by

1

2π

∫
At

∣∣∇f̃ ∣∣2 =
∑
n

|n| (|an|2 + |bn|2) +
|b0 − a0|2

log t

+
∑
n>0

n

(
4

t2n − 1
(|an|2 + |bn|2)−

8tn

t2n − 1
<(an · bn)

)
=

1

2π

(
‖(−∆)1/4a‖2L2(S1) + ‖(−∆)1/4b‖2L2(S1) + Bt((a, b), (a, b))

)
,

(7)

where Bt : D′(S1,Rm)2 ×D′(S1,Rm)2 → R is a symmetric bilinear functional.

By using the decomposition (7) we succeed in rewriting condition (6) in the form of a nonlocal linear
Schrödinger system with an antisymmetric potential, as it has been done in [DLR11, DLS17,
MS17] in the case of the flat disk.

We will also show that the conformality2 of the harmonic extension ũ is equivalent to criticality of E
with respect to variations of the conformal class of S. For instance, if S is diffeomorphic to an
annulus, then up to a conformal diffeomorphism we can assume that (S, g) = (At, gR2) for some
t > 0 (see Theorem A.1). In this case a variation of the conformal class corresponds to a variation of
the parameter t.

Theorem 1.6. Let a, b ∈ H1/2(S1,N ) and define u[t] ∈ H1/2(∂At,N ) by u[t](eiθ) := a(eiθ),
u[t](teiθ) := b(eiθ). Assume that u[t] is 1

2 -harmonic for the annulus (At, gR2). Then its harmonic
extension is conformal if and only if

d

dt
Et(u[t])

∣∣∣
t=t

= 0,

where Et is the 1
2 -energy for At.

We will extend Theorem 1.6 to the hyperbolic case where S is neither a disk nor an annulus (see
Theorem 3.4).

In the interesting special case where N is the boundary of a convex C∞-smooth domain Ω, we also
prove the following result.

Corollary 1.7. The harmonic extension ũ defines a conformal (branched) free boundary minimal

immersion ũ : (
◦
S, ∂S)→ (Ω, ∂Ω), with branch points only in

◦
S, if and only if u is a nontrivial critical

point of E(f ; g) with respect to the pair (f, g).3

In view of the results in this paper, it would be interesting to study the flow version of the energy
E(f ; g), where the evolution of the conformal class of g would be given by the lack of conformality
of ũ, in a similar way as for the Teichmüller harmonic map flow studied in [RT16]. This would
correspond to a Teichmüller 1

2 -harmonic flow.

This paper is organized as follows.

• Section 2 provides the decomposition of the 1
2 -energy (2) in terms of nonlocal operators defined on

∂S; we also obtain a similar decomposition for the related Dirichlet-to-Neumann operator.

2Conformality will mean weak conformality, i.e. at every point dũ either is a linear conformal map or vanishes.
3The meaning of criticality with respect to g will be specified in Section 3.
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• Section 3 establishes the criterion for the conformality of the harmonic extension f̃ , as well as
Corollary 1.7.

• In Section A we show a well-known uniformization theorem for compact annuli, exhibiting a
conformal equivalence which is smooth up to the boundary; this is needed for the construction
made in Section 2.

• Section B collects the definitions and basic facts concerning all the functional spaces involved in
the paper; in particular we show some useful results about the space Ḣ1/2(R).

• In Section C we recall some fundamental three-term commutator estimates, which were first
obtained in [DLR09], as well as a two-term commutator estimate due to Coifman–Rochberg–Weiss
from [CRW76].

• Section D details the proof of the Hölder continuity of a 1
2 -harmonic map u and uses localized

versions of the integrability by compensation effects recalled in Section C.

• In Section E we bootstrap the results of Section D to obtain higher regularity of u, i.e. Theorem
1.4, exploiting another two-term commutator.

Acknowledgements. The authors would like to thank Tristan Rivière for suggesting the investiga-
tion of the problem and for the helpful discussions.

2. Decomposition of the energy

The purpose of this section is to obtain the decomposition of the 1
2 -energy (2) in terms of nonlocal

operators defined on ∂S.

We will also show that the so-called Dirichlet-to-Neumann operator

H1/2(∂S,Rm)→ H−1/2(∂S,Rm), f 7→ ∂f̃

∂ν

can be represented as the sum of the usual fractional Laplacian at each boundary component and
a remainder B : D′(∂S,Rm) → C∞(∂S,Rm), which represents a sort of interaction between the
boundary data.

We will start from the model case of the flat annulus, where this decomposition is explicit.

2.1. The case of an annular domain. For a fixed t > 1, let At := Bt \B1 ⊂ C be the standard
annulus with the Euclidean metric.

Given f ∈ H1/2(∂At,Rm), we denote

a(eiθ) := f(eiθ), b(eiθ) := f(teiθ) ∈ H1/2(S1,Rm).

We use the notation (an)n∈Z and (bn)n∈Z for the Fourier coefficients of the two functions, namely

an :=
1

2π

∫ 2π

0
a(eiθ)e−inθ dθ, bn :=

1

2π

∫ 2π

0
b(eiθ)e−inθ dθ.

We observe that
∑

n∈Z 2π |n| |an|2 = ‖(−∆)1/4a‖2L2 and similarly for b.
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Given (a, b), (c, d) ∈ D′(S1,Rm)2 ×D′(S1,Rm)2 we define the following symmetric bilinear opera-
tor:

Bt((a, b), (c, d)) := 2π
(b0 − a0) · (d0 − c0)

log t

+
∑
n>0

8πn

t2n − 1
<(an · cn + bn · dn − tnan · dn − tnbn · cn).

(8)

Lemma 2.1. Bt is a sequentially continuous bilinear functional on D′(S1,Rm)2 ×D′(S1,Rm)2.

Proof. Assume a, b, c, d ∈ Hs(S1,Rm). Since t > 1 we have

|Bt((a, b), (c, d))|
2π

≤|b0 − a0| |d0 − c0|
log t

+
∑
n>0

4n

t2n − 1
(|an| |cn|+ |bn| |dn|)

+
∑
n>0

4ntn

t2n − 1
(|an| |dn|+ |bn| |cn|)(9)

.
∑
n≥0

(1 + n2)s(|an| |cn|+ |bn| |dn|+ |an| |dn|+ |bn| |cn|)

≤‖a‖Hs ‖c‖Hs + ‖b‖Hs ‖d‖Hs + ‖a‖Hs ‖d‖Hs + ‖b‖Hs ‖c‖Hs ,

thanks to the elementary estimate ntn

t2n−1 . n
2s and the Cauchy–Schwarz inequality (the implied

constants depend of course on s, t). Since D′(S1) =
⋃
s∈RH

s(S1), we get in particular that Bt is a

linear functional on D′(S1,Rm)2 ×D′(S1,Rm)2.

If (((ai, bi), (ci, di)))i∈N is a sequence converging to ((a, b), (c, d)) in this space, by the uniform bound-
edness principle (applied to the Fréchet space D(S1,Rm)) we deduce that the set {ai, bi, ci, di | i ∈ N}
is bounded in Hs+1(S1), for some real s.

By the compact embedding Hs+1(S1) ↪→ Hs(S1), any subsequence admits a further subsequence
converging in Hs(S1,Rm)2 ×Hs(S1,Rm)2, where we have already shown the continuity of Bt. This
shows that Bt((ai, bi), (ci, di))→ Bt((a, b), (c, d)). �

Lemma 2.2. For any f ∈ H1/2(∂At,Rm), the Dirichlet energy of its harmonic extension f̃ ∈
H1(At,Rm) is given by∫

At

∣∣∇f̃ ∣∣2 =2π
∑
n

|n| (|an|2 + |bn|2) + 2π
|b0 − a0|2

log t

+ 2π
∑
n>0

n

(
4

t2n − 1
(|an|2 + |bn|2)−

8tn

t2n − 1
<(an · bn)

)
=
∥∥(−∆)1/4a

∥∥2
L2(S1) +

∥∥(−∆)1/4b
∥∥2
L2(S1) + Bt((a, b), (a, b)).

(10)

Proof. One can check, e.g. by a density argument involving trigonometric polynomials, that the

harmonic extension f̃ is given by

(11) f̃(reiθ) = a0 +
b0 − a0

log t
log r +

∑
n6=0

tnbn − an
t2n − 1

rneinθ +
∑
n6=0

t2nan − tnbn
t2n − 1

r−neinθ.

Calling

c̃ =
b0 − a0

log t
, cn =

tnbn − an
t2n − 1

, c′n =
t2nan − tnbn
t2n − 1

,
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we have

∂f̃

∂r
(r, θ) = c̃r−1 +

∑
n6=0

n(cnr
n−1 − c′nr−n−1)einθ,

1

r

∂f̃

∂θ
=
∑
n6=0

in(cnr
n−1 + c′nr

−n−1)einθ.

(12)

Thus the Dirichlet energy of f̃ equals∫
At

∣∣∇f̃ ∣∣2 =2π |c̃|2 log t+ 2π
∑
n6=0

n
(
|cn|2 (t2n − 1)−

∣∣c′n∣∣2(t−2n − 1)
)

=2π
|b0 − a0|2

log t
+ 2π

∑
n 6=0

n

t2n − 1

(
|tnbn − an|2 + |tnan − bn|2

)
.

Since a−n = an and b−n = bn, we deduce∫
At

∣∣∇f̃ ∣∣2
2π

=
|b0 − a0|2

log t
+
∑
n 6=0

n

t2n − 1

(
(t2n + 1)(|an|2 + |bn|2)− 4tn<(an · bn)

)
=
|b0 − a0|2

log t
+
∑
n 6=0

|n| (|an|2 + |bn|2)

+
∑
n>0

n

(
4

t2n − 1
(|an|2 + |bn|2)−

8tn

t2n − 1
<(an · bn)

)
. �

Lemma 2.3. The normal derivatives on ∂B1 and ∂Bt are given by

(13)
∂f̃

∂ν
(eiθ) = (−∆)1/2a+Rt[a, b],

∂f̃

∂ν
(teiθ) = t−1(−∆)1/2b+ t−1Rt[b, a],

where Rt : D′(S1,Rm)2 → C∞(S1,Rm) is a sequentially continuous linear operator defined by

(14) Rt[a, b](eiθ) := −b0 − a0
log t

+
∑
n>0

2n

t2n − 1
(an − tnbn)einθ +

∑
n<0

2n

t2n − 1
(t2nan − tnbn)einθ.

Proof. Let α(eiθ) := ∂f̃
∂ν (eiθ) and β(eiθ) := ∂f̃

∂ν (teiθ). Given any h ∈ C∞(∂At,Rm), let c(eiθ) := h(eiθ)

and d(eiθ) := h(teiθ). Since f̃ is harmonic we get

2π
∑
n

αn · cn + 2πt
∑
n

βn · dn =

∫
∂At

∂f̃

∂ν
h =

∫
At

∇f̃ · ∇h̃

=

∫
S1

(−∆)1/4a(−∆)1/4c+

∫
S1

(−∆)1/4b(−∆)1/4d+ Bt((a, b), (c, d)).

From this equation we easily get (13), with Rt[a, b] given by (14). We observe that the formula (14)
can also be obtained directly from (12). The continuity of Rt is proved by arguing as in the proof of
Lemma 2.1. �

Remark 2.4. The symmetry Bt((a, b), (c, d)) = Bt((b, a), (d, c)), as well as the fact that the formulas

for t∂f̃∂ν (teiθ) and ∂f̃
∂ν (eiθ) can be obtained from each other by exchanging a and b, are not surprising
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in view of the existence of the conformal map

At → At, z 7→ tz

|z|2
,

which exchanges the two boundary components.

2.2. General compact surfaces with boundary. The boundary ∂S is the disjoint union of
finitely many circles diffeomorphic to S1:

∂S =

k⊔
j=1

C(j).

We can find, for each j, a smooth map

φj : [0, 1]× S1 → S

with the following properties:

• φj is a diffeomorphism onto its image;

• φj({0} × S1) = C(j);

• φj([0, 1]× S1) ∩ φj′([0, 1]× S1) = ∅ for any j 6= j′.

Applying Theorem A.1 to the annulus

A(j) := φj([0, 1]× S1),

we can find a conformal transformation ψj : A(j) → Atj (where Atj := Btj \B1 ⊂ C, equipped with

the flat metric) such that ψj(C
(j)) = ∂B1. Finally, we call

S′ := S \
k⊔
j=1

φj([0, 1)× S1).

The picture illustrates our decomposition of S.

At1

A(1)←−
ψ1

C(1)

At2

−→
ψ2A(2)

C(2)

We notice that S′ is still a smooth surface with boundary

∂S′ =
k⊔
j=1

φj({1} × S1) =
k⊔
j=1

ψ−1j (∂Btj ).

Lemma 2.5. For any f ∈ H1/2(∂S,N ) the 1
2 -energy E(f ; g) admits the decomposition

E(f ; g) =
∑
j

‖fj‖2H1/2 + BS((fj)
k
j=1, (fj)

k
j=1),
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where fj(e
iθ) := f ◦ ψ−1j (eiθ) and BS : D′(S1,Rm)k ×D′(S1,Rm)k → R is a sequentially continuous

symmetric bilinear functional.

Proof. Let G ∈ C∞((
◦
S×S) \∆) be the Green function for the Dirichlet problem (see e.g. [Aub98]),

satisfying for each x ∈
◦
S {

−∆gG(x, ·) = δx on S

G(x, ·) = 0 on ∂S

and let H ∈ C∞(
◦
S× ∂S) which is defined, for any fixed x ∈

◦
S, by the formula H(x, ·) := − ∂

∂νG(x, ·).
For any f ∈ H1/2(∂S,Rm) and any x ∈

◦
S, the harmonic extension is given by the formula

f̃(x) =

∫
∂S
H(x, y)f(y) dvolg(y).

Now {H(x, ·) | x ∈ S′} is a compact subset of C∞(∂S) and in particular is bounded in Ck(∂S) for
all k ≥ 0. The same holds for the derivatives of any order in x. Therefore the map

D′(∂S,Rm)→ C∞(S′,Rm), f 7→ f̃
∣∣∣
S′

given by the above formula is sequentially continuous. In particular, (f, h) 7→
∫
S′

〈
∇f̃ ;∇h̃

〉
dvolg

defines a sequentially continuous symmetric bilinear operator on D′(∂S,Rm)×D′(∂S,Rm).

Moreover, for any j ∈ {1, . . . , k}, let

κj(e
iθ) := f̃ ◦ ψ−1j (tje

iθ) ∈ H1/2(S1,Rm).

