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Abstract. In this article we prove that entire critical points (u,∇) of
the self-dual U(1)-Yang–Mills–Higgs functional E1, with normalized
energy

E1(u,∇;BR)

2πωn−2Rn−2
:=

´
BR

[
|∇u|2 + (1−|u|2)2

4
+ |F∇|2

]
2πωn−2Rn−2

≤ 1 + τ(n)

for all R > 0, have unique blow-down. Moreover, we show that they are
two-dimensional in ambient dimension 2 ≤ n ≤ 4, or in any dimension
n ≥ 2 assuming that (u,∇) is a local minimizer, thus establishing a
co-dimension-two analogue of Savin’s theorem. The main ingredient is an
Allard-type improvement of flatness.
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1. Introduction

1.1. Background on the Allen–Cahn and abelian Higgs models. Area
of geometric shapes is one of the oldest geometric functional considered in
mathematics. Given an ambient Riemannian manifold (Mn, g) (possibly the
flat Euclidean space Rn) and given an integer 1 ≤ k ≤ n− 1, one looks for
k-dimensional objects, such as k-dimensional submanifolds or singular versions
of them, which are critical points for the k-area Hk. These are called minimal
submanifolds (provided they are regular enough, depending on the context).

Besides its intrinsic interest, the study of minimal submanifolds in a given
ambient often reveals global topological structure, especially when coupled
with curvature information.

These applications motivate a systematic existence and regularity theory of
such critical points. In spite of its apparent simplicity, it is notoriously difficult
to use the area functional directly in the context of the calculus of variations,
especially when k ≥ 2. Leaving out a number of very important ways to deal
with this problem, such as the approach via parametrizations when k = 2, see,
e.g., [23, 45, 47, 46] among others, area-minimizing currents and sets of finite
perimeter in the context of minimization, [17, 25] and the monographs [26, 50],
and the Almgren–Pitts theory involving varifolds, [2, 44]. In this paper we
focus on the approximation of minimal surfaces as limit of diffuse physical
energies.

Starting from the pioneering ideas of De Giorgi, Modica [39], Ilmanen [34],
and Hutchinson–Tonegawa [33], it was understood that smooth critical points
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u :M → R for the Allen–Cahn energy

Eε(u) :=

ˆ
M

[
ε|du|2 + (1− u2)2

4ε

]
are effective diffuse approximations of minimal hypersurfaces. The Allen–Cahn
functional is a well studied model for phase transitions; a typical critical point
u takes values in [−1, 1], with u ≈ ±1 (the pure phases) except in a transition
region of thickness ≈ ε, where most of the energy concentrates. Roughly
speaking, this region is an ε-neighborhood of a minimal hypersurface, which
acts as an interface between the two phases, and the energy density decays
exponentially fast away from this interface.

This understanding brought a novel, PDE-based way to attack variational
problems for the co-dimension-one area [29], which often allows to obtain more
refined results compared to other methods [14].

In co-dimension two, similar attempts have been made by looking at
the same energy for maps u : M → C, replacing u with |u| in the second
term. This corresponds to a simplified version of the Ginzburg–Landau
model of superconductivity, popularized by Bethuel–Brezis–Hélein [9], where
one neglects the magnetic field. The asymptotic analysis of this energy is
substantially more involved, due to the lack of the aforementioned exponential
decay, and brought mixed results: see, for instance, [38, 8] in the positive
direction and [43] in the negative one.

On the other hand, including the magnetic field and looking at the so-called
self-dual regime (also called critical coupling), we can consider the alternative
energy

Eε(u, α) :=

ˆ
M

[
|du− iαu|2 + (1− |u|2)2

4ε2
+ ε2|dα|2

]
.

Apart from the different normalization, it differs from the previous energies by
an additional variable, the one-form α ∈ Ω1(M ;R), which twists the Dirichlet
term and appears in the Yang–Mills term |dα|2 (indeed, the latter equals
|F∇|2, where F∇ is the curvature of the connection ∇ := d− iα on the trivial
complex line bundle C×M).

This energy, in this specific self-dual regime (i.e., the choice of constants in
front of each term), is well known in gauge theory, where it is often called
U(1)-Yang–Mills–Higgs, or simply abelian Higgs model. It received a thorough
treatment in dimension 2, with a complete classification of critical planar
pairs (u,∇) of finite energy by Taubes [51, 52]. See also [32] for the case
of Riemann surface and [12] for Kähler manifolds. Recently, in [42], Stern
and the third-named author developed the asymptotic analysis in arbitrary
Riemannian manifolds, obtaining the precise co-dimension-two analogue of
the result by Hutchinson–Tonegawa: see Theorem 4.1 below. Related facts,
including Γ-convergence and the gradient flow convergence to mean curvature
flow, have also been verified, by Parise, Stern, and the third-named author [41,
40].
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Based on some new functional inequalities [30], the second-named author
recently obtained a quantitative refinement of the work of Taubes, who showed
(among other facts) that critical pairs on the plane minimize the energy
among pairs with the same degree at infinity: namely, in [31] a quantitative
stability is proved; the precise statement is recalled in Theorem 4.7. Together
with the main result from [42], this result will be instrumental for the analysis
in the present paper.

1.2. Savin’s theorem. Since the work of De Giorgi [18] and Allard [2], it is
known that almost-flat minimal submanifolds enjoy an improvement of flatness,
i.e., they become even closer to a plane at smaller scales, in a quantitative way.
Iteration of this improvement of flatness is the key mechanism in proving
(quantitative) regularity of minimal surfaces. The key analytical fact behind
this decay property is the observation that the linearization of the minimal
graph equation is the Laplace equation, whose solutions enjoy similar decay
properties.

A related question, in the spirit of the classical Liouville theorem, is
whether globally defined objects should be planar. The famous Bernstein’s
conjecture predicts that this is always true for minimal graphs Rn−1 → R,
which are automatically (locally) area-minimizing hypersurfaces. In view of
the improvement of flatness, this question quickly reduces to understanding
whether any blow-down is necessarily a hyperplane. Bernstein’s question was
answered affirmatively by the works of Fleming, De Giorgi, Almgren, and
Simons for n ≤ 8, while Bombieri–De Giorgi–Giusti produced a counterexample
for n = 9, whose blow-down corresponds to the Simons cone, in [11].

By analogy, De Giorgi conjectured that critical points u : Rn → R of the
Allen–Cahn energy with ∂u

∂xn
> 0 (so that level sets are graphs) are just

rotations of a one-dimensional solution u = u(xn), at least when n ≤ 8.
The question has been solved by Ghoussoub–Gui for n = 2, in [28], by
Ambrosio–Cabré for n = 3, in [4], and by Barlow–Bass–Gui under additional
regularity for the level sets, in [6]. Finally, in [49] Savin settled the conjecture
for all n ≤ 8 under the assumption that u(x′, xn) → ±1 as xn → ±∞, for any
fixed x′ ∈ Rn−1. In fact, his main contribution could be phrased as follows.