By conformal invariance we have ∆(f̃ ◦ ψ−1j ) = 0 on Atj and∫
A(j)

∣∣∇f̃ ∣∣2 dvolg =

∫
Atj

∣∣∇(f̃ ◦ ψ−1j )
∣∣2 =

∥∥(−∆)1/4fj
∥∥2
L2 +

∥∥(−∆)1/4χj
∥∥2
L2

+ Btj ((fj , κj), (fj , κj))

by Lemma 2.2. We remark that f 7→ κj is sequentially continuous as a linear map D′(∂S,Rm)→
C∞(S1,Rm). Finally, we can write

E(f ; g) =
k∑
j=1

∫
A(j)

∣∣∇f̃ ∣∣2 dvolg +

∫
S′

∣∣∇f̃ ∣∣2 dvolg =
k∑
j=1

∥∥(−∆)1/4fj
∥∥2
L2 + BS((fj), (fj)),

where for any f, h ∈ H1/2(∂S,Rm) we let

BS((fj), (hj)) :=

k∑
j=1

∫
S1

(−∆)1/4κj(−∆)1/4ξj +

k∑
j=1

Btj ((fj , κj), (hj , ξj))

+

∫
S′

〈
∇f̃ ;∇h̃

〉
dvolg,

with hj(e
iθ) := h ◦ ψ−1j (eiθ) and ξj(e

iθ) := h̃ ◦ ψ−1j (tje
iθ). �

Lemma 2.6. For any ` = 1, . . . , k, the normal derivative on C(`) is given by

∂f̃

∂ν
= eλ`((−∆)1/2fj) ◦ ψ` + eλ`R`((fj)

k
j=1) ◦ ψ`,

where e2λ` is defined by g = e2λ`ψ∗` (gR2) and R` : D′(S1,Rm)k → C∞(S1,Rm) is a sequentially
continuous linear operator.
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Proof. Indeed, for any ϕ ∈ C∞(S,Rm) supported in φ`([0, 1)× S1),∫
C(`)

eλ`ϕ · ((−∆)1/2f`) ◦ ψ` dvolg =

∫
S1
ϕ ◦ ψ−1` · (−∆)1/2f`

=

∫
∂Atj

ϕ ◦ ψ−1` ·
∂(f̃ ◦ ψ−1` )

∂ν
−
∫
S1
ϕ ◦ ψ−1` ·Rt` [f`, κ`]

=

∫
At`

〈
∇(ϕ ◦ ψ−1` );∇(f̃ ◦ ψ−1` )

〉
−
∫
C(`)

eλ`ϕ ·Rt` [f`, κ`] ◦ ψ` dvolg,

where the operator Rt` is provided by (13). But, by conformality of ψ`,∫
At`

〈
∇(ϕ ◦ ψ−1` );∇(f̃ ◦ ψ−1` )

〉
=

∫
A(`)

〈
∇ϕ;∇f̃

〉
dvolg =

∫
S

〈
∇ϕ;∇f̃

〉
dvolg =

∫
∂S
ϕ · ∂f̃

∂ν
dvolg

and thus we can let R`((fj)
k
j=1) := Rt` [f`, κ`]. �

3. Conformality of the harmonic extension

This section is devoted to show that, if the energy of the harmonic extension ũ is also critical with
respect to variations of the conformal class, then ũ is conformal. We will use the Teichmüller space
T (S) of S to describe such variations. Throughout the section we will assume that S is orientable
(actually this hypothesis can be dropped: one can repeat the same theory on the two-sheeted oriented

cover S̃, restricting to equivariant metrics and variations).

We will start from the easier case of the annulus, which can be treated in an elementary fashion (due
to the simple explicit form of its Teichmüller space).

Remark 3.1. In the disk case, i.e. S = D, conformality holds automatically for 1
2 -harmonic maps

(and indeed in this case T (S) is trivial): see Remark 3.3 below.

Recall that the disk and the annulus have Euler characteristic 1 and 0, respectively. If the surface S
has a different topology, then its Euler characteristic is

χ(S) = 2− 2g − k < 0

(with an abuse of notation, we denote by g also the genus of S, while k ≥ 1 is the number of
boundary components). Thus S is intrinsically hyperbolic, namely by Gauss–Bonnet theorem any
constant curvature metric such that ∂S is totally geodesic must have negative curvature. In this case
T (S) does not possess an immediate presentation as for the annulus, although it is well known that
it is diffeomorphic to R6g+3k−6 (and can be parametrized by means of the so-called Fenchel–Nielsen
coordinates). The precise definition of T (S) is given below.

3.1. The annular case. If S is diffeomorphic to an annulus, then up to a conformal diffeomorphism
we can assume that (S, g) = (At, gR2) for some t > 0, thanks to Theorem A.1. A variation of
the conformal class (or, more precisely, the conformal class up to diffeomorphisms isotopic to the
identity) corresponds to a variation of the parameter t.

For any a, b ∈ H1/2(S1,Rm), we define u[t] ∈ H1/2(∂At,Rm) by u[t](eiθ) := a(eiθ), u[t](teiθ) := b(eiθ).
We will denote by ũ[t] the harmonic extension of u[t].
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Lemma 3.2. For any a, b ∈ H1(S1,Rm) we have

d

dt
Et(u[t]) =

∫
∂Bt

(
1

t2

∣∣∣∣∂ũ∂θ
∣∣∣∣2 − ∣∣∣∣∂ũ∂r

∣∣∣∣2
)
.

Proof. We can assume a, b ∈ C∞(S1,Rm) (by a density argument, using the fact that Et(u[t])

depends smoothly on (t, a, b) ∈ (1,∞) × H1/2(S1) × H1/2(S1), as can be seen from the explicit
formula (7)). So ũ[t](z) defines a smooth function on the set

{(t, z) ∈ (1,∞)× C : 1 ≤ |z| ≤ t} .

By the divergence theorem we have

d

dt

(∫
At

|∇ũ[t]|2
)

=

∫
∂Bt

|∇ũ[t]|2 + 2

∫
At

〈
∇ũ[t];∇

(
dũ[s]

ds

∣∣∣∣
s=t

)〉
=

∫
∂Bt

(∣∣∣∣∂ũ[t]

∂r

∣∣∣∣2 +
1

t2

∣∣∣∣∂ũ[t]

∂θ

∣∣∣∣2
)

+ 2

∫
∂Bt

∂ũ[t]

∂r
·
(
dũ[s]

ds

∣∣∣∣
s=t

)
(as dũ

ds = 0 on ∂B1). Differentiating the identity ũ[s](seiθ) = b(eiθ) in s we get(
dũ[s]

ds

)
(seiθ)

∣∣∣∣
s=t

= −∂ũ[t]

∂r
(teiθ).

Hence, combining these identities,

d

dt
Et(u[t]) =

∫
∂Bt

(∣∣∣∣∂ũ[t]

∂r

∣∣∣∣2 +
1

t2

∣∣∣∣∂ũ[t]

∂θ

∣∣∣∣2
)
− 2

∫
∂Bt

∣∣∣∣∂ũ[t]

∂r

∣∣∣∣2 . �

Proof of Theorem 1.6. We introduce the Hopf differential

h(z) := H(z) dz ⊗ dz, H(z) :=
∂ũ

∂z
· ∂ũ
∂z

=
1

4

(∣∣∣∣∂ũ∂x
∣∣∣∣2 − ∣∣∣∣∂ũ∂y

∣∣∣∣2 − 2i
∂ũ

∂x
· ∂ũ
∂y

)
.

A well-known straightforward computation shows that h is a holomorphic quadratic differential, i.e.
H is holomorphic, vanishing identically if and only if ũ is (weakly) conformal. From Theorem 1.4 it

follows in particular that u ∈ C1(∂At). Since 0 = P T (u) ∂ũ∂r and 0 = PN (u) ∂u∂θ = PN (u) ∂ũ∂θ on ∂At,
we have that

∂ũ

∂r
· ∂ũ
∂θ

= 0 on ∂At.

By the maximum principle we deduce that, for any z = reiθ ∈
◦
At,

−2=((reiθ)2H(reiθ)) = r
∂ũ

∂r
(reiθ) · ∂ũ

∂θ
(reiθ) = 0,

i.e. the harmonic function =(z2H(z)) vanishes identically. Since z2H(z) is holomorphic, it must
coincide with a real constant c. By Lemma 3.2, c = 0 precisely when d

dtEt(u[t])
∣∣
t=t

= 0, since

−4c = −4<((reiθ)2H(reiθ)) =

∣∣∣∣∂ũ∂θ (reiθ)

∣∣∣∣2 − r2 ∣∣∣∣∂ũ∂r (reiθ)

∣∣∣∣2 . �

Remark 3.3. In the disk case we get z2H(z) = c for some real c, hence c = 0 (being H bounded
near the origin) and H(z) = 0.
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3.2. The hyperbolic case. Assume now that χ(S) < 0 (i.e. S is not a disk nor an annulus) and
N is C∞-smooth. Let M(S) be the space of all Riemannian metrics on S and P(S) the space of all
smooth positive functions S → R. M(S) is an open subset of the Fréchet space Γ(S2S) (smooth
symmetric covariant 2-tensors on S). The quotient

C(S) :=M(S)/P(S)

is the set of conformal classes on S. Moreover, let M−1(S) ⊆M(S) be the subset of metrics having
constant curvature −1 and making ∂S totally geodesic. Every equivalence class [g] ∈ C(S) has
exactly one representative e2λg ∈M−1(S), λ ∈ C∞(S) being a solution of Liouville’s equation{

∆λ = K + e2λ on S
∂λ
∂ν = κ on ∂S,

where K is the Gaussian curvature of g and κ is the geodesic curvature of the boundary (i.e.
κ = 〈∇γ̇ γ̇, ν〉 if ∂S is locally parametrized by a unit-speed curve γ). The map

υ :M(S)→M−1(S), υ(g) := e2λg

is C∞-smooth (as a map from M(S) into itself).

In order to have a finite-dimensional space, we quotient C(S) by the (right) action of the group
D0(S) of diffeomorphisms isotopic to the identity. The set

T (S) := C(S)/D0(S)

is the Teichmüller space of S. It can be given a canonical structure of (6g + 3k − 6)-dimensional
differentiable manifold. The resulting map π :M(S)→ T (S) is smooth and admits locally a smooth
section taking values into M−1(S).

For the proofs of these facts, we refer the reader to [FT84], where the Teichmüller theory for closed
surfaces is developed. See also [DHT92], which illustrates the necessary modifications for surfaces
with boundary (using the convenient device of the Schottky double).

Theorem 3.4. Let (S, g) be a Riemannian surface with ∂S 6= ∅, χ(S) < 0 and let φ : U →M(S)

be a local smooth section of π through g (i.e. π(g) ∈ U and φ(π(g)) = g). If u ∈ H1/2(∂S,N ) is
1
2 -harmonic with respect to g, then ũ : (S, g)→ Rm is conformal if and only if π(g) is a critical point
for the map

p 7→ E(u;φ(p)).

We remark that the harmonic extension ũp ∈ H1(S) of u ∈ H1/2(∂S) with respect to φ(p) depends

on the couple (u, p) ∈ H1/2(∂S,Rm)× U in a smooth fashion: this follows from the inverse function
theorem applied to the map

H1(S)× U → H−1(S)×H1/2(∂S)× U, (w, p) 7→ (−∆φ(p)w,w
∣∣
∂S
, p).

In particular, the function (u, p) 7→ E(u;φ(p)) is smooth as well.

Proof. (⇐) Replacing g with υ(g) and φ with υ ◦ φ, we can assume that g ∈M−1(S) and φ(U) ⊆
M−1(S): indeed, thanks to the conformal invariance of the Dirichlet energy, E(w; g′) = E(w; υ(g′))

for any w ∈ H1/2(∂S,Rm) and any metric g′, so u is still 1
2 -harmonic with respect to υ(g) and

π(υ(g)) = π(g) is still critical for p 7→ E(u; υ ◦ φ(p)).

The Hopf differential h of the map ũ, defined in any local conformal chart (for g) by the formula

h(z) := H(z) dz ⊗ dz, H(z) :=
∂ũ

∂z
· ∂ũ
∂z

=
1

4

(∣∣∣∣∂ũ∂x
∣∣∣∣2 − ∣∣∣∣∂ũ∂y

∣∣∣∣2 − 2i
∂ũ

∂x
· ∂ũ
∂y

)
,



FREE BOUNDARY MINIMAL SURFACES: A NONLOCAL APPROACH 13

is a globally defined holomorphic quadratic differential (i.e. H is holomorphic in any conformal
chart), as a consequence of the fact that ∆gũ = 0. The conformality of ũ is equivalent to h = 0.

Moreover, h is real at the boundary ∂S, meaning that in any local conformal chart (V, z) mapping
V ∩ ∂S into the real line {=(z) = 0} we have

∂ũ

∂x
· ∂ũ
∂y

= 0

on the real line. Indeed, at such points ∂ũ
∂x ∈ Tu(z)N , while ∂ũ

∂y ⊥ Tu(z)N by 1
2 -harmonicity (observe

that by the preceding regularity result we have ũ ∈ C∞ up to the boundary).

Let now v := dπg[<(h)]. Since g ∈M−1(S), the symmetric tensor dφπ(g)[v] can be decomposed as

(15) dφπ(g)[v] = <(q) + LXg,

where q is a holomorphic quadratic differential which is real at ∂S, while LXg is the Lie derivative of

g with respect to a vector field X satisfying X
∣∣∣
∂S
‖ ∂S (see [FT84] for the corresponding statement

for closed surfaces). The tensor LXg belongs to the kernel of dπg, as X generates a one-parameter
subgroup of D0. Thus, using π ◦ φ = idU ,

dπg[<(h)] = v = dπg[dφπ(g)[v]] = dπg[<(q) + LXg] = dπg[<(q)].

But T (S) is built precisely in such a way that the map dπg restricts to a bijection from the space of
such real quadratic differentials to Tπ(g)T (S). We deduce that <(h) = <(q).

We also remark that dE(u; ·)g[LXg] = 0: indeed, calling ΦX
t the flow generated by X, we have

E(u; (ΦX
t )∗g) = E(u ◦ ΦX

−t; g)

and differentiation at t = 0 gives

dE(u; ·)g[LXg] = −2

∫
∂S

∂ũ

∂ν
· du[X] dvolg = 0,

by characterization (6) of 1
2 -harmonicity. From (15) we finally deduce that

0 =dE(u;φ(·))π(g)[v] = dE(u; ·)g[<(q) + LXg] = dE(u; ·)g[<(h)]

=−
∫
S
<(h)[∇ũ;∇ũ] dvolg +

1

2

∫
S
|∇ũ|2g trg(<(h)) dvolg

(using the fact that the variation of ũ gives no contribution, thanks to harmonicity). But, as is
readily seen in conformal coordinates,

trg(<(h)) = 0, <(h)[∇ũ;∇ũ] = 2 |<(h)|2g .

We infer that <(h) = 0, which implies h = 0.

(⇒) Conversely, for any v ∈ Tπ(g)U , we can write (assuming again φ = υ ◦ φ)

dφπ(g)[v] = <(q) + LXg

for suitable q and X as before. We have

dE(u;φ(·))π(g)[v] = dE(u; ·)g[<(q) + LXg] = dE(u; ·)g[<(q)]

= −
∫
S
<(q)[∇ũ;∇ũ] dvolg +

1

2

∫
S
|∇ũ|2g trg(<(q)) dvolg.

Again we have trg(<(q)) = 0, while the conformality of ũ gives ∂ũ
∂z ·

∂ũ
∂z = 0 in conformal coordinates,

hence <(q)[∇ũ;∇ũ] = 0 as well. �
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Proof of Corollary 1.7. In view of the preceding results, it suffices to show that, for a nontrivial
1
2 -harmonic map u with conformal ũ, we have ũ(

◦
S) ⊆ Ω and ∇ũ 6= 0 at the boundary ∂S. Recall

that ũ is C∞-smooth up to the boundary of S.

Since ũ is nontrivial we have ∂ũ
∂ν 6= 0 at some x′ ∈ ∂S (being

∫
S |∇ũ|

2 dvolg =
∫
∂S ũ ·

∂ũ
∂ν dvolg).

Combining this with the condition P T (u)∂ũ∂ν = 0, we get ũ(x′′) ∈ Ω for at least an x′′ ∈
◦
S.

Fix now any point p 6∈ Ω. By convexity of Ω, there exists an affine map F : Rm → R such that
F (p) ≤ 0 and F (Ω) ⊆ (0,∞). Since F ◦ u takes nonnegative values (as u takes values in ∂Ω) and

F ◦ ũ(x′′) > 0, by the strong maximum principle we get F ◦ ũ > 0 on
◦
S. Hence, ũ(

◦
S) ⊆ Ω.

Finally, if x ∈ ∂S we can let p := u(x): then Hopf’s lemma gives ∂(F◦ũ)
∂ν (x) < 0. In particular, ∇ũ

never vanishes at ∂S. �

Appendix A. Uniformization theorem for annuli with boundary

Theorem A.1. Let (A, g) be a compact Riemannian two-dimensional manifold with boundary,
diffeomorphic to [0, 1]× S1. Then there exists some t > 1 such that (A, g) is conformally equivalent
to the standard annulus At := Bt \B1 ⊂ C.

Proof. We fix a diffeomorphism φ : [0, 1]×S1 → A and we orient A by declaring that φ is orientation-
preserving. We call γj : S1 → ∂A the restrictions γj := φ(j, ·), for j = 0, 1, so that γ1 preserves the
orientation while γ0 reverses it. Let u ∈ C∞(A) be the unique harmonic function which equals j on

γj(S1) (for j = 0, 1). Denoting by
◦
A the interior of A, we remark that by the maximum principle

0 < u < 1 on
◦
A and by Hopf’s lemma ∗du[γ̇j ] > 0 for j = 0, 1. Recall that, in local conformal

coordinates (x, y), ∗du = −∂u
∂ydx+ ∂u

∂xdy.

Let κ :=
∫
γ0
∗du > 0. Since ∗du is closed,

∫
γ ∗du ∈ κZ for any closed, piecewise smooth curve γ

taking values in A. Thus, we can define v ∈ C∞(A,R/κZ) by the formula v(p) :=
∫
α ∗du, where α

is any piecewise smooth curve joining γ0(0) to p. Now the map

ψ : A→ C, ψ := exp

(
2π

κ
(u+ iv)

)
is well defined and smooth.

The metric g, together with the orientation, induces a complex structure on A. As v locally
lifts to a primitive of ∗du, we have dv = ∗du. Hence, in local conformal coordinates, the map
u + iv : A → C/iκZ satisfies the Cauchy–Riemann equations and is thus holomorphic; so ψ is
holomorphic as well. We now prove that ψ is a diffeomorphism onto its image. Since ∗du[γ̇i] > 0,

the compact set F := {p ∈ A : dψ(p) = 0} is contained in
◦
A. As ψ is holomorphic, F is finite. We

have F ′ := ψ−1(ψ(F )) ⊆
◦
A (as ψ(∂A) ∩ ψ(

◦
A) = ∅), so by holomorphicity F ′ is finite as well.

It is easy to check that ψ
∣∣∣
A\F ′

: A \ F ′ → ψ(A) \ ψ(F ) is a covering (indeed, any z ∈ ψ(A) \ ψ(F )

has finitely many preimages p1, . . . , pk ∈ A \F ′; we can find open disjoint neighborhoods Uj ⊆ A \F ′
of pj which are all mapped diffeomorphically onto some neighborhood V of z; up to replacing V
with V \ ψ(A \

⊔
j Uj) and shrinking each Uj accordingly, V is evenly covered by

⊔
j Uj). But ψ is

injective on ∂A ⊆ A \ F ′, so ψ
∣∣∣
A\F ′

is injective and hence a diffeomorphism onto its image.

As ψ is holomorphic, ψ cannot be injective in any punctured neighborhood of any point in F .
It follows that F = ∅, thus also F ′ = ∅. Finally, calling t := exp

(
2π
κ

)
, we have ψ(A) ⊆ At and
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ψ(∂A) = ∂At. As ψ(
◦
A) = ψ(A) ∩

◦
At, ψ(

◦
A) is both open and closed in

◦
At, so by connectedness it

follows that ψ : A→ At is surjective. The map ψ provides the desired conformal equivalence. �

Appendix B. Functional spaces

In this section we recall the definition of the functional spaces used in the paper, as well as some
of their main properties and some key facts concerning the so-called Littlewood–Paley dyadic
decomposition.

We denote respectively by S(R) and S ′(R) the spaces of (real or complex) Schwartz functions
and tempered distributions. All the functional spaces used in this paper should be understood
as subspaces of S ′(R). Given a function ϕ ∈ S(R), we denote either by ϕ̂ or by Fϕ the Fourier
transform of ϕ, i.e.

ϕ̂(ξ) = Fϕ(ξ) =

∫
R
v(x)e−2πiξx dx,

while if v ∈ S ′(R) we define v̂ = Fv ∈ S ′(R) by 〈v̂, ϕ〉 := 〈v, ϕ̂〉.

We recall the definition of the inhomogeneous fractional Sobolev (Bessel potential) spaces: for a real
s and 1 < p <∞ we let

Hs,p(R) :=
{
v ∈ S ′(R) : ‖v‖Hs,p :=

∥∥F−1[(1 + 4π2|ξ|2)s/2Fv]
∥∥
Lp
<∞

}
.

Observe that Hs,p(R) is stable under multiplication by Schwartz functions, i.e. if v ∈ Hs,p(R) and
ψ ∈ S(R) then vψ ∈ Hs,p(R) (see e.g. the proof of [GS12]).

We also recall the definition of the homogeneous fractional Sobolev spaces that will be used in the
paper, namely Ḣ1/2(R) and Ḣ−1/2(R):

Ḣ1/2(R) :=

{
v ∈ L2

loc(R) : ‖v‖2
Ḣ1/2 :=

∫∫
R2

|v(x)− v(y)|2

|x− y|2
dx dy <∞

}
,

Ḣ−1/2(R) :=

{
v ∈ S ′(R) : v̂ ∈ L2

loc(R) and

∫
R
|ξ|−1 |v̂(ξ)|2 dξ <∞

}
.

We remark that Ḣ1/2(R) is naturally a subspace of S ′(R), although ‖·‖Ḣ1/2 is only a seminorm
(which vanishes on constant functions).

We recall that, given v ∈ Ḣ1/2(R), we always have v̂ ∈ L2
loc(R \ {0}) and moreover in D′(R \ {0}) we

can identify the distribution |ξ|1/2v̂ with an L2(R) function (which we continue to denote, by abuse

of notation, with |ξ|1/2v̂) with ∫
R
|ξ| |v̂(ξ)|2 dξ = c ‖v‖2

Ḣ1/2(16)

for some constant c > 0 (see e.g. the proof of [DNPV12]).

We list below some useful elementary results concerning Ḣ1/2(R).

Lemma B.1. Given v ∈ Ḣ1/2(R), for any j ≥ 0 it holds

‖v‖L2(B(0,2j)) . 2j/2
∣∣(v)B(0,1)

∣∣+ (j + 1)2j/2 ‖v‖Ḣ1/2 .

Proof. We notice that, for j ≥ 0,∥∥v − (v)B(0,2j)

∥∥2
L2(B(0,2j))

. 2−j
∫∫

B(0,2j)2
|v(x)− v(y)|2 . 2j

∫∫
B(0,2j)2

|v(x)− v(y)|2

|x− y|2
,
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therefore
∥∥v − (v)B(0,2j)

∥∥
L2(B(0,2j))

. 2j/2 ‖v‖Ḣ1/2 .

Similarly for j ≥ 1∣∣(v)B(0,2j−1) − (v)B(0,2j)

∣∣ . 2−j
∫
B(0,2j)

∣∣v − (v)B(0,2j)

∣∣ . ‖v‖Ḣ1/2 .

The desired inequality follows from these estimates and

‖v‖L2(B(0,2j)) ≤
∥∥v − (v)B(0,2j)

∥∥
L2(B(0,2j))

+ 2j/2
j∑
`=1

∣∣(v)B(0,2`−1) − (v)B(0,2`)

∣∣+ 2j/2
∣∣(v)B(0,1)

∣∣ . �
Lemma B.2. Given v ∈ Ḣ1/2(R), there exists a sequence vk ∈ S(R), with v̂k ∈ C∞c (R \ {0}),4 and
a sequence ck ∈ R such that

‖v − (vk + ck)‖Ḣ1/2 = ‖v − vk‖Ḣ1/2 → 0, vk + ck
∗
⇀ v in S ′(R),

‖v − (vk + ck)‖L2(B(0,2j)) . (j + 1)2j/2 ‖v − (vk + ck)‖Ḣ1/2 .

Proof. Fix χ ∈ C∞c (R) with 1B(0,1/2) ≤ χ ≤ 1B(0,1). As observed above, the function

wk := (χ(2−k·)− χ(2k·))v̂

belongs to L2(R), is supported in the annulus {2−k−1 ≤ |ξ| ≤ 2k} and verifies
∫
|ξ| |wk(ξ)|2 dξ <

∞. We can find vk ∈ S(R) with v̂k ∈ C∞c (R \ {0}) and
∫
|ξ| |wk − v̂k|2 (ξ) dξ ≤ 2−k. Since∫

R\{0} |ξ| |v̂ − wk|
2 (ξ) dξ → 0, we get

‖v − vk‖2Ḣ1/2 '
∫
R\{0}

|ξ| |v̂ − v̂k|2 (ξ) dξ → 0.

We now choose ck in such a way that (vk + ck)B(0,1) = (v)B(0,1). The last part of the claim follows

from Lemma B.1 and the convergence vk + ck
∗
⇀ v is an immediate consequence. �

Remark B.3. If v lies also in L∞(R), we can also ensure that ‖vk‖L∞ , |ck| . ‖v‖L∞ , with vk+ck → v

a.e. Indeed, F−1(χ(2−k·)− χ(2k·)) is bounded in L1(R), so ‖ qwk‖L∞ . ‖v‖L∞ ; moreover, vk can be
chosen arbitrarily close to qwk in L∞(R). Since vk+ck → v in L2

loc(R), we can ensure a.e. convergence
by passing to a subsequence.

We also define the Hardy space H1(R) as

H1(R) :=
{
v ∈ L1(R) : sup

t>0
|ϕt ∗ v| (x) ∈ L1(R)

}
,

where ϕ ∈ S(R) is an arbitrary function such that
∫
ϕ 6= 0 and ϕt(y) := t−1ϕ(t−1y). This definition

does not depend on the choice of ϕ (for this and many useful characterizations of H1(R), we refer
the reader to [Gra14M] and [Ste93]).

Finally we define the Lorentz spaces L2,1(R) and L2,∞(R):

L2,1(R) :=
{
v ∈ L1

loc(R) :

∫ ∞
0
L1({|f | > t})1/2 dt <∞

}
,

L2,∞(R) :=
{
v ∈ L1

loc(R) : sup
t>0

tL1({|f | > t})1/2 <∞
}
,

4With abuse of notation, we denote by C∞c (R \ {0}) the space of those functions in C∞c (R) which are supported in
R \ {0} .
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where L1 denotes the Lebesgue measure on R. These are Banach spaces with the norms

‖v‖L2,1 :=

∫ ∞
0

t−1/2

(
sup

t≤L1(E)<∞
−
∫
E
|v|

)
dt, ‖v‖L2,∞ := sup

0<L1(E)<∞
L1(E)−1/2

∫
E
|v|

and L2,∞(R) is the dual of L2,1(R): see e.g. [Gra14C] and [Gra14C].

B.1. Products, fractional Laplacian and Hilbert–Riesz transform. We fix a nonnegative
bump function ρ ∈ C∞c (R) with

∫
ρ = 1. Given v, w ∈ S ′(R), we define their product

vw := lim
ε→0

(ρε ∗ v)(ρε ∗ w)

as a limit in S ′(R), provided that it exists. Notice that (ρε ∗ v)(ρε ∗ w) ∈ C∞ ∩ S ′(R). In general,
this limit could fail to exist or could depend on ρ. In all the instances appearing in this paper, we
are implicitly claiming that the product is defined, is associative and is independent of ρ.

From the definition of Ḣ1/2(R) it easily follows that Ḣ1/2 ∩ L∞(R) is an algebra, i.e. it is closed
under the product: more precisely,

‖vw‖Ḣ1/2 . ‖v‖Ḣ1/2 ‖w‖L∞ + ‖v‖L∞ ‖w‖Ḣ1/2 , ‖vw‖L∞ ≤ ‖v‖L∞ ‖w‖L∞

whenever v, w ∈ Ḣ1/2 ∩ L∞(R). Using this and the obvious inclusion S(R) ⊆ Ḣ1/2 ∩ L∞(R), as

well as (16), one checks that the product vw can always be formed when v ∈ Ḣ−1/2(R) and

w ∈ Ḣ1/2 ∩ L∞(R).

Moreover, for any real s, we define the fractional Laplacian (−∆)s/2 as

(−∆)s/2v := lim
ε→0
F−1[(ε2 + 4π2 |ξ|2)s/2Fv],

provided that the limit exists in S ′(R); in other words, we approximate the fractional Laplacian by
means of Bessel potentials. We recall some properties of the fractional Laplacian for the values of s
mostly used in the paper, namely s = ±1

4 .

Clearly, (−∆)1/4 maps L2(R) isomorphically onto Ḣ−1/2(R), with inverse (−∆)−1/4. The following
statement is less obvious.

Lemma B.4. If v ∈ Ḣ1/2(R), then (−∆)1/4v exists, lies in L2(R) and is given by

(−∆)1/4v = F−1
(

(2π |ξ|)1/2v̂
)
,

where we denote by (2π |ξ|)1/2v̂ the function in L2(R) agreeing with the corresponding distribution
on R \ {0}.

Proof. We denote by w the function in L2(R) which coincides with (2π |ξ|)1/2v̂ in D′(R \ {0}). We

observe that (ε2 + 4π2ξ2)1/4 = ε1/2 + ξ2

2

∫ 1
0 4π2t(ε2 + 4π2t2ξ2)−3/4 dt, with the second term vanishing

for ξ = 0. Using Lemma B.2 and (16) we get

(ε2 + 4π2ξ2)1/4v̂ = ε1/2v̂ + lim
k→∞

(
ξ2

2

∫ 1

0
4π2t(ε2 + 4π2t2ξ2)−3/4 dt

)
(v̂k + ĉk)

= ε1/2v̂ +

(∫ 1

0

t

2
(2π |ξ|)3/2(ε2 + 4π2t2ξ2)−3/4 dt

)
w.

Finally, ε1/2v̂
∗
⇀ 0 in S ′(R) and the nonnegative integral converges to 1R\{0} from below. �
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A similar proof shows that (−∆)1/2v = F−1(2π |ξ| v̂), so (−∆)1/2v = (−∆)1/4(−∆)1/4v.

One has also the following integral representation for (−∆)1/4v.

Lemma B.5. For all v ∈ Ḣ1/2(R) and some constant c > 0 (independent of v) we have

(−∆)1/4v(x) = c lim
ε→0

∫
R\B(x,ε)

v(x)− v(y)

|x− y|3/2
dy in L2(R).

Proof. Let wε(x) :=
∫
R\B(x,ε)

v(x)−v(y)
|x−y|3/2

dy (which lies in S ′(R) by Lemma B.1) and take ϕ ∈ S(R).

Fubini’s theorem gives

〈ŵε, ϕ〉 = 〈wε, ϕ̂〉 =

∫∫
R×(R\B(0,ε))

v(x)− v(x+ h)

|h|3/2
ϕ̂(x) dx dh

=

∫∫
R×(R\B(0,ε))

v(x)(ϕ̂(x)− ϕ̂(x− h))

|h|3/2
dx dh =

∫
R\B(0,ε)

〈
v̂, (1− e2πihx)ϕ(x)

〉
|h|3/2

dh.

Since (1− e2πihx)ϕ(x) vanishes at 0, Lemmas B.2 and B.4 show that〈
v̂, (1− e2πihx)ϕ(x)

〉
= lim

k→∞

∫
|x|1/2 v̂k(x)

1− e2πihx

|x|1/2
ϕ(x) dx =

∫
F((−∆)1/4v)

1− e2πihx

(2π |x|)1/2
ϕ(x) dx.

We conclude that

ŵε(x) = F((−∆)1/4v)(x)

∫ ∞
ε

2− 2 cos(2πhx)

h3/2(2π |x|)1/2
dh

and, for x 6= 0, the last integral equals
∫∞
ε|x|

2−2 cos(2πt)
(2π)1/2t3/2

dt, which converges to some positive constant

from below, as ε→ 0. �

As for the formal inverse, the Riesz potential operator (−∆)−1/4, notice that F−1(|ξ|−1/2) = c |x|−1/2

for some c ∈ R (indeed, |x|−1/2 is the only −1
2 -homogeneous tempered distribution up to multiples,

see e.g. [Gra14C]).

Since |x|−1/2 ∈ L2,∞(R), we get (−∆)−1/4(L1(R)) ⊆ L2,∞(R) and (−∆)−1/4(L2,1(R)) ⊆ L∞(R).5

Also, (−∆)−1/4 maps H1(R) into L2,1(R): this is a straightforward consequence of the atomic
decomposition property of H1(R) (see [Ste93]).