Theorem 1.1 (Savin’s theorem). A local minimizer u for Allen–Cahn enjoys
improvement of flatness. In particular, if any blow-down is a hyperplane, then
the blow-down is unique.

Here the blow-downs can be understood in terms of energy concentration,
or by looking at the blow-downs of the zero set {u = 0} with respect to the
(local) Hausdorff convergence of sets.

The previous statement implies the resolution of De Giorgi’s conjecture for
n ≤ 8, with the extra assumption mentioned above. Indeed, it is known that
this condition, together with ∂u

∂xn
> 0, implies that u is a local minimizer;

moreover, any blow-down gives a vertical area-minimizing cone in Rn, hence an
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area-minimizing cone in Rn−1, which is known to be necessarily a hyperplane
for n ≤ 8.

In other words, uniqueness of the blow-down relies on two ingredients:
improvement of flatness and a classification of blow-downs. While the second
one can be directly exported from the setting of minimal hypersurfaces, the
first one needs to be proved before passing to the limit ε→ 0, and this is the
difficult part settled by Savin.

Finally, using the maximum principle (see, e.g., [24, 7]), one can deduce the
following.

Corollary 1.2. Under the previous assumptions, u is one-dimensional.

As for minimal graphs, De Giorgi’s conjecture (even with the extra
assumption used by Savin) is false for n ≥ 9: a counterexample has been
constructed by Del Pino–Kowalczyk–Wei, in [22].

Savin’s approach uses viscosity techniques, resembling the Krylov–Safanov
theory in spirit. In particular, while his groundbreaking methods have a wide
range of applicability, even beyond variational equations, it is not always clear
how one can extend these techniques to the vectorial setting, where the
maximum principle does not apply; see however [48, 21].

Recently, Wang [54] obtained a variational proof of Savin’s theorem,
following the strategy of Allard’s proof of excess decay for stationary varifolds.
Wang’s paper has been the starting point for our investigation of the regularity
properties of the zero set of solutions of the Yang–Mills–Higgs equations.

1.3. Main results. We consider the energy

Eε :=

ˆ
eε(u,∇), eε(u,∇) := |∇u|2 + (1− |u|2)2

4ε2
+ ε2|F∇|2.

Note that Eε is just a rescaling of E1, for ε > 0. The main result of the paper
could be summarized as follows.

Theorem 1.3. Savin’s result, as stated in Theorem 1.1, holds for critical
pairs (u,∇) for E1, in any dimension n ≥ 2.

The following is the precise statement of the excess decay for critical points.

Theorem 1.4 (Tilt-excess decay). For any n ≥ 3 and small enough
0 < ρ ≤ ρ0(n), there exist constants ε0(n, ρ), τ0(n, ρ) such that the following
holds. Let (u,∇) be a critical point for Eε on the unit ball Bn

1 ⊂ Rn, with
ε ≤ ε0, u(0) = 0, and the energy bound

1

|Bn−2
1 |

ˆ
Bn

1

eε(u,∇) ≤ 2π + τ0.(1.1)

Then at least one of the following statements is true: either

E1(u,∇, Bn
ρ , S) ≤ Cρ2E1(u,∇, Bn

1 , S),
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for some (n− 2)-plane S with ∥PS − PS∥ ≤ C
√

E1(u,∇, Bn
1 , S), where PS is

the orthogonal projection onto S, the plane minimizing E(u,∇, Bn
ρ , ·), or

E1(u,∇, Bn
1 , S) ≤ max{Cε2| logE|2

√
E, e−K/ε},

where E = E(u,∇, Bn
1 , S) and C = C(n), K = K(n) are independent of ρ.

Remark 1.5. To be precise, we assume also the pointwise bounds (4.1)–(4.2),
which are automatically true if (u,∇) is a critical pair on Rn with energy
growth O(Rn−2) on Bn

R.

Here E is the excess, defined in (5.1) below, which naturally splits into two
parts, E1 and E2, measuring how far a solution is from being two-dimensional
and from solving the first order vortex equations, respectively. We also note
that E1 parallels the notion of excess in the theory of varifolds and does not
depend on the orientation, while E sees the orientation and should be thought
of as the stronger notion of excess in the setting of currents. While in principle
the previous result establishes a quantitative decay only for E1, it is enough to
obtain the following.

Corollary 1.6. If (u,∇) is an entire critical point on Rn, with

0 < lim
R→∞

1

|Bn−2
R |

ˆ
Bn

R

eε(u,∇) ≤ 2π + τ0(n),

then this limit is 2π and the blow-down is a unique plane.

The previous limit always exists by the monotonicity formula for Eε, see
[42]. By a simple compactness argument and Allard’s theorem, it is easy to see
that the assumption guarantees that any blow-down is an (n− 2)-dimensional
plane. The key assertion is that, in view of improvement of flatness, the
blow-down is unique.

Another simple consequence of the techniques is the following fact, a diffuse
version of the C1,α regularity of minimal graphs.

Theorem 1.7. Let (u,∇) be a critical point for Eε as above. Given α ∈ [0, 1)
and γ > 0, if ε ≤ ε0(n, α, γ) and τ0 ≤ τ0(n, α, γ) then the vorticity set

{|u| ≤ 3
4} ∩ Bn

1/2 is contained in a C(n, α, γ)ε1/(1+α)-neighborhood of the

graph of a function
f : Bn−2

1 → R2

with ∥f∥C1,α ≤ γ.

Differently from the co-dimension one setting, where uniqueness of the
blow-down (with multiplicity one) implies via the maximum principle that u is
one-dimensional, at the present time we are not able to conclude that, in the
setting of Corollary 1.6, the solution u is two-dimensional. Here we formulate
the following variant of the Gibbons conjecture.

Conjecture 1.8. An entire critical point (u,∇) on Rn satisfying

lim
R→∞

1

|Bn−2
R |

ˆ
Bn

R

eε(u,∇) = 2π
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and, writing any x ∈ Rn as x = (y, z) ∈ R2 × Rn−2, also

lim
|y|→∞

|u(y, z)| = 1, uniformly in z,

is necessarily two-dimensional, i.e., it is the pullback through the projection
Rn → R2 of the standard solution in R2 with degree ±1, up to translation and
change of gauge.

It is interesting to note that, if we allow for multiplicity higher than one in
the blow-down, this conjecture (with the appropriate energy assumption) does
not hold for the non-magnetic Ginzburg–Landau energy mentioned before, see
[16]. It is not clear if such rigidity with higher multiplicity should be expected
for the energy considered in the present work. On the other hand, our excess
decay is strong enough to give an affirmative answer up to dimension 4. With
a more involved argument, we are able to settle it also for local minimizers in
all dimensions n ≥ 2, thus obtaining a full analogue of Savin’s theorem.