Finally, we define the Hilbert–Riesz transform of v ∈ S ′(R) as

Rv := lim
ε→0
F−1

[
−i ξ

(ε2 + |ξ|2)1/2
v̂

]
,

whenever the limit exists. A well-known consequence of Hörmander–Mikhlin estimates is the fact
that this limit exists on Lp(R) and R maps Lp(R) continuously into itself, for 1 < p <∞.

The same holds for Hs,p(R) and Ḣ−1/2(R), being the former isomorphic to Lp(R) via v 7→
F−1[(1 + 4π2 |ξ|2)s/2Fv] and the latter to L2(R) via v 7→ F−1((2π |ξ|)−1/2v).

Moreover, R also maps H1(R) continuously into itself: this follows from [Gra14M] and R(Rv) = −v
for v ∈ L1(R).

5For v ∈ L2,1(R) the fractional Laplacian (−∆)−1/4v exists and equals c |x|−1/2 ∗ v: indeed, from [Gra14M] one

easily deduces the weak* convergence of F−1[(ε2 + 4π2 |ξ|2)−1/4] to F−1((2π |ξ|)−1/2) in L2,∞(R).
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B.2. Littlewood–Paley decomposition. We briefly recall a well-known tool in harmonic analysis,
the Littlewood–Paley dyadic decomposition. This decomposition can be obtained as follows. Let
χ ∈ C∞c (B(0, 2)) be an even function, with χ = 1 on B(0, 1). Let % := χ− χ(2·) and observe that
the support of % is included in the annulus B(0, 2) \B(0, 1/2).

Let %0 := χ and %j := %(2−j ·) for j > 0, so that the support of %j , for j > 0, is contained in
B(0, 2j+1) \B(0, 2j−1). The functions (ρj)j∈N realize a so-called inhomogeneous dyadic partition of

unity, i.e.
∑∞

j=0 ρj = 1 pointwise. We further denote χj(ξ) :=
∑j

k=0 %k = χ(2−j ·).

For every v ∈ S ′(R) we define the inhomogeneous Littlewood–Paley projection operators:

vj = F−1[%j v̂], vj = F−1[χj v̂].(17)

Roughly, vj and vj mimic a frequency projection to the annulus B(0, 2j) \B(0, 2j−1) and to the ball
B(0, 2j), respectively.

We observe that vj =
∑j

k=0 vk and v =
∑∞

k=0 vk in the distributional sense. Given v, w ∈ S ′(R), we
can formally split their product in the following way:

(18) vw = Π1(v, w) + Π2(v, w) + Π3(v, w),

where

Π1(v, w) :=
+∞∑
j=3

vjw
j−3, Π2(v, w) :=

+∞∑
j=3

vj−3wj , Π3(v, w) :=
∞∑
j=0

vj
∑
|k−j|<3

wk.

We observe that the support of F [vjw
j−3] is contained in the sum of the supports of Fvj and Fwj−3,

i.e. in the annulus B(0, 2j+2) \B(0, 2j−2) (for j ≥ 3). A similar remark applies to F [vj−3wj ].

Next we recall the definition of the inhomogeneous Besov spaces Bs
p,q(R) and Triebel–Lizorkin spaces

F sp,q(R) in terms of the above dyadic decomposition.

Definition B.6. Let s ∈ R and 1 ≤ p, q ≤ ∞. For f ∈ S ′(Rn) we set

‖v‖Bsp,q :=

( ∞∑
j=0

2jsq‖vj‖qLp

)1/q

if q <∞,

‖v‖Bsp,q := sup
j∈N

2js‖vj‖Lp if q =∞.

When 1 ≤ p, q <∞ we also set

‖v‖F sp,q =

∥∥∥∥∥
( ∞∑
j=0

2jsq|vj |q
)1/q∥∥∥∥∥

Lp

.

The space of all v ∈ S ′(R) for which ‖v‖Bsp,q <∞ is the inhomogeneous Besov space with indices s, p, q

and is denoted by Bs
p,q(R). The space of all v ∈ S ′(R) for which ‖v‖F sp,q <∞ is the inhomogeneous

Triebel–Lizorkin space with indices s, p, q and is denoted by F sp,q(R). These spaces do not depend on
the choice of χ: see [Tri83].

A well-known fact is that Hs,p(R) = F sp,2(R), with equivalent norms: see e.g. [Tri83].

Corollary B.7. If s > 1
p , then Hs,p(R) ⊆ L∞(R) ∩ Ck,α(R), for all k ∈ N and 0 < α < 1 with

k + α ≤ s− 1
p .
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Proof. By [Tri83] we can assume k = 0, as well as s = α + 1
p . Setting %̃j := %j−1 + %j + %j+1

(with %−1 := 0), we have vj = F−1(%̃jFvj) and
∥∥F−1%̃j∥∥Lp′ . 2j/p,

∥∥∇(F−1%̃j)
∥∥
Lp′
. 2j+j/p (as

F−1%̃j = 2j−2(F−1%̃2)(2j−2·) for j ≥ 2). Hence, given 0 < h < 1,

∞∑
j=0

‖vj‖L∞ =
∞∑
j=0

∥∥(F−1%̃j) ∗ vj
∥∥
L∞
.
∞∑
j=0

2j/p ‖vj‖Lp ≤
∞∑
j=0

2−j(s−1/p) ‖v‖F sp,2 . ‖v‖Hs,p ,

∞∑
j=0

‖vj(·+ h)− vj‖L∞ .
∑

2jh≤1

h ‖∇vj‖L∞ +
∑

2jh>1

‖vj‖L∞ ≤
∑

2jh≤1

h
∥∥∇(F−1%̃j) ∗ vj

∥∥
L∞

+
∑

2jh>1

∥∥(F−1%̃j) ∗ vj
∥∥
L∞
.

( ∑
2jh≤1

h2j(1+1/p−s) +
∑

2jh>1

2−j(s−1/p)

)
‖v‖F sp,2 . h

α ‖v‖Hs,p . �

Similarly, one can form the homogeneous Littlewood–Paley decomposition using instead %j := %(2−j ·)
and χj := χ(2−j ·), for all j ∈ Z, and defining vj and vj as in (17). One then has the formal
identities

v =
∑
j∈Z

vj , vj =
∑
k≤j

vk, vw = Π1(v, w) + Π2(v, w) + Π3(v, w),

but notice that not even the first two are always true distributionally: for instance they fail when
v = 1 (in which case vk = 0 for all k ∈ Z). This reflects the fact that

∑
j∈Z %j = 1R\{0} and∑

k≤j %k = 1R\{0}χj . Using this homogeneous decomposition, with the same formulas as above one

can define the homogeneous Besov and Triebel–Lizorkin spaces Ḃs
p,q(R) and Ḟ sp,q(R) (the above

norms now become merely seminorms).

If v ∈ Lp(R) and 1 < p <∞, then ‖v‖Lp . ‖v‖Ḟ 0
p,2

and ‖v‖Ḟ 0
p,2
. ‖v‖Lp : see [Gra14C].

B.3. Spaces on the unit circle S1. We let D(S1) := C∞(S1) be the Fréchet space of smooth
functions on S1 = R/2πZ and D′(S1) its topological dual. The product of two elements in D′(S1) is
defined as before for R. For v ∈ D′(S1) and k ∈ Z we let v̂(k) := 1

2π

〈
v, e−ikx

〉
.

Notice that, for all v ∈ D′(S1), there exists some N > 0 such that |v̂(k)| . (1 + |k|)N . Also,
we recall that v ∈ C∞(S1) if and only if the Fourier coefficients v̂(k) have rapid decay, i.e.
supk(1 + |k|)N |v̂(k)| <∞ for all N > 0.

Given v ∈ D′(S1), we define (−∆)sv to be the distributional limit of
∑N

k=−N |k|
2s v̂(k)eikx, as N →∞.

Observe that (−∆)sv can be characterized as the unique w ∈ D′(S1) such that ŵ(k) = |k|2s v̂(k), for
all k ∈ Z.

Given s ∈ R, we define the Sobolev space

Hs(S1) :=
{
v ∈ D′(S1) : ‖v‖2Hs :=

∑
k∈Z

(1 + |k|2)s |v̂(k)|2 <∞
}
.

We observe that D′(S1) =
⋃
s∈RH

s(S1). Also, the Fréchet space structure of D(S1) is equivalent

to the one given by all Hs-norms with s ∈ N, by the embeddings Cs(S1) ⊆ Hs(S1) ⊆ Cs−1(S1).
Hence, by the uniform boundedness principle, any sequence vj converging in D′(S1) will form a
bounded set in some H−s(S1), with s ∈ N (by the canonical duality with Hs(S1)).
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Lemma B.8. The space H1/2(S1) is the set of traces of H1(D). Moreover, for v ∈ L2(S1)

(19)

∫∫
(S1)2

∣∣v(eiθ)− v(eiτ )
∣∣2

|eiθ − eiτ |2
dθ dτ = 4π2

∑
k∈Z
|k| |v̂(k)|2 .

Proof. Given u ∈ C∞(D), let v := u
∣∣∣
S1

be its trace and

ṽ(reiθ) :=
∑
k∈Z

v̂(k)r|k|eikθ =
∑
k<0

v̂(k)
(
reiθ

)|k|
+
∑
k≥0

v̂(k)(reiθ)k,

which lies in C∞(D), is harmonic and has trace v. We have
∫
D 〈∇ṽ,∇(u− ṽ)〉 = 0 by the divergence

theorem, so ∫
D
|∇u|2 =

∫
D
|∇ṽ|2 + 2

∫
D
〈∇ṽ,∇(u− ṽ)〉+

∫
D
|∇(u− ṽ)|2 ≥

∫
D
|∇ṽ|2 .

A straightforward computation shows that the last integral equals 2π
∑

k∈Z |k| |v̂(k)|2, so by density

of smooth functions we deduce that the trace of a function in H1(D) lies in H1/2(S1). Conversely,

given v ∈ H1/2(S1) one checks that ṽ, with the above definition, is in H1(D). It has trace v since

ṽ ∈ C∞(D) and, as τ ↑ 1, ṽ(τ ·) → ṽ in H1(D), as well as v(τ ·)
∣∣∣
S1
→ v in L2(S1). Finally, the

left-hand side of (19) equals∫
S1

∥∥v − v(eiσ·)
∥∥2
L2

|1− eiσ|2
dσ = 2π

∫
S1

∑
k |v̂(k)|2

∣∣1− eikσ∣∣2
|1− eiσ|2

= 2π
∑
k

|v̂(k)|2
∫
S1

∣∣∣∣∣∣
|k|−1∑
`=0

ei`σ

∣∣∣∣∣∣
2

dσ. �

B.4. Spaces on a boundary ∂S. Given a smooth compact Riemannian surface (S, g) with
boundary, we define the spaces Hs(∂S) by isometrically identifying each boundary component with
(a dilation of) S1. Lemma B.8, together with a partition of unity argument, immediately implies the
following result.

Lemma B.9. We have

H1/2(∂S) =
{
v ∈ L2(∂S) :

∫∫
(∂S)2

|v(x)− v(y)|2

d(x, y)2
dvolg(x) dvolg(y) <∞

}
,

d(x, y) denoting the Riemannian distance. Moreover, the traces of functions in H1(S) are precisely

the functions in H1/2(∂S). In particular, each v ∈ H1/2(∂S) has a unique harmonic extension
ṽ ∈ H1(S).

Appendix C. Commutator estimates

We introduce the following commutators for functions defined on the real line:

T (Q, v) := (−∆)1/4(Qv) + ((−∆)1/4Q)v −Q((−∆)1/4v),

U(Q, v) := −R(−∆)1/4(Qv) + (R(−∆)1/4Q)v +Q(R(−∆)1/4v),

T ∗(P,Q) := ((−∆)1/4P )Q+ P ((−∆)1/4Q)− (−∆)1/4(PQ),

U∗(P,Q) := (R(−∆)1/4P )Q+ P (R(−∆)1/4Q)−R(−∆)1/4(PQ),

Λ(Q, v) := Qv +R(QRv),

F (f, v) := RfRv − fv.
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The notation T ∗ and U∗ is motivated by the formal identities∫
PT (Q, v) =

∫
T ∗(P,Q)v,

∫
PU(Q, v) =

∫
U∗(P,Q)v.

Using the technology of Littlewood–Paley decomposition and paraproducts, one can establish the
following estimates of integrability by compensation.

Theorem C.1. If P,Q ∈ Ḣ1/2 ∩ L∞(R), we have T ∗(P,Q), U∗(P,Q) ∈ L2,1(R) and

‖T ∗(P,Q)‖L2,1 , ‖U∗(P,Q)‖L2,1 . ‖P‖Ḣ1/2 ‖Q‖Ḣ1/2 .

Proof. By [DLR09] we have (−∆)1/4T ∗(P,Q) ∈ H1(R), with∥∥(−∆)1/4T ∗(P,Q)
∥∥
H1 . ‖P‖Ḣ1/2 ‖Q‖Ḣ1/2 .

The estimate for T ∗ follows from the fact that (−∆)−1/4(H1(R)) ⊆ L2,1(R). The estimate for U∗ can
be obtained in a completely analogous way. It can also be deduced from Theorem C.5 below, since

U∗(P,Q) = RT ∗(P,Q) + Λ(P,R(−∆)1/4Q) + Λ(Q,R(−∆)1/4P )

and R maps the spaces L2(R) and L2,1(R) into themselves continuously. �

Theorem C.2. If Q ∈ Ḣ1/2 ∩ L∞(R) and v ∈ L2(R), we have T (Q, v), U(Q, v) ∈ H1(R) and

‖T (Q, v)‖H1 , ‖U(Q, v)‖H1 . ‖Q‖Ḣ1/2 ‖v‖L2 .

Proof. For the estimate of T (Q, v), we refer the reader to the proof of [DaL15] (where one just

replaces (−∆)1/4u with v). The estimate of U(Q, v) can be achieved with a completely analogous
proof. It also follows from the identity

U(Q, v) = −T (Q,Rv)− F ((−∆)1/4Q,Rv) + (−∆)1/4Λ(Q,Rv)

and Theorem C.6, together with the estimate
∥∥(−∆)1/4Λ(Q,Rv)

∥∥
H1 . ‖Q‖Ḣ1/2 ‖v‖L2 (see the proof

of Theorem C.5). �

The two following results now follow from Theorems C.1 and C.2 by a duality argument.

Corollary C.3. If P,Q ∈ Ḣ1/2 ∩ L∞(R), we have

‖T ∗(P,Q)‖L2 , ‖U∗(P,Q)‖L2 . ‖P‖Ḣ1/2

∥∥(−∆)1/4Q
∥∥
L2,∞ .

Proof. Since T (P,Q) vanishes if P or Q is constant, we can assume that P,Q ∈ S(R) with

Q̂ ∈ C∞c (R \ {0}) (see Lemma B.2 and Remark B.3). For any v ∈ S(R)∫
T ∗(P,Q)v =

∫
T ∗(Q,P )v =

∫
QT (P, v) =

∫
(−∆)1/4Q(−∆)−1/4T (P, v)

.
∥∥(−∆)1/4Q

∥∥
L2,∞

∥∥(−∆)−1/4T (P,Q)
∥∥
L2,1 .

∥∥(−∆)1/4Q
∥∥
L2,∞ ‖T (P,Q)‖H1

.
∥∥(−∆)1/4Q

∥∥
L2,∞ ‖P‖Ḣ1/2 ‖v‖L2 ,

where we used Theorem C.2 and the fact that (−∆)−1/4(H1(R)) ⊆ L2,1(R). A similar argument
applies for U∗. �

Corollary C.4. If Q ∈ Ḣ1/2 ∩ L∞(R) and v ∈ L2(R), we have T (Q, v), U(Q, v) ∈ Ḣ−1/2(R) and

‖T (Q, v)‖Ḣ−1/2 , ‖U(Q, v)‖Ḣ−1/2 . ‖Q‖Ḣ1/2 ‖v‖L2,∞ .
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Proof. Since T (Q, v) vanishes when Q is constant, we can assume that Q, v ∈ S(R). For any
P ∈ S(R) we get∫

PT (Q, v) =

∫
T ∗(P,Q)v . ‖T ∗(P,Q)‖L2,1 ‖v‖L2,∞ . ‖P‖Ḣ1/2 ‖Q‖Ḣ1/2 ‖v‖L2,∞ ,

thanks to Theorem C.1. A similar argument applies for U . �

Theorem C.5. If Q ∈ Ḣ1/2 ∩ L∞(R) and v ∈ L2(R), we have Λ(Q, v) ∈ L2,1(R) and

‖Λ(Q, v)‖L2,1 . ‖Q‖Ḣ1/2 ‖v‖L2 .

Proof. By [DLR11] (which contains a wrong sign in the statement) we know that (−∆)1/4Λ(Q, v) ∈
H1(R), with ∥∥(−∆)1/4Λ(Q, v)

∥∥
H1 . ‖Q‖Ḣ1/2 ‖v‖L2 ,

and thus ‖Λ(Q, v)‖L2,1 =
∥∥(−∆)−1/4(−∆)1/4Λ(Q, v)

∥∥
L2,1 . ‖Q‖Ḣ1/2 ‖v‖L2 . �

The following inequality is due to Coifman–Rochberg–Weiss.

Theorem C.6. If f, v ∈ L2(R), we have F (f, v) ∈ H1(R) and

‖F (f, v)‖H1 . ‖f‖L2 ‖v‖L2 .

Proof. The Hilbert–Riesz transform R satisfies the identity R(fv −RfRv) = fRv + vRf : indeed,
taking the Fourier transform at ξ ∈ R, this amounts to say that for a.e. ξ

−i sgn(ξ)

∫
(1 + sgn(ξ − ζ) sgn(ζ))f̂(ξ − ζ)v̂(ζ) dζ = −i

∫
(sgn(ξ − ζ) + sgn(ζ))f̂(ξ − ζ)v̂(ζ).

If ξ > 0, 1 + sgn(ξ− ζ) sgn(ζ)− sgn(ξ− ζ)− sgn(ζ) = (1− sgn(ξ− ζ))(1− sgn(ζ)) vanishes identically
(since either ζ > 0 or ξ−ζ > 0). On the other hand, if ξ < 0, 1+sgn(ξ−ζ) sgn(ζ)+sgn(ξ−ζ)+sgn(ζ) =
(1 + sgn(ξ − ζ))(1 + sgn(ζ)) vanishes also identically (since either ζ < 0 or ξ − ζ < 0). In both cases
we get

sgn(ξ)(1 + sgn(ξ − ζ) sgn(ζ)) = sgn(ξ − ζ) + sgn(ζ)

and the identity follows. Thus we have ‖F (f, v)‖L1 . ‖f‖L2 ‖v‖L2 and

RF (f, v) = −fRv − vRf ∈ L1(R), ‖RF (f, v)‖L1 . ‖f‖L2 ‖v‖L2 .

The claim follows from [Gra14M]. �

Appendix D. Hölder continuity of 1
2-harmonic maps

In this section we obtain the Hölder continuity of 1
2 -harmonic maps on ∂S with values into (at least)

C2-smooth closed manifolds.

Theorem D.1. Let N ⊂ Rm be a Ck-smooth closed embedded manifold, with k ≥ 2, and let
u ∈ H1/2(∂S,N ) be 1

2 -harmonic. Then u is Hölder continuous.

The strategy for the proof of Theorem D.1 is similar to the one used to get the Hölder continuity of
1
2 -harmonic maps defined on R (see [DLR09, DLR11, Sch12]). We provide here the details for the
reader’s convenience. The proof can be described (roughly speaking) by the following steps.

1. By means of a stereographic projection we can reduce to a problem on R, as it was already
observed in [DaL15, DaL17].
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2. We rewrite the Euler equation on R as a Schrödinger-type linear system with antisymmetric
potential satisfied by (−∆)1/4w (where w := u◦ψ−1` ◦Π−1, Π−1 being the inverse of the stereographic
projection.

3. We show that (−∆)1/4w ∈ Lploc(R) for some p > 2, giving u ∈ C0,δ
loc (R) for some 0 < δ < 1.

Lemma D.2. Let u ∈ H1/2(∂S,N ) be a 1
2 -harmonic map and let Π : S1 \ {i} → R be the

stereographic projection. Then w := u ◦ ψ−1` ◦Π−1 ∈ Ḣ1/2(R,N ) and w satisfies

P T (w)(−∆)1/2w +
2

1 + x2
P T (w)

(
R`((fj)

k
j=1) ◦Π−1

)
= 0 in D′(R),(20)

PN (w)∇w = 0 in D′(R).(21)

Proof. Step 1. We first prove (20).

Claim: w ∈ Ḣ1/2(R,Rm) and (−∆)1/2w = 2
1+x2

((−∆)1/2(w ◦Π)) ◦Π−1 in distributional sense.

Proof of the claim: let D := {|z| < 1} and H := {=z > 0} be the standard unit disk and upper
half-plane in C and notice that the map

Π̃ : D→ H, Π̃(z) :=

(
2

z − i
− i
)

is conformal, with trace Π on S1 \ {i}. Hence, by conformal invariance of the Dirichlet energy, this

map gives a bijection between H1(D) and Ḣ1(H) := {w ∈W 1,2
loc (H) :

∫
H |∇w|

2 dx <∞}. Moreover,

Π gives a bijection between H1/2(S1) and Ḣ1/2(R): indeed, for a real measurable function f on R,

(22)

∫∫
R2

|f(x)− f(y)|2

|x− y|2
dx dy =

∫∫
(S1)2

∣∣f ◦Π(eiθ)− f ◦Π(eiτ )
∣∣2

|eiθ − eiτ |2
dθ dτ,

since
∣∣Π′(eiθ)∣∣ = 2

|eiθ−i|2
and

∣∣Π(eiθ)−Π(eiτ )
∣∣−2 =

|eiθ−i|2|eiτ−i|2
4|eiθ−eiτ |2

. In particular we get that

w ∈ Ḣ1/2(R,Rm). We infer that Ḣ1/2(R) is precisely the image of the trace of Ḣ1(H) and that any

f ∈ Ḣ1/2(R) is the trace of a unique harmonic map in Ḣ1(H) (since the corresponding statements
for the unit disk hold).

Given any f ∈ C∞(S1), the normal derivative of its harmonic extension f̃ ∈ H1(D,Rm) at

the boundary is given by ∂f̃
∂ν = (−∆)1/2f , as is readily checked using the formula f̃(reiθ) =∑

n∈Z f̂(n)r|n|einθ. The same formula also shows that
∥∥f̃∥∥

H1(D) =
∥∥(−∆)1/4f

∥∥
L2 .

By Lemma B.2, w can be approximated in S ′(R,Rm) by a sequence wn = hn + cn ∈ S(R,Rm) + Rm
such that wn → w in Ḣ1/2(R, Rm) and in S ′(R,Rm). The functions fn := wn ◦Π extend smoothly

to all the circle. By conformality of Π̃, w̃n := f̃n ◦ Π̃−1 is the unique harmonic extension of wn in
Ḣ(H) and its normal derivative is

∂w̃n
∂ν

=
∣∣Π′ ◦Π−1

∣∣−1 ∂f̃n
∂ν
◦Π−1 =

2

x2 + 1

∂f̃n
∂ν
◦Π−1.

By uniqueness, w̃n(x+ iy) =
∫
R e
−2πy|ξ|e2πixξ ĥn(ξ) dξ + cn and thus ∂w̃n

∂ν (x) = (−∆)1/2wn.

From (22) and (19), (−∆)1/4fn → (−∆)1/4(w ◦Π) in L2(S1,Rm). Hence,

(−∆)1/2w = lim
n→∞

(−∆)1/2wn = lim
n→∞

∂w̃n
∂ν

= lim
n→∞

2

x2 + 1

∂f̃n
∂ν
◦Π−1
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= lim
n→∞

2

x2 + 1
((−∆)1/2fn) ◦Π−1 =

2

x2 + 1
((−∆)1/2(w ◦Π)) ◦Π−1

in the distributional sense. Using Lemma 2.3 we can conclude that (20) holds.

Step 2. Next we show (21). To this aim let us fix a nonnegative bump function ρ ∈ C∞c (B(0, 1))

with
∫
ρ = 1 and let wε := ρε ∗ w, where ρε := ε−1ρ(ε−1·). From (16) it immediately follows that

wε → w in Ḣ1/2(R,Rm), i.e.

(23)
wε(x)− wε(y)

|x− y|
→ w(x)− w(y)

|x− y|
in L2(R2,Rm).

In particular, for some sequence εj ↓ 0 there exists h ∈ L2(R2) such that
|wεj (x)−wεj (y)|

|x−y| ≤ h(x, y)

and wεj → w a.e. Moreover, since N is a C2 submanifold, there exists a neighborhood U ⊇ N such

that the map p ∈ C1(U,N ), associating to x ∈ U the unique nearest point p(x) on N , is defined.
Notice that dist(wε,N )→ 0 in L∞(R), as

dist(wε(x),N )2 ≤
∫
|wε(x)− w(x− z)|2 ρε(z) dz ≤

∫∫
|w(x− y)− w(x− z)|2 ρε(y)ρε(z) dy dz

. ε−2
∫∫

B(0,ε)2
|w(x− y)− w(x− z)|2 dy dz .

∫∫
B(x,ε)2

|w(y)− w(z)|2

|y − z|2
dy dz,

which converges to 0 uniformly in x. Thus, eventually p(wεj ) ∈ Ḣ1/2(R,N ) is defined. Since

PN ◦ p(wεj )∇(p(wεj )) = 0, it suffices to show that

PN ◦ p(wεj )→ PN ◦ p(w) = PN (w), p(wεj )→ p(w) = w

in Ḣ1/2(R,Rm). This immediately follows by dominated convergence, since the maps PN ◦ p and p
are Lipschitz (up to shrinking U).

We finally remark that h := − 2
1+x2

P T (w)
(
R`((fj)

k
j=1) ◦Π−1

)
lies in L1 ∩ L∞(R,Rm). �

Being w ∈ Ḣ1/2(R,N ), the quantity PN (−∆)1/4w enjoys special regularity properties. This has
already been observed in [DLLR16, MS17].

Lemma D.3. For any w ∈ Ḣ1/2(R,N ) it holds∣∣∣PN (w)(−∆)1/4w
∣∣∣ . |T ∗(w;w)| a.e.

Proof. Since w takes values in the C2 submanifold N , it holds∣∣PN (w(x))(w(x)− w(x+ y))
∣∣ . |w(x)− w(x+ y)|2

and, in view of Lemma B.5, we deduce that for some sequence εj ↓ 0∣∣∣PN (w)(−∆)1/4w
∣∣∣ (x) . lim inf

j→∞

∫
R\B(0,εj)

|w(x)− w(x+ y)|2

|y|3/2
dy,

T ∗(w;w)(x) = (−∆)1/4w · w + w · (−∆)1/4w − (−∆)1/4(w · w)

= c lim
j→∞

∫
R\B(0,εj)

|w(x)− w(x+ y)|2

|y|3/2
dy,

thanks to the identity (with z := x+ y)

(w(x)− w(z)) · w(x) + w(x) · (w(x)− w(z))− (w(x) · w(x)− w(z) · w(z)) = |w(x)− w(z)|2 . �
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In what follows, given x0 ∈ R and r > 0, we set B := B(x0, r), A0 := B(x0, 2r) and, for j ≥ 1,
Aj := B(x0, 2

j+1r) \B(x0, 2
jr). We now give some preliminary estimates.

Lemma D.4. For any w ∈ Ḣ1/2(R) and any 1 ≤ p <∞ we have

r−1/p ‖w − (w)B‖Lp(B) . ‖w‖Ḣ1/2 ,(24)

r−1/2 ‖w − (w)B‖L2(B) . r
−3/4

(∫∫
B2

|w(x)− w(y)|2

|x− y|1/2
dx dy

)1/2

.
∞∑
j=0

2−j/2
∥∥(−∆)1/4w

∥∥
L2,∞(Aj)

.

(25)

Proof. By translating and rescaling, we can assume x0 = 0 and r = 1. Moreover, we can suppose

w = (−∆)−1/4v = c |x|−1/2 ∗ v for some v ∈ S(R), with v̂ ∈ C∞c (R \ {0}).

Proof of (24): letting w1 := (−∆)−1/4(v1A0), w2 := (−∆)−1/4(v1R\A0
) and using Young’s inequality,

the mean value theorem and Hölder’s inequality,

‖w − (w)B‖Lp(B) . ‖w1‖Lp(B) + sup
x,x′∈B

∣∣w2(x)− w2(x
′)
∣∣

.
∥∥∥(|x|−1/2 1B(0,3)) ∗ (v1A0)

∥∥∥
Lp(B)

+ sup
x,x′∈B

∫
R\A0

∣∣∣|x− y|−1/2 − ∣∣x′ − y∣∣−1/2∣∣∣ |v(y)| dy

.
∥∥∥|x|−1/2∥∥∥

L2p/(p+2)(B(0,3))
‖v‖L2(A0)

+

∫
R\A0

|y|−3/2 |v(y)| dy . ‖v‖L2

(assuming without loss of generality p ≥ 2), which proves the first part.

Proof of (25): Jensen’s inequality gives

(26)

‖w − (w)B‖2L2(B) .
∫∫

B2

|w(x)− w(y)|2 dx dy .
∫∫

B2

|w(x)− w(y)|2

|x− y|1/2
dx dy

.
∫ 2

0

∫
B

|w(x+ h)− w(x)|2

h1/2
dx dh.

Setting fh(z) := (|z + h|−1/2 + |z|−1/2)1B(0,2h)(z),

|w(x+ h)− w(x)| .
∫ ∣∣∣|x+ h− y|−1/2 − |x− y|−1/2

∣∣∣ |v(y)| dy

. fh ∗ |v| (x) +

∫
R\B(x,2h)

∣∣∣|x+ h− y|−1/2 − |x− y|−1/2
∣∣∣ |v(y)| dy(27)

. fh ∗ |v| (x) + h

∫
R\B(x,2h)

|x− y|−3/2 |v(y)| dy,

where we used again the mean value theorem. Notice that, by Young’s inequality,∫ 2

0
h−1/2

∫
B
|fh ∗ |v| (x)|2 dx dh =

∫ 2

0
h−1/2

∥∥fh ∗ (|v|1B(0,5))
∥∥2
L2(B)

dh

≤
∫ 2

0
h−1/2 ‖fh‖2L4/3 ‖v‖2L4/3(B(0,5)) dh . ‖v‖

2
L2,∞(B(0,5)) ,

(28)
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since ‖fh‖L4/3 . h1/4. On the other hand, by Hölder’s inequality,

(29)

∫
A0\B(x,2h)

|x− y|−3/2 |v(y)| dy .
(∫ ∞

2h
t−9/2 dt

)1/3
‖v‖L3/2(A0)

. h−7/6 ‖v‖L2,∞(A0)
,

while, since |x− y|−3/2 . 2−3j/2 for x ∈ B and y ∈ Aj (when j ≥ 1),

(30)

∫
R\A0

|x− y|−3/2 |v(y)| dy =
∞∑
j=1

∫
Aj

|x− y|−3/2 |v(y)| dy .
∞∑
j=1

2−j ‖v‖L2,∞(Aj)
.

By combining (26)–(30) and by applying Cauchy–Schwarz inequality we conclude that∫ 2

0

∫
B1

|w(x+ h)− w(x)|2

h1/2
dx dh . ‖v‖2L2,∞(B(0,5)) +

∫ 2

0
h−5/6 ‖v‖2L2,∞(A0)

dh

+

∫ 2

0
h3/2

( ∞∑
j=1

2−j ‖v‖L2,∞(Aj)

)2

dh . ‖v‖2L2,∞(A0)
+
∞∑
j=1

2−j ‖v‖2L2,∞(Aj)
.