Theorem 1.9. The previous conjecture holds for critical points in dimension
2 ≤ n ≤ 4, as well as for local minimizers in all dimensions n ≥ 2, even
without the second assumption that lim|y|→∞ |u(y, z)| = 1 uniformly in z: the
pair (u,∇) is two-dimensional, up to rotation and change of gauge.

The techniques used in this paper resemble those of [54] at several places.
However, there are several key differences which require substantially new
ideas. For instance, in order to construct the Lipschitz approximation, Wang
uses a generic level set of u. The fact that typical level sets share effectively
properties of minimal hypersurfaces is often used in [54], as well as in [34, 53,
14] and many other works in the Allen–Cahn setting. For the abelian Higgs
model, level sets of u can be arbitrarily irregular, due to gauge invariance;
while we can always pass to a local Coulomb gauge, we do not expect such
effective properties of typical preimages of u.

Rather, in the present setting, we rely on the results from [31] in order to
control in a fine way the behavior of u on many (but not all) two-dimensional
slices perpendicular to the reference plane. For instance, we are able to bound
the distance of the actual zero set from a certain function giving the “center of
mass” of each slice, which is used as a Lipschitz approximation and allows to
derive a Caccioppoli-type inequality.

In the case of minimizers, this refined control also allows us to deform a
nearly flat minimizing pair (u,∇) in the interior to gain a stronger decay of
the excess. This deformation process also requires a very involved gauge fixing
argument, since generically (u,∇) could be very irregular in an arbitrary gauge.
The following theorem is the precise statement of the improved tilt-excess
decay that we obtain for minimizers. Note that in the statement below, β
can indeed be any power. This is fundamental for proving Theorem 1.9 for
minimizers, where we need to take β = n− 2.

Theorem 1.10. For any β > 0 and small enough 0 < ρ ≤ ρ0(n, β) there exist
τ0(n, β, ρ) > 0, ε0(n, β, ρ) > 0 with the following property. Let (u,∇) be a
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local minimizer of Eε in Bn
1 with ε ≤ ε0 and u(0) = 0 such that

1

|Bn−2
1 |

ˆ
Bn

1

eε(u,∇) ≤ 2π + τ0,

and let S minimize E(u,∇, Bn
1 , S). Then, after a suitable rotation, at least

one of the following statements is true: either

E(u,∇, Bn
ρ , S) ≤ Cρ2E(u,∇, Bn

1 , S),

for some new oriented (n− 2)-plane S with ∥PS − PS∥ ≤ C
√
E, or

E(u,∇, Bn
1 ,Rn−2) ≤ εβ,

where C = C(n, β) is independent of ρ.

Then, by taking β ≥ n− 2, we obtain a direct proof of Theorem 1.9 in the
case of minimizers.

Acknowledgement. This article is part of the PhD thesis of A.H. and he
would like to thank Fanghua Lin for his inspiring lectures on harmonic maps.
The authors would like to thank Robert V. Kohn, Zhengjiang Lin, Sylvia
Serfaty, and Daniel Stern for their interest and related discussions. The work
of G.D.P. and A.H. has been supported by the NSF grant DMS-2055686 and
the Simons Foundation.

2. Basic definitions

While we work on the trivial Hermitian line bundle over the Euclidean
space Rn, it is worth to recall the definition of Hermitian line bundle over a
general manifold.

Definition 2.1. A Hermitian line bundle over a smooth manifold M is a
complex line bundle L→M (i.e., a complex vector bundle with typical fiber
C) equipped with a Hermitian metric, whose real part will be denoted by ⟨·, ·⟩;
thus, for any two smooth sections s, t ∈ Γ(L), the function p 7→ ⟨s(p), t(p)⟩ is
smooth and real-valued, and satisfies ⟨is(p), it(p)⟩ = ⟨s(p), t(p)⟩ = ⟨t(p), s(p)⟩.

Definition 2.2. A metric connection is a map ∇ which assigns to each vector
field ξ ∈ Γ(TM) an endomorphism ∇ξ : Γ(L) → Γ(L) with the following
properties:

(i) ∇ξ+ηs = ∇ξs+∇ηs;
(ii) ∇ϕξs = ϕ∇ξs;
(iii) ∇ξ(ϕs) = (ξϕ)s+ ϕ∇ξs;
(iv) ξ(⟨s, t⟩) = ⟨∇ξs, t⟩+ ⟨s,∇ξt⟩,

for any sections s, t ∈ Γ(L), vector fields ξ, η ∈ Γ(TM), and function
ϕ ∈ C∞(M).

On the trivial bundle L = C×M , we can always write a metric connection
∇ as

∇ = d− iα,
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for a real-valued one-form, meaning that ∇ξs = ds(ξ)− iα(ξ)s.
In general, for two vector fields ξ and η, typically ∇ξ and ∇η do not

commute, meaning that the connection has nontrivial curvature. Formally, the
curvature F∇ is given by

F∇(ξ, η)(s) = [∇ξ,∇η]s−∇[ξ,η]s.(2.1)

A simple computation shows that F∇ is a two-form with values in the Lie
algebra of U(1), i.e., in imaginary numbers; we will sometimes use the
real-valued two-form ω given by

F∇(ξ, η)(s) =: −iω(ξ, η)s.(2.2)

On the trivial bundle, if ∇ = d− iα then we simply have

ω = dα.

We will use the inner product on two-forms induced by the following
quadratic form:

|ω|2 =
∑

1≤j<k≤n
|ω(ej , ek)|2,

where {ek}nk=1 is a local orthonormal frame for TM .

3. The U(1)-Yang–Mills–Higgs equations

For a section u ∈ Γ(L) and a (metric) connection ∇ on a Hermitian line
bundle L→M over a smooth Riemannian manifold (M, g), given a parameter
ε > 0, we define the U(1)-Yang–Mills–Higgs energy as

Eε(u,∇) :=

ˆ
M

[
|∇u|2 + ε2|F∇|2 +

(1− |u|2)2

4ε2

]
,(3.1)

where F∇ is the curvature of ∇ and |F∇| is defined to be |ω| (with ω as in
(2.2)). Equivalently, on the trivial bundle, for any section u (viewed as a
function M → C) and connection ∇ = d− iα we have

Eε(u,∇ = d− iα) =

ˆ
M

[
|du− iuα|2 + ε2|dα|2 + (1− |u|2)2

4ε2

]
.

A smooth pair (u,∇) gives a critical point for the Yang–Mills–Higgs energy
if and only if it satisfies the system of partial differential equations:

∇∗∇u =
1

2ε2
(1− |u|2)u,(3.2)

ε2d∗ω = ⟨∇u, iu⟩,(3.3)

where ∇∗ is the adjoint of ∇, while d∗ is the adjoint of d : Ω1(M) → Ω2(M),
given by

(d∗ω)(ek) = −
n∑
j=1

(∇ejω)(ej , ek)

for some (and hence any) orthonormal frame {ej}.
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We now recall some Bochner-type identities from [42, Sections 2–3]. Since ω
is a closed two-form, after taking the exterior derivative in (3.3) we get

ε2∆Hω + |u|2ω = ψ(u),(3.4)

where ∆H = dd∗ + d∗d is the Hodge Laplacian and

ψ(u)(ej , ek) := 2⟨i∇eju,∇eku⟩.(3.5)

One easily sees that the modulus |u|2 satisfies the equation

∆
1

2
|u|2 = |∇u|2 − |u|2

2ε2
(1− |u|2).(3.6)

We also recall the following Bochner identity for |∇u|2:

∆
1

2
|∇u|2 = |∇2u|2 + 1

2ε2
(3|u|2 − 1)|∇u|2 − 2⟨ω, ψ(u)⟩+R1(∇u,∇u),

(3.7)

where R1 = Ric(ej , ek)⟨∇eju,∇eku⟩ and ∇2
ej ,ek

u = ∇ej (∇eku).

Next, we define the gauge-invariant Jacobian, which plays an important role
in the Γ-convergence theory [41], similar to the classical Jacobian in the
Γ-convergence for the Ginzburg–Landau energy with no magnetic field, see [1,
8, 37]. It is the two-form given by

J(u,∇) := ψ(u) + (1− |u|2)ω.(3.8)

We have the trivial pointwise bound

|J(u,∇)| ≤ eε(u,∇),(3.9)

where eε(u,∇) is the integrand in (3.1).
We define Γε to be the dual current to the Jacobian, formally identified by

the duality formula

⟨Γε, ξ⟩ =
1

2π

ˆ
M
J(u,∇) ∧ ξ,(3.10)

for any (n− 2)-form ξ ∈ Ωn−2(M). Note that by (3.4) the Jacobian can be
written as

J(u,∇) = ω + ε2∆Hω.

In particular, this shows that the gauge-invariant Jacobian is a closed two-form.
This, in duality, implies that ∂Γε = 0, i.e., Γε is an (n− 2)-dimensional cycle.

4. Preliminary estimates

4.1. The energy concentration set. It was proved by the third-named
author and Stern in [42] that, for a sequence (uε,∇ε) with ε→ 0, one can
extract a subsequence such that the energy density converges to (the weight
of) a stationary integer-rectifiable (n− 2)-varifold. We restate the main result
of [42] in the following theorem, see [42, eq. (6.35)] for the conclusion on the
Jacobian.
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Theorem 4.1 (The varifold limit). Let L→M be a Hermitian line bundle
over a closed, oriented Riemannian manifold (Mn, g) of dimension n ≥ 2 and
let (uε,∇ε) be a family of critical points of Eε, satisfying the uniform energy
bound

Eε(uε,∇ε) ≤ Λ <∞.

Then, as ε→ 0, the energy measures

µε =
1

2π
eε(uε,∇ε) volg,

converge subsequentially, in duality with C0(M), to a measure µ which is the
weight of a stationary integral (n− 2)-varifold V . Also, for all 0 ≤ δ < 1,

spt(V ) = lim
ε→0

{|uε| ≤ δ},

in the Hausdorff topology. The (n− 2)-currents dual to the curvature forms
1
2πωε and Jacobians 1

2πJ(uε,∇ε) converge subsequentially to the same limit,
an integral cycle Γ with |Γ| ≤ µ.

Remark 4.2. The previous result admits a local version, proved in the same
way (assuming the bounds (4.1) and (4.2) below, which in the closed case
follow from the maximum principle): assume that we have an increasing
sequence of open sets Uε ⊆ Rn and a sequence of smooth pairs (uε,∇ε), each
defined on the trivial bundle C× Uε and critical for Eε; if we have

lim sup
ε→0

ˆ
K
eε(uε,∇ε) <∞

for any compact subset K ⊂ U :=
⋃
ε Uε, as well as (4.1)–(4.2), then there exist

a limiting varifold V and a limiting cycle Γ satisfying the same conclusions as
above (up to a subsequence).

We will use the above theorem (in its local version) in several soft arguments
by compactness and contradiction; in particular, we will use it to obtain
information for any blow-down limit of an entire solution.

4.2. Modica-type bounds and exponential decay. Actually, [42] contains
some additional information which will be used frequently in the paper,
including a Modica-type bound which was first proved in dimension two in [36,
Theorem III.8.1]. We record the following propositions in the non-compact
case of M = Rn, with the trivial bundle L = C× Rn.

Proposition 4.3. A critical point (u,∇) for Eε, on the trivial bundle on Rn,
satisfies

(4.1) |u| ≤ 1

everywhere.

Proof. The bound |u| ≤ 1 +C(n)ε2 on the unit ball B1(0) can be shown as in
[40, Proposition A.2], and the claim follows by scaling. □
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Proposition 4.4 (Modica-type bounds). Assuming also that the energy on a
ball BR is O(Rn−2) for R large enough, we have the pointwise bounds

ε|F∇| ≤
1− |u|2

2ε
, |∇u| ≤ 1− |u|2

ε
.(4.2)

Proof. The proof is essentially the same as in [42]; however, in the Euclidean
space, the Modica-type bound has no error terms. First, define ξε to be the
discrepancy :

ξ := ε|F∇| −
1− |u|2

2ε
.(4.3)

Arguing as in [42, Section 3], we see that

∆ξ ≥ |u|2

ε2
ξ.(4.4)

For the positive part ξ+, this immediately implies that

∆ξ+ ≥ 0

in the distributional sense, i.e., ξ is subharmonic. Under the energy growth
assumption, we have ˆ

BR(0)
|ξ| = O(Rn−1),

which gives ξ+ ≡ 0, as claimed.
For the second bound, proceeding as in [42, eqs. (5.5)–(5.6)], we check that

w := |∇u| − 1− |u|2

ε

satisfies

∆w ≥ |u|2

ε2
w +

1

ε

(
w +

1− |u|2

ε

)(
2w +

1− |u|2

2ε

)
.

Again, this implies that w+ is subharmonic, and hence w+ ≡ 0. □

We also record the following exponential decay of energy, which plays a key
role in the paper.

Proposition 4.5 (Exponential decay away from the vorticity set). There
exist constants K(n) > 0 and C(n) > 0 such that, defining Z := {|u| ≤ 3

4}
and r(p) := dist(p, Z), we have

eε(u,∇) ≤ C
e−Kr(p)/ε

ε2
.(4.5)

Proof. As in [42, Corollary 5.2], we compute that on Rn \ Z we have

∆
1− |u|2

2
≥ 1− |u|2

4ε2
.