The claim follows. �

Lemma D.5. Given w ∈ Ḣ1/2 ∩ L∞(R,Rm), we can estimate

‖T ∗(w;w)‖L2(B) .
(
‖w‖Ḣ1/2(B(x0,4r))

+
∥∥(−∆)1/4w

∥∥
L2,∞(B(x0,4r))

)∥∥(−∆)1/4w
∥∥
L2,∞(A0)

+
∞∑
j=1

2−j/4
(
‖w‖Ḣ1/2(B(x0,4r))

+
∥∥(−∆)1/4w

∥∥
L2,∞(Aj)

)∥∥(−∆)1/4w
∥∥
L2,∞(Aj)

,

where ‖w‖2
Ḣ1/2(B(x0,4r))

:=
∫∫
B(x0,4r)2

|w(x)−w(y)|2

|x−y|2 dx dy.

Proof. Again we can assume x0 = 0, r = 1. Given ρ ∈ C∞c (B(0, 3)) with ρ = 1 on B(0, 2), we define
w0 := w − (w)B(0,4) and observe that T ∗(w;w) = T ∗(w0;w0), since T ∗ vanishes when one of the

arguments is constant, while ‖ρw0‖2Ḣ1/2 equals

‖ρw0‖2Ḣ1/2 .
∫∫

B(0,4)

|ρ(x)w0(x)− ρ(y)w0(y)|2

|x− y|2
+

∫∫
B(0,4)×(R\B(0,4))

|ρ(x)w0(x)|2

|x− y|2

.
∫∫

B(0,4)

|w0(x)− w0(y)|2

|x− y|2
+

∫
B(0,4)

∣∣w0 − (w0)B(0,4)

∣∣2
.
∫∫

B(0,4)2
|w0(x)− w0(y)|2 (|x− y|−2 + 1) . ‖w‖2

Ḣ1/2(B(0,4))
,

(31)

where we split ρ(x)w0(x)− ρ(y)w0(y) = ρ(x)(w0(x)−w0(y)) + (ρ(x)− ρ(y))w0(y) and used the fact
that (w0)B(0,4) = 0. Next we write

T ∗(w;w) = T ∗(ρw0; ρw0) + T ∗((1− ρ)w0; ρw0) + T ∗(w0; (1− ρ)w0),

so that Corollary C.3 gives

‖T ∗(w;w)‖L2(B) . ‖ρw0‖Ḣ1/2

∥∥(−∆)1/4(ρw0)
∥∥
L2,∞ + ‖T ∗((1− ρ)w0; ρw0)‖L2(B)

+ ‖T ∗(w0; (1− ρ)w0)‖L2(B) .
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Estimate of ‖ρw0‖Ḣ1/2

∥∥(−∆)1/4(ρw0)
∥∥
L2,∞ : from (31) we get ‖ρw0‖Ḣ1/2 . ‖w‖Ḣ1/2(B(0,4)). Also,

(32)
∥∥(−∆)1/4(ρw0)

∥∥2
L2,∞(R) .

∥∥ρ(−∆)1/4w
∥∥2
L2,∞(R) +

∫ ∣∣∣∣∣
∫

(ρ(x)− ρ(y))w0(y)

|x− y|3/2
dy

∣∣∣∣∣
2

dx

(see Lemma B.5). It suffices to bound the last term of (32). Splitting (ρ(x)− ρ(y))w0(y) = −(ρ(x)−
ρ(y))(w0(x)− w0(y)) + (ρ(x)− ρ(y))w0(x) and using Cauchy–Schwarz, as well as |ρ(x)− ρ(y)| .
|x− y|, ∫

B(0,4)

∣∣∣∣∣
∫
B(0,4)

(ρ(x)− ρ(y))w0(y)

|x− y|3/2
dy

∣∣∣∣∣
2

dx . ‖w0‖2L2(B(0,4))

+

∫
B(0,4)

(∫
B(0,4)

|ρ(x)− ρ(y)|2

|x− y|5/2
dy

)(∫
B(0,4)

|w(x)− w(y)|2

|x− y|1/2
dy

)
dx

. ‖w0‖2L2(B(0,4)) +

∫∫
B(0,4)

|w(x)− w(y)|2

|x− y|1/2
dx dy.

Moreover, ∫
R\B(0,4)

∣∣∣∣∣
∫
B(0,4)

−ρ(y)w0(y)

|x− y|3/2
dy

∣∣∣∣∣
2

dx .
∫
B(0,3)

(∫
R\B(0,4)

|w0(y)|2

|x− y|3
dx

)
dy

. ‖w0‖2L2(B(0,4)) .

Now we use the elementary inequality

‖w0‖L1(B(0,2j)) .
∥∥w0 − (w0)B(0,2j)

∥∥
L1(B(0,2j))

+

j∑
`=3

2j
∣∣(w0)B(0,2`) − (w0)B(0,2`−1)

∣∣
.

j∑
`=2

2j−`/2
∥∥w − (w)B(0,2`)

∥∥
L2(B(0,2`))

(for j ≥ 2) and we get∫
B(0,4)

∣∣∣∣∣
∫
R\B(0,4)

ρ(x)w0(y)

|x− y|3/2
dy

∣∣∣∣∣
2

dx

1/2

.
∞∑
j=2

2−3j/2 ‖w0‖L1(Aj)

.
∞∑
j=2

j+1∑
`=2

2−j/2−`/2
∥∥w − (w)B(0,2`)

∥∥
L2(B(0,2`))

.
∞∑
`=2

2−`
∥∥w − (w)B(0,4)

∥∥
L2(B(0,2`))

.

Thus, applying Lemma D.4 to B(0, 4) and B(0, 2`), we get∥∥(−∆)1/4(ρw0)
∥∥
L2,∞ .

∥∥(−∆)1/4w
∥∥
L2,∞(B(0,3))

+
∞∑
`=2

2−`/2

(∑̀
p=0

∥∥(−∆)1/4w
∥∥
L2,∞(Ap)

+
∞∑

p=`+1

2(`−p)/2
∥∥(−∆)1/4w

∥∥
L2,∞(Ap)

)

.
∞∑
p=0

(p+ 1)2−p/2
∥∥(−∆)1/4w

∥∥
L2,∞(Ap)

.
∞∑
p=0

2−p/4
∥∥(−∆)1/4w

∥∥
L2,∞(Ap)

.



FREE BOUNDARY MINIMAL SURFACES: A NONLOCAL APPROACH 29

Estimate of ‖T ∗(w0; (1− ρ)w0)‖L2(B): by Lemma B.5 we have∥∥w0 · (−∆)1/4((1− ρ)w0)
∥∥
L2(B)

.
∥∥w0 − (w0)B(0,4)

∥∥
L2(B(0,4))

∥∥(−∆)1/4((1− ρ)w0)
∥∥
L∞(B)

. ‖w‖Ḣ1/2(B(0,4))

∞∑
j=1

2−3j/2 ‖w0‖L1(Aj)

. ‖w‖Ḣ1/2(B(0,4))

∞∑
p=0

2−p/4
∥∥(−∆)1/4w

∥∥
L2,∞(Ap)

,

where the last inequality is obtained as before. Hence,
∥∥w0 · (−∆)1/4((1− ρ)w0)

∥∥
L2(B)

has the

desired upper bound. Similarly, using Cauchy–Schwarz inequality twice,∥∥(−∆)1/4((1− ρ) |w0|2)
∥∥
L2(B)

.
∥∥(−∆)1/4((1− ρ) |w0|2)

∥∥
L∞(B)

.
∞∑
j=1

2−3j/2 ‖w0‖2L2(Aj)

.
∞∑
j=1

2−3j/2

(
j+1∑
`=2

2j/2−`/2
∥∥w − (w)B(0,2`)

∥∥
L2(B(0,2`))

)2

.
∞∑
j=1

j+1∑
`=2

2−j/2−``2
∥∥w − (w)B(0,2`)

∥∥2
L2(B(0,2`))

.
∞∑
`=2

2−3`/2`2
∥∥w − (w)B(0,2`)

∥∥2
L2(B(0,2`))

.
∞∑
`=2

2−`/2`2

(∑̀
p=0

(p+ 1)2
∥∥(−∆)1/4w

∥∥2
L2,∞(Ap)

+
∞∑

p=`+1

(p+ 1)22`−p
∥∥(−∆)1/4w

∥∥2
L2,∞(Ap)

)

.
∞∑
p=0

2−p/4
∥∥(−∆)1/4w

∥∥2
L2,∞(Ap)

.

Estimate of T ∗((1− ρ)w0; ρw0) = T ∗(ρw0; (1− ρ)w0): analogous. �

Lemma D.6. Let P ∈ Ḣ1/2 ∩ L∞(R) and v ∈ L2(R). Then, uniformly in s ≥ 1,

∥∥(−∆)−1/4T (P, v)
∥∥
L2(B)

. ‖v‖L2,∞(B(0,2s))

∞∑
j=s

2s/2−j/4 ‖P‖Ḣ1/2(B(0,2jr))

+ ‖P‖Ḣ1/2

∞∑
j=s

2−j/4 ‖v‖L2,∞(Aj)
.

Proof. The proof is similar to the one of Lemma D.5, but is substantially simpler: as before we
assume x0 = 0, r = 1. Setting P0 := P − (P )B(0,2s+3), notice that T (P, v) = T (P0, v).

Let ρ ∈ C∞c (B(0, 2s+2)) with ρ = 1 on B(0, 2s+1) and |ρ′| . 2−s. By Corollary C.4 we can write

(−∆)−1/4T (P, v) =(−∆)−1/4T (ρP0, v1B(0,2s)) + (−∆)−1/4T ((1− ρ)P0, v1B(0,2s))
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+

∞∑
j=s

(−∆)−1/4T (P0, v1Aj )

in L2(R) and as before∥∥(−∆)−1/4T (ρP0, v1B(0,2s))
∥∥
L2 . ‖ρP0‖Ḣ1/2 ‖v‖L2,∞(B(0,2s)) . ‖P‖Ḣ1/2(B(0,2s+3)) ‖v‖L2,∞(B(0,2s)) .

To estimate the two other pieces, fix any j ≥ 1 and let χj ∈ C∞c (B(0, 2j+2)) with

χj = 1 on B(0, 2j+1) \B(0, (5/6)2j), χj = 0 on B(0, (4/6)2j) ∪ (R \B(0, 2j+2))

and
∥∥χ′j∥∥L∞ . 2−j . In particular, χj vanishes in a neighborhood of B. Next we are going

to use [Gra14C] (which implies that, on R \ Aj , (−∆)1/4(P0v1Aj ) is smooth and bounded by

|x|−3/2 ∗
∣∣P0v1Aj

∣∣) and the fact that,6 by Lemma D.4,

‖P0‖L4(A`)
.

max(`+1,s+3)∑
p=0

2`/4−p/4
∥∥P0 − (P0)B(0,2p)

∥∥
L4(B(0,2p))

. max(`+ 1, s)2`/4 ‖P0‖Ḣ1/2 .

We split T (P0, v1Aj ) = (1− χj)T (P0, v1Aj ) + χjT (P0, v1Aj ). For all ` ≥ 0 we have∥∥(1− χj)T (P0, v1Aj )
∥∥
L2(A`)

. 2`/2
∥∥(1− χj)(−∆)1/4(P0v1Aj )

∥∥
L∞(A`)

+ 2`/4 ‖P0‖L4(A`)

∥∥(1− χj)(−∆)1/4(v1Aj )
∥∥
L∞(A`)

. 2−3max(j,`)/2
(

2`/2 ‖P0‖L4(Aj)
+ 2`/42j/4 ‖P0‖L4(A`)

)
‖v‖L4/3(Aj)

. max(j + 1, `+ 1, s)2j/2+`/22−3max(j,`)/2 ‖P‖Ḣ1/2 ‖v‖L2,∞(Aj)
.

Since T (P0, v1Aj ) ∈ L1(R) by Theorem C.2, it follows that for all j ≥ s∥∥(−∆)−1/4((1− χj)T (P0, v1Aj ))
∥∥
L2(B)

.

(∥∥ |x|−1/2 ∗ ((1− χj)T (P0, v1Aj )1A0)
∥∥
L2(B)

+
∞∑
`=1

2−`/2
∥∥(1− χj)T (P0, v1Aj )

∥∥
L1(A`)

)

.
∞∑
`=0

∥∥(1− χj)T (P0, v1Aj )
∥∥
L2(A`)

. ‖P‖Ḣ1/2 ‖v‖L2,∞(Aj)

(
j∑
`=0

(j + 1)2−j+`/2 +

∞∑
`=j+1

(`+ 1)2j/2−`

)
. 2−j/4 ‖P‖Ḣ1/2 ‖v‖L2,∞(Aj)

.

Similarly, as T ((1− ρ)P0, v1B(0,2s)) = (−∆)1/4((1− ρ)P0)v1B(0,2s) − (1− ρ)P0(−∆)1/4(v1B(0,2s)),
using Lemma B.5 we get∥∥T ((1− ρ)P0, v1B(0,2s))

∥∥
L2,∞(B(0,2s))

.
∞∑
p=s

2−p ‖P0‖L2(Ap)
‖v‖L2,∞(B(0,2s))

.
∞∑
p=s

p2−p/2 ‖P‖Ḣ1/2(B(0,2p+1)) ‖v‖L2,∞(B(0,2s)) ,

6Since (P0)B(0,2s+3) = 0, if ` ≥ s+ 2 we can write P0 = P0 − (P0)B(0,2`+1) +
∑`+1
p=s+4((P0)B(0,2p) − (P0)B(0,2p−1))

and if ` ≤ s+ 2 we write P0 = P0 − (P0)B(0,2`+1) +
∑s+3
p=`+2((P0)B(0,2p−1) − (P0)B(0,2p)).
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∥∥
L2(A`)

. 2−3`/2 ‖P0‖L2(A`)
‖v‖L1(B(0,2s))

. `2s/2−` ‖P‖Ḣ1/2(B(0,2`+3)) ‖v‖L2,∞(B(0,2s))

for ` ≥ s (notice that 1− ρ vanishes near B(0, 2s)). Since∥∥(−∆)−1/4(T ((1− ρ)P0, v1B(0,2s))1B(0,2s))
∥∥
L2(B)

.
∥∥∥|x|−1/2∥∥∥

L4/3(B(0,2s+1))

∥∥T ((1− ρ)P0, v1B(0,2s))
∥∥
L4/3(B(0,2s))

. 2s/2
∥∥T ((1− ρ)P0, v1B(0,2s))

∥∥
L2,∞(B(0,2s))

,

we get∥∥(−∆)−1/4T ((1− ρ)P0, v1B(0,2s))
∥∥
L2(B)

.
∞∑
j=s

2s/2−j/4 ‖P‖Ḣ1/2(B(0,2j)) ‖v‖L2,∞(B(0,2`)) .

Finally, we estimate
∥∥(−∆)−1/4(χjT (P0, v1Aj ))

∥∥
L2(B)

by duality: given ψ ∈ C∞c (B) with ‖ψ‖L2 ≤ 1,〈
(−∆)−1/4(χjT (P0, v1Aj )), ψ

〉
=

∫
χjT (P0, v1Aj )(−∆)−1/4ψ

=

∫
(−∆)−1/4T (P0, v1Aj )(−∆)1/4(χj(−∆)−1/4ψ).

The first identity holds since T (P0, v1Aj ) ∈ L1(R) (by Theorem C.2), while the second is justified

by χj(−∆)−1/4ψ ∈ C∞c (R), (−∆)−1/4T (P0, v1Aj ) ∈ L2(R) (by Corollary C.4) and Plancherel’s
theorem.

We observe that, on the support of χj , (−∆)−1/4ψ is bounded by 2−j/2 and its derivative by 2−3j/2

(as (−∆)−1/4ψ = c |x|−1/2 ∗ ψ), so f := χj(−∆)−1/4ψ has ‖f‖L∞ . 2−j/2, ‖f ′‖L∞ . 2−3j/2 and∥∥(−∆)1/4f
∥∥2
L2 .