Exponential decay now follows as in [42, Proposition 5.3], using also the
previous Modica-type bounds. □



DECAY OF EXCESS FOR THE ABELIAN HIGGS MODEL 13

4.3. Inner variations and monotonicity. In this section we recall the
inner variation formulas for critical points. With respect to any orthonormal
basis {ek}nk=1 for TM , we define the (0, 2)-tensors ∇u∗∇u and ω∗ω by

(∇u∗∇u)(ej , ek) := ⟨∇eju,∇eku⟩,(4.6)

ω∗ω(ei, ej) :=
n∑
k=1

ω(ei, ek)ω(ej , ek).(4.7)

We define the stress-energy tensor to be

Tε(u,∇) := eε(u,∇)− 2∇u∗∇u− 2ε2ω∗ω.(4.8)

Then, for any pair (u,∇) satisfying (3.2)–(3.3), the inner variation formula
then reads

div(Tε(u,∇)) = 0,(4.9)

meaning that, for any compactly supported vector field X,
ˆ
M
⟨Tε(u,∇), DX⟩ = 0.(4.10)

A core tool in the proof of Theorem 4.1 is the monotonicity formula from
[42, Theorem 4.3], which is cleaner in the case of the trivial line bundle
L = C× Rn over the flat Euclidean space M = Rn. We state this version of
the theorem for convenience and give a short proof.

Proposition 4.6 (Monotonicity formula). Let (u,∇) be a critical point for
Eε on the trivial line bundle L = C× Rn → Rn. Then the normalized energy

Ẽε(p, r) := r2−n
ˆ
Br(p)

eε(u,∇)

satisfies

d

dr
Ẽε(p, r) = 2r1−n

ˆ
Br(p)

(
(1− |u|2)2

4ε2
− ε2|ω|2

)
+ 2r2−n

ˆ
∂Br(p)

(|∇νu|2 + |ινω|2).
(4.11)

Proof. Without loss of generality, assume that p = 0. By approximation we
can take X(x) = 1Br(0)

∑n
k=1 xkek in (4.10), obtaining

r

ˆ
∂Br

eε(u,∇) =

ˆ
Br

(n− 2)eε(u,∇) + 2

ˆ
Br

(
(1− |u|2)2

4ε2
− ε2|ω|2

)
+ 2r

ˆ
∂Br

(
|∇νu|2 + ε2|ινω|2

)
.
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Since

d

dr
Ẽε(x, r) = (2− n)r1−n

ˆ
Br

eε(u,∇) + r2−n
ˆ
∂Br

eε(u,∇)

= 2r1−n
ˆ
Br

(
(1− |u|2)2

4ε2
− ε2|ω|2

)
+ 2r2−n

ˆ
∂Br

(|∇νu|2 + |ινω|2),

we obtain the desired conclusion. □

4.4. Quantitative stability in two dimensions and the vortex equations.
In this section we record some results regarding the existence, uniqueness, and
quantitative stability of critical points for (3.1) in R2. First of all note that for
ε = 1 the energy E1 of any pair (u,∇) can be written as follows:

E(u,∇) =

ˆ
R2

[
|∇u|2 + |F∇|2 +

(1− |u|2)2

4

]
= 2π|N |+

ˆ
R2

|∇1u± i∇2u|2 +
∣∣∣∣⋆ω ∓ 1− |u|2

2

∣∣∣∣2 ,(4.12)

where N is the vortex number of (u,∇), given by

N :=
1

2π

ˆ
R2

⋆ω.

Thus (u,∇) is a minimizer of the total energy among pairs with the same
vortex number if and only if it satisfies the first-order system of vortex
equations:

∇1u± i∇2u = 0 and ⋆ ω = ±1− |u|2

2ε
.(4.13)

These are also called Bogomol’nyi equations (after [10]) or self-dual equations,
and arise in many self-dual gauge theories. Taubes, in [51], proved that we can
prescribe the zero set u−1(0) = {a1, . . . , ak}: given any finite collection of
k ≥ 0 points, counted with multiplicity, there exists a solution (u,∇) to the
vortex equations (with either choice of signs, corresponding to vortex number
N = k and N = −k, respectively) with this prescribed zero set; moreover, the
solution is unique up to change of gauge.

In [31] the second-named author improved the previous results by proving a
(sharp) quantitative stability for critical points of E1. We record these results
and this improvement in the following theorem.

Theorem 4.7 (Uniqueness and stability in two dimensions). On the trivial
line bundle over R2, any critical point (u,∇) of finite energy for E1 is actually
a minimizer with E1(u,∇) = 2πk ∈ 2πN. Moreover, up to change of gauge,
any minimizer is uniquely characterized by its zero set u−1(0) = {a1, . . . , ak}
(counted with multiplicity, according to the local degree of u around any zero)
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and orientation. Letting F be the moduli space of all minimizers, the following
quantitative stability estimates hold:

inf
(u0,∇0)∈F

(∥u− u0∥2L2(R2) + ∥F∇ − F∇0∥2L2(R2)) ≤ Ck(E1(u,∇)− 2πk),

(4.14)

for some constant Ck > 0 and all pairs such that the discrepancy E1(u,∇)−
2πk ≤ δk is small enough.

Proof. Existence and uniqueness were proved in [51, 52], while quantitative
stability was obtained in [31]. □

The proof of the above theorem uses weighted estimates developed in [30].
Essentially, Theorem 4.7 tells us that in the vanishing ε limit, two-dimensional
slices perpendicular to the energy concentration set resemble minimizing
vortex solutions in R2. In the case of regular enough pairs (u,∇), we also have
the stability of the Jacobian and the energy density, given by the following
theorem.

Theorem 4.8. For any Λ > 1 and integer k, there exist constants CΛ,k > 0 and

ηΛ,k > 0 with the following property. Let (u,∇) ∈W 1,2
loc (R

2) be a finite-energy
pair such that

(i) Λ−1|u0| ≤ |u| ≤ Λ|u0| for a solution (u0,∇0) with zero set {xj}kj=1

(counted with multiplicity);
(ii) E1(u,∇)− 2πk ≤ η2Λ,k;

(iii) u
|u| ∈W 1,1

loc and has the same degree as u0
|u0| around each xj.

Then for any 0 < γ < 1
k , writing ∇ = d− iα, we have

ˆ
R2

|u0|2+2γ

[∣∣∣∣d log( |u|
|u0|

)∣∣∣∣2 + |α− α0|2
]
≤
CΛ,k

γ2
[E1(u,∇)− 2πk],

up to a change of gauge. Moreover, the Jacobian and the energy density satisfy
the following estimates:

∥J(u,∇)− J(u0,∇0)∥L1(R2) + ∥e1(u,∇)− e1(u0,∇0)∥L1(R2)

≤ CΛ,k

√
E1(u,∇)− 2πk.

(4.15)

Proof. For the proof see [31, Theorems 1.2 and 1.3], as well as [31, Section
3.3]. □

5. Quantifying flatness and the excess

We assume that n ≥ 3 throughout the rest of the paper, unless otherwise
stated.
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5.1. Excess definitions. In this section we introduce a way to measure
flatness of a pair (u,∇). Inspired by the definition of tilt-excess by De Giorgi
[18], we define the Yang–Mills–Higgs excess as

E(u,∇, Br(x), S) :=
r2−n

2π

ˆ
Br(x)

[eε(u,∇)− J(u,∇) ∧ e∗S ]

= µε(Br(x))− ⟨Γε,1Br(x)e
∗
S⟩

(5.1)

for any oriented (n−2)-plane S in Rn with the associated (n−2)-vector eS and
(n−2)-covector e∗S . Take an oriented orthonormal basis of S = span{e3, . . . , en}
and extend it to an orthonormal basis {e1, . . . , en} of Rn. Then by a completion
of squares we see that the excess splits into two terms:

E = E1 +E2,

where

E1(u,∇, Br(x), S)

:=
r2−n

2π

ˆ
Br(x)

 n∑
k=3

|∇eku|
2 + ε2

∑
(j,k)̸=(1,2)

ω(ej , ek)
2

(5.2)

and

E2(u,∇, Br(x), S)

:=
r2−n

2π

ˆ
Br(x)

[
|∇e1u+ i∇e2u|2 +

∣∣∣∣εω(e1, e2)− 1− |u|2

2ε

∣∣∣∣2
]
.

(5.3)

Note that E1 quantifies how flat the solution is in the directions tangent to S,
while E2 quantifies the error in the vortex equations on perpendicular slices.
Moreover, E1 does not depend on the orientation of S (while E and E2 do).

The Yang–Mills–Higgs excess is a key tool in our analysis. For S :=
{0} × Rn−2, with a slight abuse of notation, we define

Ez =
1

2π

ˆ
B2

1×{z}
[eε(u,∇)− J(u,∇)(e1, e2)]

for z ∈ Rn−2, and similarly

(E1)z :=
1

2π

ˆ
B2

1×{z}

 n∑
k=3

|∇eku|
2 + ε2

∑
(j,k) ̸=(1,2)

ω(ej , ek)
2

 ,
(E2)z :=

1

2π

ˆ
B2

1×{z}

[
|∇e1u+ i∇e2u|2 +

∣∣∣∣εω(e1, e2)− 1− |u|2

2ε

∣∣∣∣2
]
.

5.2. The tilt-excess decay statement. Parallel to De Giorgi’s [18] and
Allard’s [2] regularity theorems, we aim to prove a decay of the excess up
to scale ε, compare with [54, Theorem 3.3]. More precisely, our goal is to
show Theorem 1.4, which is one of the main results of the present work. For
convenience, we recall its statement here.
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Theorem 5.1. For any n ≥ 3 and small enough 0 < ρ ≤ ρ0(n) there exist
constants C(n) > 0 and ε0(n, ρ), τ0(n, ρ) such that the following holds. Let
(u,∇) be a critical point for the energy Eε, given by (3.1), with ε ≤ ε0. Assume
that u satisfies the bounds (4.1) and (4.2), that u(0) = 0, and the energy bound

1

|Bn−2
1 |

ˆ
Bn

1

eε(u,∇) ≤ 2π + τ0.

Then at least one of the following statements is true: either

E1(u,∇, Bn
ρ , S) ≤ C(n)ρ2E1(u,∇, Bn

1 , S),(5.4)

for some (n− 2)-plane S with ∥PS − PS∥ ≤ C(n)
√
E1(u,∇, Bn

1 , S), where
PS is the orthogonal projection onto S, the plane minimizing E(u,∇, Bn

ρ , ·),
and ∥ · ∥ is the Hilbert–Schmidt norm, or

E1(u,∇, Bn
1 , S) ≤ max{C(n)ε2| logE|2

√
E, e−K(n)/ε},(5.5)

where E = E(u,∇, Bn
1 , S).

Note that thanks to Proposition 4.3 and Proposition 4.4, if u is an entire
solution such that

´
Bn

R
eε(u,∇) = O(Rn−2), then (4.1) and (4.2) are statisfied.

In particular by scaling we deduce the following.

Theorem 5.2. For any small enough 0 < ρ ≤ ρ0(n), there exist constants
C(n), R0(n, ρ) > 0 and τ0(n, ρ) with the following property. Let (u,∇) be an
entire critical point for E1, with the energy bound

lim
R→∞

1

|Bn−2
R |

ˆ
Bn

R

e1(u,∇) ≤ 2π + τ0.

Then for all R ≥ R0 at least one of the following statements is true: either

E1(u,∇, Bn
ρR, S) ≤ C(n)ρ2E1(u,∇, Bn

R, S),(5.6)

for some (n− 2)-plane S with ∥PS − PS∥ ≤ C(n)
√
E1(u,∇, Bn

R, S) and S
minimizing E(u,∇, Bn

R, ·), or

E1(u,∇, Bn
R, S) ≤ max{C(n)R−2| logE|2

√
E, e−K(n)R},(5.7)

where E = E(u,∇, Bn
R, S).

5.3. Blow-up at multiplicity one points. Allard’s regularity theorem [2]
asserts that the energy concentration set in Theorem 4.1 is locally a C1,α

submanifold around points of multiplicity one. We use this to show that, for
any blow-down, the energy concentration set is a flat (n− 2)-plane.

Proposition 5.3 (Multiplicity one and vanishing of excess). For any δ > 0
there exist τ0(n, δ) > 0 and ε0(n, δ) > 0 small enough with the following
property. Let (u,∇) be a critical point for Eε on the unit ball Bn

1 , with
u(0) = 0 and ε ≤ ε0, as well as the energy bound

1

|Bn−2
1 |

ˆ
Bn

1

eε(u,∇) ≤ 2π + τ0
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and (4.1)–(4.2). Then, after a suitable rotation and, possibly, a conjugation of
(u,∇),

E(u,∇, Bn
1/2,R

n−2) ≤ δ,

where we write Rn−2 to mean {0} × Rn−2. As a consequence, given an entire

critical point (ũ, ∇̃) for E1, with u(0) = 0 and the energy bound

lim
R→∞

1

|Bn−2
R |

ˆ
Bn

R

e1(ũ, ∇̃) ≤ 2π + τ0(n),

then the previous limit is 2π and we can find oriented (n− 2)-planes S(R)
such that

lim
R→∞

E(ũ, ∇̃, Bn
R, S(R)) = 0.

Proof. The proof is a standard argument by compactness and contradiction.

Local case. Assume that there are sequences (uε,∇ε) and τε → 0 (as
ε→ 0) such that ˆ

Bn
1

eε(uε,∇ε) ≤ (2π + τε)|Bn−2
1 |

and, on the other hand,

lim inf
ε→0

E(uε,∇ε, B
n
1/2, S(ε)) > 0,(5.8)

for any choice of oriented (n− 2)-planes S(ε) (where, with abuse of notation,
we write ε to mean a sequence εk → 0). We apply Theorem 4.1: up to
extracting a subsequence, we have

eε(uε,∇ε) dx
∗
⇀ 2π dµV

in duality with C0
c , where V is a stationary integral (n− 2)-varifold whose

weight µV obeys the bound

µV (B
n
1 ) ≤ lim inf

ε→0

1

2π

ˆ
Bn

1

eε(uε,∇ε) ≤ |Bn−2
1 |.(5.9)

Moreover there exists an integral (n− 2)-cycle Γ such that J(uε,∇ε)⇀ 2πΓ
as currents and |Γ| ≤ µV .