∫
|ξ|
∣∣f̂(ξ)

∣∣2 dξ . ∫ (2−j + 2jξ2)
∣∣f̂(ξ)

∣∣2 dξ . 2−j ‖f‖2L2 + 2j
∥∥f ′∥∥2

L2 . 2−j .

Moreover, by Corollary C.4,
∥∥(−∆)−1/4T (P0, v1Aj )

∥∥
L2 . ‖P‖Ḣ1/2 ‖v‖L2,∞(Aj)

. We deduce that∥∥(−∆)−1/4(χjT (P0, v1Aj ))
∥∥
L2 . 2−j/2 ‖P‖Ḣ1/2 ‖v‖L2,∞(Aj)

. �

D.1. Rewriting the Euler–Lagrange equation. In Lemma D.2 we have seen that w := u ◦
ψ−1` ◦Π−1 ∈ Ḣ1/2(R,N ) satisfies

P T (w)(−∆)1/2w +
2

1 + x2
P T (w)

(
R`((fj)

k
j=1) ◦Π−1

)
= 0 in D′(R).

Therefore we can write

(33) (−∆)1/2w = PN (w)(−∆)1/2w + h

where h = − 2
1+x2

P T (w)
(
R`((fj)

k
j=1) ◦Π−1

)
∈ L1 ∩ L∞(R). We are going to reformulate (33) in

the same spirit as it has been done in [DLS17, MS17].

This equivalent reformulation will be crucial in order to obtain the regularity of w. First of all,
writing for simplicity P T and PN in place of P T (w) and PN (w),

PN (−∆)1/2w = (−∆)1/4(PN (−∆)1/4w) + (−∆)1/4PN (−∆)1/4w − T (PN , (−∆)1/4w)

= (−∆)1/4(PN (−∆)1/4w) + (−∆)1/4PNPN (−∆)1/4w

+ (−∆)1/4PNP T (−∆)1/4w − T (PN , (−∆)1/4w).
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Next, we observe that

(−∆)1/4PNP T = −PN (−∆)1/4P T + T ∗(PN , P T )

= PN (−∆)1/4PN + T ∗(PN , P T ) = Ω0 + Ω1 + (−∆)1/4PNPN ,

where Ω0 := PN (−∆)1/4PN − (−∆)1/4PNPN ∈ L2(R, so(m)), Ω1 := T ∗(PN , P T ) ∈ L2,1(R,Rm×m).

Hence, setting v := (−∆)1/4w ∈ L2(R,Rm), we arrive at

(−∆)1/4v = Ω0v + Ω1v + (−∆)1/4(PNv) + 2(−∆)1/4PN (PNv)− T (PN , v) + h.(34)

Theorem D.7. The map v = (−∆)1/4w has (−∆)1/4(P T v),R(−∆)1/4(PNv) ∈ L1(R,Rm) and
there exists α > 0 such that∥∥(−∆)1/4(P T v)

∥∥
L1(B(x0,r))

+
∥∥R(−∆)1/4(PNv)

∥∥
L1(B(x0,r))

. rα,

for all r > 0, uniformly in x0 ∈ R.

Proof. Step 1. Fix any x0 ∈ R. We first proceed to locally remove the antisymmetric matrix Ω0:

if R > 0 is small enough, then we can write Ω01B(x0,R) = 1
2(Q−1(−∆)1/4Q − (−∆)1/4Q−1Q) for

some Q ∈ Ḣ1/2(R, SO(m)) with ‖Q‖Ḣ1/2 . ‖Ω0‖L2(B(x0,R)) (see [DLR11] and [DLS17]). The map

ṽ := Qv then satisfies

(−∆)1/4ṽ = Q(−∆)1/4v − (−∆)1/4Qv + T (Q, v)

= QΩ0v +QΩ1v +Q(−∆)1/4(PNv) + 2(Q(−∆)1/4PN )(PNv)

−QT (PN , v) +Qh− (−∆)1/4Qv + T (Q, v).

Using the identities

QΩ01B(x0,R) − (−∆)1/4Q = −Q
2
T ∗(Q−1, Q),

Q(−∆)1/4(PNv) = (−∆)1/4(QPNv) + (−∆)1/4QPNv − T (Q,PNv),

QT (PN , v) = T ∗(Q,PN )v + T (QPN , v)− T (Q,PNv),

we get

(−∆)1/4ṽ = QΩ01R\B(x0,r)v −
Q

2
T ∗(Q−1, Q)v +QΩ1v + (−∆)1/4(QPNv)

+ (−∆)1/4QPNv + 2(Q(−∆)1/4PN )(PNv)− T ∗(Q,PN )v − T (QPN , v)

+Qh+ T (Q, v)

= Ω̃0ṽ + Ω̃1ṽ + Ω̃2P
Nv + (−∆)1/4(QPNv) + T (QP T , v) +Qh,

with Ω̃0 := QΩ01R\B(x0,r)Q
−1, Ω̃1 := Q

(
Ω1 − 1

2T
∗(Q−1, Q)

)
Q−1 − T ∗(Q,PN )Q−1 and Ω̃2 :=

(−∆)1/4Q+ 2Q(−∆)1/4PN . Notice that Ω̃0, Ω̃2 ∈ L2(R,Rm×m) and Ω̃1 ∈ L2,1(R,Rm×m). Recall
that

∣∣PNv∣∣ . |T ∗(w;w)| by Lemma D.3 (see also [DLS17] for related properties).

Step 2. Next, we use the last equation satisfied by ṽ in order to estimate locally the L2,∞-norm of v.

As ṽ ∈ L2(R,Rm), we have

ṽ = (−∆)−1/4(−∆)1/4ṽ = (−∆)−1/4(Ω̃0ṽ) + (−∆)−1/4(Ω̃1ṽ) + (−∆)−1/4(Ω̃2P
Nv)

+QPNv + (−∆)−1/4T (QP T , v) + (−∆)−1/4(Qh).

Fix any radius r ≤ R
2 and an integer s ≥ 1.
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Notice that (−∆)−1/4(Ω̃0ṽ) = c |x|−1/2 ∗ (Ω̃0ṽ) restricts to an L∞ function on B = B(x0, r)

bounded by c
(
R
2

)−1/2 ∥∥Ω̃0ṽ
∥∥
L1 , as Ω̃0ṽ is supported far from B, while (−∆)−1/4(Qh) ∈ L∞(R)

since |x|−1/2 ∈ L1(R) + L∞(R) and h ∈ L1 ∩ L∞(R). Moreover, being |x|−1/2 ∈ L2,∞(R),∥∥(−∆)−1/4(Ω̃1ṽ)
∥∥
L2,∞(B)

.
∥∥Ω̃1ṽ

∥∥
L1(B(x0,2sr))

+
∞∑
j=s

r1/2
∥∥∥|x|−1/2 ∗ (Ω̃1ṽ1Aj )

∥∥∥
L∞(B)

.
∥∥Ω̃1

∥∥
L2,1(B(x0,2sr))

‖v‖L2,∞(B(x0,2sr))
+

∞∑
j=s

2−j/2
∥∥Ω̃1ṽ

∥∥
L1(Aj)

.
(
‖Ω1‖L2,1(B(x0,2sr))

+ ‖Ω0‖L2(B(x0,R))

)
‖v‖L2,∞(B(x0,2sr))

+

∞∑
j=s

2−j/2 ‖v‖L2,∞(Aj)
,

where we used Theorem C.1 and we neglected
∥∥Ω̃1

∥∥
L2,1 in the estimate of

∥∥Ω̃1ṽ
∥∥
L1(Aj)

, as well as∥∥PN∥∥
Ḣ1/2 (recall that Aj = B(x0, 2

j+1r) \B(x0, 2
jr)). Similarly, by Lemmas D.3 and D.5,∥∥(−∆)−1/4(Ω̃2P

Nv) +QPNv
∥∥
L2,∞(B)

.
∞∑
j=0

2−j/2
∥∥PNv∥∥

L2(B(x0,2jr))

.
∞∑
j=0

2−j/2
(
‖w‖Ḣ1/2(B(x0,2j+2r)) + ‖v‖L2,∞(B(x0,2j+2r))

)
‖v‖L2,∞(B(x0,2j+1r))

+
∞∑
j=0

∞∑
`=j+1

2−j/2−(`−j)/4
(
‖w‖Ḣ1/2(B(x0,2j+2r)) + ‖v‖L2,∞(A`)

)
‖v‖L2,∞(A`)

.
(
‖w‖Ḣ1/2(B(x0,2s+1r)) + ‖v‖L2,∞(B(x0,2s+1r))

)
‖v‖L2,∞(B(x0,2sr))

+

∞∑
j=s+1

2−j/4 ‖v‖L2,∞(B(x0,2jr))
,

where we neglected
∥∥Ω̃2

∥∥
L2 and ‖v‖L2,∞ , ‖w‖Ḣ1/2 . ‖v‖L2 . Finally, using Lemma D.6 and neglecting∥∥QP T∥∥

Ḣ1/2 ,∥∥(−∆)−1/4T (QP T , v)
∥∥
L2(B)

. ‖v‖L2,∞(B(0,2s))

∞∑
j=s

2s/2−j/4
∥∥QP T∥∥

Ḣ1/2(B(0,2jr))
+

∞∑
j=s

2−j/4 ‖v‖L2,∞(Aj)

. 2s/2

(
‖Ω0‖L2(B(x0,R)) +

∞∑
j=s

2−j/4
∥∥P T∥∥

Ḣ1/2(B(x0,2jr))

)
‖v‖L2,∞(B(x0,2sr))

+

∞∑
j=s

2−j/4 ‖v‖L2,∞(Aj)
.

Combining the previous estimates, given ε we can fix R (depending on ε and s) so small that

‖v‖L2,∞(B(x0,r))
≤ ε ‖v‖L2,∞(B(x0,2sr))

+ C

∞∑
j=s+1

2−j/4 ‖v‖L2,∞(B(x0,2jr))
+ Cr1/2 + CR−1/2r1/2

≤ ε ‖v‖L2,∞(B(x0,2sr))
+ C

∞∑
j=s+1

2−j/4 ‖v‖L2,∞(B(x0,2jr))
+ Cr1/4
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for all sufficiently small r (depending on ε and s), with C independent of ε and s. Choosing s large
enough, it follows that

(35) ‖v‖L2,∞(B(x0,r))
. rβ.

for some 0 < β < 1
4 and all r > 0 small enough (see e.g. [BRS16], applied to the sequence

b0 := ‖v‖L2,∞ , bk := ‖v‖L2,∞(B(x0,2−kr0))
for k > 0, with r0 small enough). Hence, being ‖v‖L2 finite,

this holds for all r > 0. Notice that this inequality is uniform in x0.

Step 3. We define ζ := (−∆)−1/4(Ω̃1ṽ) + (−∆)−1/4(Ω̃2P
Nv) ∈ L2,∞(R,Rm) (where Ω̃1 and Ω̃2,

defined above, depend on x0). From (35) and the preceding estimates we deduce∥∥(−∆)1/4ζ
∥∥
L1(B(x,r))

. rβ

for all r > 0 and all x ∈ R. This Morrey-type estimate for the local L1-norm of (−∆)1/4ζ implies that

ζ ∈ Lploc(R,R
m) for some 2 < p <∞: indeed, arguing as in [Ada75], we have ζ = c |x|−1/2∗(−∆)1/4ζ

and thus, for a.e. x ∈ R and all r > 0,

|ζ(x)| .
∑
j∈Z

(2jr)−1/2
∥∥(−∆)1/4ζ

∥∥
L1(B(x,2jr)\B(x,2j−1r))

.M((−∆)1/4ζ)(x)
∑
j≤0

2j/2r1/2 +
∑
j>0

(2jr)β−1/2

. r1/2M((−∆)1/4ζ)(x) + rβ−1/2.

Optimizing this inequality in r, we infer that

|ζ(x)| .M((−∆)1/4ζ)(x)(
1
2
−β)/(1−β).

for all x ∈ R. The right-hand side lies in L(1−β)/( 1
2
−β),∞(R) (as (−∆)1/4ζ ∈ L1(R,Rm)), so we get

the claim for any 2 < p < 1−β
1
2
−β . In particular, we get ‖ζ‖L2(B(x,r)) . rβ

′
for some β′ > 0 and all

0 < r < R
2 . On the other hand,

ṽ − ζ = (−∆)−1/4(Ω̃0ṽ) +QPNv + (−∆)−1/4T (QP T , v) + (−∆)−1/4(Qh)

and so the estimates derived in Step 2 give ‖ṽ − ζ‖L2(B(x0,r))
. rβ, for all 0 < r < R

2 . We deduce

that, for all 0 < r < R
2 ,

‖v‖L2(B(x0,r))
≤ ‖ṽ − ζ‖L2(B(x0,r))

+ ‖ζ‖L2(B(x0,r))
. rα,

with α := min {β, β′}. Hence ‖v‖L2(B(x0,r))
. rα for all r > 0, uniformly in x0.

Step 4. Finally, Lemma D.2 gives the two identities

(−∆)1/4(P T v) = h− (−∆)1/4P T v + T (P T , v),

R(−∆)1/4(PNv) = R(−∆)1/4PNv − U(PN , v),

as R(−∆)1/2w = −∇w. Arguing as in the proof of Lemma D.6, but using Theorem C.2 in place of
Corollary C.4, we finally get∥∥T (P T , v)

∥∥
L1(B)

. ‖v‖L2(A0)
+
∞∑
j=1

∥∥T (P T , v1Aj )
∥∥
L1(B)

.
∞∑
j=0

2−j/2 ‖v‖L2(Aj) . r
α

and similarly
∥∥U(PN , v)

∥∥
L1(B)

. rα. The statement follows. �

Corollary D.8. We have v ∈ Lploc(R,R
m) and w ∈ C0,γ

loc (R,Rm), for some p > 2 and some γ > 0.
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We include the standard proof for the reader’s convenience.

Proof. Arguing as in Step 3 of the proof of Theorem D.7, we infer that∫
B(x0,4)

∣∣P T v∣∣p +

∫
B(x0,4)

∣∣R(PNv)
∣∣p . 1

for some p > 2, uniformly in x0. If ρ ∈ C∞c (B(x0, 4)) is a cut-off function with ρ = 1 on B(x0, 2),

PNv = −RR(PNv) = −R(ρR(PNv))−R((1− ρ)R(PNv)).

Using [Gra14C] applied to −i sgn(ξ) (whose inverse Fourier transform is (−1)-homogeneous) and
the fact that (1− ρ)R(PNv) ∈ L2(R,Rm) is supported far from B(x0, 1),∥∥R((1− ρ)R(PNv))

∥∥
L∞(B(x0,1))

. 1

and, from the Lp-boundedness of the Hilbert–Riesz transform,∥∥R(ρR(PNv))
∥∥
Lp
.
∥∥R(PNv)

∥∥
Lp(B(x0,4))

.

We deduce that v = P T v + PNv also satisfies an estimate
∫
B(x0,1)

|v|p . 1, uniformly in x0. In

particular,
∥∥(−∆)1/4w

∥∥
L2(B(x0,r))

. rγ with γ = 1
2 −

1
p ∈

(
0, 12
)

(for 0 < r < 1 and hence for all

r > 0). Using Lemma D.4 we deduce that(
−
∫
B(x0,r)

∣∣w − (w)B(x0,r)

∣∣2)1/2

.
∞∑
j=0

2−j/2(2jr)γ . rγ .

This is the integral characterization of Hölder continuity with exponent γ: see e.g. [Gia83]. �

Applying a rotation before taking the stereographic projection, we arrive at the following.

Corollary D.9. The map u ◦ ψ−1` : S1 → Rm is Hölder continuous and, being ` is arbitrary, u is
Hölder continuous.

Appendix E. Higher regularity of 1
2-harmonic maps

In this section we prove that 1
2 -harmonic maps u ∈ H1/2(∂S,N ) are Ck−1,δloc , for any 0 < δ < 1,

whenever N is a Ck-smooth closed manifold (k ≥ 2). We mention that higher regularity of the
so-called half-wave maps into S2 has recently been obtained in [LS17].