Since uε(0) = 0, by the clearing-out lemma [42, Corollary 4.4] we get
that 0 ∈ spt(µV ), so that Θn−2(µV , 0) ≥ 1 since V is an integral stationary
varifold. Because of (5.9), the monotonicity formula for stationary varifolds is
saturated, showing that V must be a cone with respect to the origin; we
extend it to a stationary cone Ṽ on Rn. Since Θn−2(µṼ , x) ≥ 1 = Θn−2(µṼ , 0)

for all x ∈ spt(µṼ ), we see that Ṽ is a cone with respect to any x ∈ spt(µṼ ),
and hence a plane (since the tangent plane exists for a.e. point x). Thus, up to
a rotation, V is the multiplicity-one varifold associated to {0} × Rn−2.
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Moreover, the argument used in [42, Section 6.2] to show integrality of V
actually reveals that the limiting density is the sum of the absolute values of
the degrees of

uε
|uε|

∣∣∣
∂Di×{z}

along typical slices B2
1 × {z} with |z| < 1

2 , where D1, . . . , DN ⊂ B2
1/2 are

suitable disjoint disks (depending on z) such that uε(·, z) ̸= 0 on B2
1/2 \

⋃
iDi

(see in particular the proof of [42, Proposition 6.6] and the conclusion of [42,
Proposition 6.7]). Since the limiting density is 1 and, eventually, uε(y, z) ̸= 0
for y ∈ ∂B2

1/2 and z ∈ Bn−2
1/2 , we see that

deg
uε
|uε|

(·, z) = 1 from ∂B2
1/2 to S1

eventually. As in [42, Lemma 6.11], we deduce that Γ = ±J{0} ×Bn−2
1 K. We

conclude that, after possibly replacing (u,∇) with the conjugate pair, we have

0 < lim
ε→0

E(uε,∇ε, B
n
1/2,R

n−2)

= lim
ε→0

1

2π

ˆ
Bn

1

[eε(uε,∇ε)− J(uε,∇ε) ∧ e∗3 ∧ · · · ∧ e∗n]

= µV (B
n
1/2)− ⟨Γ,1Bn

1/2
e∗3 ∧ · · · ∧ e∗n⟩

= 0,

which is the desired contradiction.
Entire case. For the case of an entire solution (u,∇), we perform a

rescaling: writing ∇ = d− iα̃, let

uε(x) := u(ε−1x), ∇ε := d− iαε with αε(x) := ε−1α(ε−1x).

Again, by applying Theorem 4.1, up to extracting a subsequence we have

eε(uε,∇ε) dx
∗
⇀ dµV , for a stationary integral (n− 2)-varifold V , and the

Jacobians J(uε,∇ε)⇀ Γ for an integral (n− 2)-cycle Γ with the pointwise
bound |Γ| ≤ µV . Using the monotonicity formula for Eε, we see that

µV (B
n
R) = lim

ε→0

εn−2

2π

ˆ
Bn

R/ε

e1(u,∇)

is a constant multiple of Rn−2, and hence V is a cone around the origin with
µV (B

n
1 ) ≤ 1 + τ0

2π . Then, by Allard’s regularity theorem [2], we see that for
τ0(n) small enough, after a suitable rotation, V is the varifold associated to
{0} × Rn−2. In particular, this shows the conclusion on the energy limit.

As before, we also have Γ = ±J{0} × Rn−2K, concluding that for R := ε−1
k

(where εk → 0 is our subsequence) the statement holds for the plane
S(R) := {0} × Rn−2, either for (u,∇) or the conjugate pair (u,∇ = d+ iα)
(depending on R). Since the initial sequence εk → 0 was arbitrary, we deduce
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that

(5.10) min
S∈Gr(n,n−2)

min{E(u,∇, Bn
R, S),E(u,∇, Bn

R, S)} → 0

as R→ ∞. Finally, letting S(R) realize the minimum over S ∈ Gr(n, n− 2),
since E1 ≤ E does not distinguish between (u,∇) and (u,∇) we have

E1(u,∇, Bn
R, S(R)) → 0.

As a consequence, we must have

(5.11) sup
R′∈[R,2R]

∥PS(R′) − PS(R)∥ → 0,

since otherwise we would find sequences S(Rk) → Ŝ and S(R′
k) → Ŝ′ ̸= Ŝ

(with Rk ≤ R′
k ≤ 2Rk) for which

E1(u,∇, Bn
R, Ŝ) +E1(u,∇, Bn

R, Ŝ
′) → 0 as R = Rk → ∞,

thanks to the assumption
´
Bn

R
e1(u,∇) = O(Rn−2). If Ŝ ∪ Ŝ′ spans Rn, this

immediately gives
´
Bn

R
e1(u,∇) = o(Rn−2), contradicting the assumption

u(0) = 0 and the clearing-out lemma. Otherwise, their span is (n − 1)-
dimensional; letting e1 be a unit vector orthogonal to it and completing to an
orthonormal basis {e1, . . . , en} such that e2 ⊥ Ŝ, we deduce that

ˆ
Bn

R

 n∑
j=2

|∇eju|2 + |ω|2
 = o(Rn−2).

Because of (5.10), we also have

min{E2(u,∇, Bn
R, Ŝ),E2(u,∇, Bn

R, Ŝ)} → 0,

giving
ˆ
Bn

R

[
||∇e1u| − |∇e2u||2 +

∣∣∣∣|ω(e1, e2)| − 1− |u|2

2

∣∣∣∣2
]
→ 0,

giving again the contradiction
´
Bn

R
e1(u,∇) = o(Rn−2).

Having established (5.11), the claim follows by a straightforward continuity
argument: for R large enough we cannot have that

E(u,∇, Bn
R, S(R)), E(u,∇, Bn

R′ , S(R′))

are both small, for some R′ ∈ [R, 2R], since this would imply that

E2(u,∇, Bn
R, S(R)) +E2(u,∇, Bn

R, S(R))

is also small, which would give again small normalized energy on Bn
R; the

same holds interchanging the roles of R and R′, completing the proof. □

We also record the following consequence of the Hausdorff convergence of
the vorticity set Z = {|u| ≤ 3

4}.
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Lemma 5.4 (Soft height bound). For any σ > 0 there exist τ0(n, σ) > 0 and
ε0(n, σ) > 0 with the following property. Let (u,∇) be a critical point for Eε
on Bn

1 , with ε ≤ ε0 and u(0) = 0, as well as the energy bound

1

|Bn−2
1 |

ˆ
Bn

1

eε(u,∇) ≤ 2π + τ0

and (4.1)–(4.2). Then, after a suitable rotation, the zero set is contained in a
small neighborhood of Rn−2; more precisely,

{|uε| ≤ 3/4} ∩Bn
1−σ ⊂ B2

σ ×Bn−2
1 .