Throughout the section, we will say that a ∈ S ′(R) belongs to Hs,p
loc (R) (with s ≥ 0, 1 < p <∞) if

ψa ∈ Hs,p(R) for any ψ ∈ C∞c (R).

Corollary D.8 shows that (−∆)1/4w ∈ Lploc(R,R
m), where w = u ◦ ψ−1` ◦Π−1, for some p > 2. We

now bootstrap this information to get higher regularity. We first prove two results concerning the
regularity of the commutator R(ab) − aR(b). The proofs will rely on the technique of splitting
products into paraproducts, using the Littlewood–Paley decomposition (see Section B.2):

ab =
∑
j

ajb
j−3 +

∑
j

aj−3bj +
∑
|j−k|≤2

ajbk, âj = %j â, b̂j = %j b̂.

We will treat the first and third summands together, namely we will just decompose

ab =
∑
j

ajb
j+2 +

∑
j

aj−3bj .
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Lemma E.1. Let a ∈ Ḣ1/2 ∩ L∞(R) with (−∆)1/4a ∈ Lp(R), for some 2 < p < ∞, and b ∈
Ḣ−1/2(R). Then

‖R(ab)− aR(b)‖L2p/(p+2) .
∥∥(−∆)1/4a

∥∥
Lp
‖b‖Ḣ−1/2 .

Notice that R(ab) is defined, as for ρ ∈ S(R) the function F
[
−i ξ

(ε2+|ξ|2)1/2 qρ
]

converges (as ε→ 0)

in Ḣ1/2 ∩ L∞(R) and ab extends to a continuous functional on this space (see Appendix B).

Proof. Notice that the commutator vanishes if a is constant. Thus, as the proof of Lemma B.2 and

Remark B.3 show, we can assume â, b̂ ∈ C∞c (R \ {0}).7 Using the homogeneous decomposition, we
write

R(ab)− aR(b) =
∑
j∈Z

(R(aj−3bj)− aj−3R(bj)) +
∑
j∈Z

(R(ajb
j+2)− ajR(bj+2))

and remark that the first sum vanishes since

F(R(aj−3bj)− aj−3R(bj))(ξ) =− i sgn(ξ)

∫
âj−3(ξ − η)b̂j(η) dη

+ i

∫
âj−3(ξ − η) sgn(η)b̂j(η) dη = 0

(as sgn(η) = sgn(ξ) whenever âj−3(ξ − η)b̂j(η) 6= 0).

Since R is an isomorphism of L2p/(p+2)(R) and of Ḣ−1/2(R), it suffices to bound
∑

j∈Z ajb
j+2 in

L2p/(p+2)(R). We do this by duality: let h ∈ S(R) and observe that∫ ∑
j∈Z

ajb
j+2h =

∫ ∑
j∈Z

ajb
j+2hj+4 .

∫ (∑
j∈Z

2j |aj |2
)1/2(∑

j∈Z
2−j

∣∣bj+2
∣∣2)1/2

(Mh),

as F(ajb
j+2) is supported in B(0, 2j+4) and as we have the elementary inequality

∣∣hj+4
∣∣ . Mh.

Note that ‖Mh‖L2p/(p−2) . ‖h‖L2p/(p−2) , while the `2(Z)-norm
(∑

j∈Z
∣∣2−j/2bj+2

∣∣2 )1/2 equals(∑
j∈Z

∣∣∣∣∣
2∑

k=−∞
2−j/2bj+k

∣∣∣∣∣
2)1/2

≤
2∑

k=−∞

(∑
j∈Z

∣∣∣2−j/2bj+k∣∣∣2
)1/2

.

(∑
j∈Z

2−j |bj |2
)1/2

(as
∑

j∈Z
∣∣2−j/2bj+k∣∣2 = 2k

∑
j∈Z 2−j |bj |2), so that, by Plancherel’s identity,∥∥∥∥∥∥

(∑
j∈Z

2−j
∣∣bj+2

∣∣2)1/2
∥∥∥∥∥∥
2

L2

.
∑
j∈Z

2−j
∫
|bj |2 =

∫ ∑
j∈Z

2−jρ2j
∣∣̂b∣∣2 . ∫ |ξ|−1 ∣∣̂b(ξ)∣∣2 = ‖b‖2

Ḣ−1/2 .

To conclude, using [Tri83] with the multipliers 2j/2 |ξ|−1/2 (%j−1 + %j + %j+1) and [Gra14C], we
infer ∥∥∥∥∥∥∥

∑
j∈Z

2j |aj |2
1/2

∥∥∥∥∥∥∥
Lp

.

∥∥∥∥∥∥∥
∑
j∈Z

∣∣∣(−∆)1/4aj

∣∣∣2
1/2

∥∥∥∥∥∥∥
Lp

.
∥∥(−∆)1/4a

∥∥
Lp
.

7We can assume â has compact support in R \ {0}, by replacing it with qwk (defined as in Lemma B.2): the norm∥∥(−∆)1/4a
∥∥
Lp stays controlled by Lemma B.4 and the same argument of Remark B.3; we can then choose |ξ|1/2 v̂k

arbitrarily close to |ξ|1/2 wk in Lp
′
(R), obtaining (−∆)1/4vk close to (−∆)1/4 qwk in Lp(R).
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To sum up, by Hölder’s inequality we get the desired bound∫ ∑
j∈Z

ajb
j+2h .

∥∥(−∆)1/4a
∥∥
Lp
‖b‖Ḣ−1/2 ‖h‖L2p/(p−2) . �

Lemma E.2. Let a ∈ Hs,p(R) and b ∈ Lq(R), with s > 1
p , 1 < p, q <∞. Then, for any γ > 1

p ,

‖R(ab)− aR(b)‖Hs−γ,q . ‖a‖Hs,p ‖b‖Lq .

Proof. We can assume â, b̂ ∈ C∞c (R). We use the inhomogeneous Littlewood–Paley decomposition,
so that a =

∑
j≥0 aj and b =

∑
j≥0 bj , where âj = %j â.

As in the previous proof, we need only estimate
∥∥∥∑j≥0 ajb

j+2
∥∥∥
Hs−γ,q

, as R is an isomorphism of

Hs−γ,q(R) and of Lq(R). We have ‖aj‖L∞ . 2−j(s−1/p) ‖a‖Hs,p (see the proof of Corollary B.7).

Given h ∈ S(R), observe that F(ajb
j+2) vanishes outside B(0, 2j+4), so∣∣∣∣∣∣

∫ ∑
j≥0

ajb
j+2h

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j≥0

∫
ajb

j+2hj+4

∣∣∣∣∣∣ . ‖a‖Hs,p ‖Mb‖Lq ‖h‖F−(s−1/p)

q′,1
,

thanks to the pointwise inequalities
∣∣bj+2

∣∣ .Mb (Mb being the maximal function of b) and∣∣∣∣∣∣
∑
j≥0

ajb
j+2hj+4

∣∣∣∣∣∣ .
∑
j≥0

2−j(s−1/p) ‖a‖Hs,p (Mb)
∣∣hj+4

∣∣ . ‖a‖Hs,p (Mb)
∑
j≥0

2−j(s−1/p) |hj | .

But H−(s−γ),q
′

= F
−(s−γ)
q′,2 ↪→ F

−(s−1/p)
q′,1 (see [Tri83]), so∣∣∣∣∣

∫ ∑
j≥0

ajb
j+2h

∣∣∣∣∣ . ‖a‖Hs,p ‖b‖Lq ‖h‖H−(s−γ),q′ . �

We will implicitly use many times the following result.

Lemma E.3. If u ∈ Hs,p
loc (R) for some s ≥ 1 and 1 < p <∞, then P T (u) ∈ Hmin(s,k−1),p

loc (R).

Proof. We can assume that 1 ≤ s ≤ k. The claim is trivial for s ∈ N, while when s > 1 is not an
integer it follows from [BM01], the map P T being Ck−1-smooth. Notice that u ∈ W 1,sp

loc (R) by
[BM01] with (p, q, s) := (sp, 2, 1), (p1, q1, s1) := (p, 2, s), (p2, q2, s2) := (∞,∞, 0) and the fact that

u ∈ H1,p
loc (R) ⊆ L∞loc(R). �

We also need the following lemmata, where we use the dyadic partition of unity (%j)
∞
j=0 ⊆ C∞c (R)

introduced in Appendix B.

Lemma E.4. If f ∈ Ḣ1/2(R) and ρ ∈ C∞c (B(0, 1)), we have

(36)
〈
(−∆)1/2f, ρ

〉
=

∞∑
j=0

∫
((−∆)1/2ρ)(%jf).
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Proof. Notice that f ∈ L1
loc(R) and (−∆)1/2ρ ∈ L∞(R), so each term in the right-hand side makes

sense. By the remark after Lemma B.4, the left-hand side equals 2π
∫
|ξ| f̂(ξ)ρ̂(ξ) dξ.

For any j ≥ 2, by Lemma B.1 and the fact that F−1(|ξ|) ∈ C∞(R \ {0}) is homogeneous of degree
−2 (see [Gra14C]),∣∣∣∣∫ ((−∆)1/2ρ)(%jf)

∣∣∣∣ . 2−2j ‖f‖L1(B(0,2j+1)\B(0,2j−1)) . 2−j ‖f‖L1(B(0,1)) + 2−j(j + 1) ‖f‖Ḣ1/2 .

Therefore the sum in the right-hand side of (36) converges and is bounded by ‖f‖L1(B(0,1)) +‖f‖Ḣ1/2 .

Hence, by Lemma B.2, it is enough to prove (36) on S(R) + R.

If f ∈ S(R), the identity is trivially satisfied since in this case we have

∞∑
j=0

∫
((−∆)1/2ρ)(%jf) =

∫
((−∆)1/2ρ)f = 2π

∫
|ξ| f̂(ξ)ρ̂(ξ) dξ.

If f = c is constant then

〈
(−∆)1/2c, ρ

〉
= 0 = 2πc lim

N→∞

∫
|ξ| ρ̂(ξ)

N∑
j=0

%̂j(ξ) dξ =

∞∑
j=0

∫
((−∆)1/2ρ)(%jc),

the second equality being true since
∑N

j=0 %̂j(ξ) approximates the Dirac mass δ0 as N →∞. �

Lemma E.5. Assume w ∈ Ḣ1/2(R) is supported outside B(x0, 2), for some x0 ∈ R. Then the

distribution (−∆)1/2w restricts to a C∞ function on B(x0, 1).

Proof. We can assume x0 = 0. For ρ ∈ C∞c (B(0, 1)) and k ≥ 0 integer, Lemma E.4 gives〈
(−∆)1/2w, (−∆)kρ

〉
=
∑
j≥1

∫
((−∆)k+1/2ρ)(%jw)

.
∑
j≥1

2−(2k+2)j ‖ρ‖L1 ‖w‖L1(B(0,2j+1)\B(0,2j−1)) .
∑
j≥1

2−(2k+2)j ‖ρ‖L2 · (j + 1)2j . ‖ρ‖L2 ,

where the inequalities follow from [Gra14C] and Lemma B.1. So, calling f the restriction of

(−∆)1/2w to B(0, 1), we have (−∆)kf ∈ L2(B(0, 1)). Equivalently, d2kf
dx2k
∈ L2(B(0, 1)). This implies

that d2k−1f
dx2k−1 ∈ C0(B(0, 1)) for all k ≥ 0, hence f ∈ C∞(B(0, 1)). �

Proof of Theorem 1.4. We fix x0 ∈ R and we take a cut-off function η ∈ C∞c (B1(x0)) satisfying
η = 1 in a neighborhood of x0. Recall from Lemma D.2 that

P T (w)(−∆)1/2w = h, PN (w)∇w = 0,

with h = − 2
1+x2

P T (w)
(
R`((fj)

k
j=1) ◦Π−1

)
∈ L1 ∩ L∞(R). Therefore we have

η∇w =ηP T (w)∇w = −ηP T (w)R(−∆)1/2w

=R(ηP T (w)(−∆)1/2w)− ηP T (w)R(−∆)1/2w −R(ηh).
(37)

We remark that w ∈ H1/2,p
loc (R,Rm): by Lemma B.5∣∣(−∆)1/4(ψw)− ψ(−∆)1/4w

∣∣(x) .
∫
|ψ(x)− ψ(y)|
|x− y|3/2

|w(y)| dy . g ∗ |w| (x) ∈ L∞(R)
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with g(x) := min(|x|−1/2 , |x|−3/2) ∈ L1(R), for any ψ ∈ C∞c (R). Hence (−∆)1/4(ψw) lies both in
L2(R) and in Lp(R) + L∞(R) and thus it lies in Lp(R), as well (which can be checked using the
formula ‖f‖rLr =

∫∞
0 rλr−1L1({|f | > λ}) dλ for 1 ≤ r < ∞). Since trivially ψw ∈ Lp(R), [Tri83]

gives ψw ∈ F 1/2
p,2 (R) = H1/2,p(R).

Thus ηP T (w) ∈ H1/2,p(R) and, using again [Tri83] (with multipliers |ξ|1/2 (1 + |ξ|2)−1/4(%j−1 +

%j + %j+1) for j ∈ Z) and [Gra14C], we infer that ηP T (w) and (−∆)1/2w satisfy the hypotheses of

Lemma E.1. So, in view of (37), we get η∇w ∈ L2p/(p+2)(R), i.e. w ∈ H1,p̃
loc (R) with p̃ = 2p/(p+ 2).

We now fix another cut-off function φ ∈ C∞c (R) such that φ = 1 on B(x0, 2) and we set

w1 := φw, w2 := (1− φ)w.

Lemma E.5 yields that (−∆)1/2w2 ∈ C∞(B(x0, 1)). Now assume that we already know w ∈ Hs,p̃
loc (R)

for some real s ≥ 1: by Lemma E.3 we get h ∈ H
min(s,k−1),p̃
loc (R), so h̃ := P T (w)(−∆)1/2w1 =

−P T (w)(−∆)1/2w2 + h restricts to a function in H
min(s,k−1),p̃
loc (B(x0, 1)). We rewrite (37) as

η∇w =ηP T (w)∇w1 = −ηP T (w)R(−∆)1/2w1

=R(ηP T (w)(−∆)1/2w1)− ηP T (w)R(−∆)1/2w1 −R(ηh̃).

The commutator on the right-hand side belongs to Hmin(s,k−1)−γ,p̃(R), for any γ > 1
p̃ , thanks

to Lemma E.2 (applied with p = q := p̃). Therefore η∇w ∈ Hmin(s,k−1)−γ,p̃(R), which implies

w ∈ Hmin(s+1,k)−γ,p̃
loc (R). Iterating this procedure we eventually get

w ∈
⋂

γ>1/p̃

Hk−γ,p̃
loc (R).

We now show that, for any fixed 1 < p <∞,

w ∈
⋂

γ>1/p

Hk−γ,p
loc (R).

Since k ≥ 2, we know that w ∈ H1,q
loc (R) for all q < p̃

2−p̃ (because H2−γ,p̃
loc (R) ⊆ H1,q

loc (R) with
1
q = γ + 1

p̃ − 1 whenever γ < 1, see [Tri83]). Proceeding as above we obtain

w ∈
⋂

γ>1/q

Hk−γ,q
loc (R)

for all q < p̃
2−p̃ (notice that p̃

2−p̃ > p̃). Iterating this with q in place of p̃, we will eventually reach an

exponent q ≥ 2 and hence, as
⋂
γ>1/qH

2−γ,q
loc (R) ⊆

⋂
1<r<∞H

1,r
loc (R), all exponents in (1,∞). This

proves the assertion. Finally, applying Corollary B.7,

w ∈
⋂

1<p<∞

⋂
ε>0

H
k−1/p−ε,p
loc (R) ⊆

⋂
0<δ<1

Ck−1,δloc (R).

So u ∈ Ck−1,δ(∂S) for all 0 < δ < 1. In particular, if N is C∞-smooth then u is C∞ as well. �
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