Proof. Following the same strategy as in the proof of Proposition 5.3, the
statement follows from the Hausdorff convergence of the vorticity set in
Theorem 4.1. □

Remark 5.5. We will often use the following observation: if the excess
E1 is suitably small on Bn

1 , then the same conclusion holds without any
rotation. The same holds under other assumptions forcing the vorticity set to
concentrate on the plane Rn−2 in the limit ε→ 0, such as energy close to
|Bn−2

1 | · 2π on the cylinder B2
1 ×Bn−2

1 , for a critical pair defined there (with
u(0) = 0).

In the following lemma we essentially show that if E1 is small in a ball of
radius larger than ε, then E is small as well.

Lemma 5.6 (E1 vanishing implies E vanishing). For any δ,Λ > 0 there exist
τ0(n, δ,Λ) > 0 and ε0(n, δ,Λ) > 0 small enough with the following property.
Let (u,∇) be a critical pair for Eε on the unit ball Bn

1 , with u(0) = 0,

Eε(u,∇) ≤ 2π + τ0,

and (4.1)–(4.2), as well as ε ≤ ε0. Let x ∈ Bn
1−δ be a point such that

sup
ε≤s≤1−|x|

E1(u,∇, Bn
s (x),Rn−2) ≤ τ0.

Then, up to conjugating the pair,

sup
ε≤s≤1−|x|

E(u,∇, Bn
s/2(x),R

n−2) ≤ δ.

Proof. The proof of this lemma is basically the equivalence of the (second-order)
Euler–Lagrange equations and the (first-order) vortex equations in two
dimensions.

By contradiction, assume we have a sequence (uk,∇k) of critical points
for Eε, with ε = εk → 0, and a sequence of points xk ∈ Bn

1−δ and radii
sk ∈ [εk, 1− |xk|] such that

E1(uk,∇k, B
n
sk
(xk),Rn−2) → 0, lim inf

k→∞
E(uk,∇k, B

n
sk/2

(xk),Rn−2) ≥ δ.

We now distinguish a few cases depending on the behavior of the limit
εk/sk, which we can assume to exists and to belong to [0, 1], and on the
distance of xk from the vorticity set Zk = {x ∈ Bn

sk
(xk) : |uk| ≤ 3/4}.
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Case 1: εk/sk → 0 and dist(xk, Zk)/sk → 0. Since the energy concentra-

tion varifold is a plane with multiplicity 1 (as in the previous proof), recalling
that 1− |xk| ≥ δ and xk has vanishing distance from the vorticity set, we
immediately see that

1

|Bn−2
1−|xk||

ˆ
B1−|xk|(xk)

eεk(uk,∇k) → 2π.

Defining the map ϕk(x) := xk + skx, we consider the pullback pair

(ũk, ∇̃k) := ϕ∗k(uk,∇k),

which is critical for Eε̃k , where ε̃k := εk/sk. Moreover, we have

lim sup
k→∞

1

|Bn−2
1 |

ˆ
Bn

1

eε̃k(ũk, ∇̃k) ≤ 2π

by monotonicity of the energy.
Since ε̃k → 0 and 0 has vanishing distance from {|ũk| ≤ 3

4} ∩B
n
1 , as in the

previous proof, the energy concentration varifold V is a plane S passing
through the origin, with multiplicity 1, while the limiting cycle Γ = ±JSK. By
possibly replacing (ũ, ∇̃) with their conjugate, we can assume that Γ = JSK.
Also, the stress-energy tensors

Tε̃k(ũk, ∇̃k),

viewed as matrix-valued measures, converge (up to subsequences) to a limit T
such that dT (x) = PTxV dµV (x), where PTxV is the orthogonal projection
onto the tangent space TxV (cf. [42, Section 6.1]). Hence, the fact that

E1(ũk, ∇̃k, B
n
1 ,Rn−2) → 0 implies TxV = Rn−2 a.e., giving S = Rn−2. Since

lim
k→∞

ˆ
Bn

1/2

[eε̃k(ũk, ∇̃k)− J(ũk, ∇̃k) ∧ e∗S ] = 2π[µV (B
n
1/2)− ⟨Γ,1Bn

1/2
e∗S⟩] = 0

, we get the desired contradiction in this case.

Case 2: εk/sk → 0 and dist(xk, Zk)/sk → 2d > 0. By applying the same

scaling as in the previous step we get that |ũk| converges uniformly to 1
in Bn

d (0), which immediately implies that both excesses converges to 0 in
Bn
dsk

(xk) and thus the statement of the theorem with s/2 replaced by ds. A

covering argument then allows to pass to s/2.

Case 3: εk/sk → ε > 0. Note that this implies that sk → 0.

After passing to a local Coulomb gauge, for any ℓ ∈ N we get local uniform
Cℓ bounds on Bn

Rk
, with Rk := δ/sk, since by monotonicity we have local

uniform bounds on the energy here, see [42, Appendix]. By Arzelà–Ascoli we

obtain a subsequential limit (ũ∞, ∇̃∞) in C∞(Rn). By the definition of E1

(cf. (5.2)), we see that (∇̃∞)∂k ũ∞ = 0 for all 3 ≤ k ≤ n and ω̃∞(ej , ek) = 0
for all (j, k) ̸= (1, 2). As in [42, Proposition 6.7] (after [42, eq. (6.30)]), up
to a further change of gauge, the limiting pair depends only on the first
two coordinates. By the equivalence of first-order and second-order vortex
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equations in R2 [52] (cf. also the end of the proof of [42, Proposition 6.7]), we

see that (ũ∞, ∇̃∞) solves the first-order vortex equations up to conjugation;
this yields a contradiction for k large enough. □

Lemma 5.7. For every σ > 0 there exist constants η(n, σ), C(n, η) > 0 such
that if r ≥ Cε and (u,∇) is a critical pair on Br(p) satisfying (4.1)–(4.2) and
E1(u,∇, Bn

r (p),Rn−2) ≤ η then

{|u| ≤ 3/4} ∩Bn
(1−σ)r(p) ⊆ B2

σr(y)× Rn−2,

provided that |u(p)| ≤ 3
4 at p = (y, z) and the normalized energy is at most

2π + η.
Moreover, given σ,Λ > 0 there are η(n, σ,Λ), C(n, η,Λ) > 0 such that if

E1(u,∇, Bn
Cε(p),Rn−2) ≤ η

then G := {u = 0} ∩Bn
Λε(p) is a σ-Lipschitz graph, we have the inclusion

{|u| ≤ 3/4} ∩Bn
Λε(p) ⊆ BC(n)ε(G),

and ε|u| is comparable with the distance from S in this neighborhood.

Proof. The first part follows by the very same arguments of Lemma 5.6. The
second one is again showed by contradiction after scaling by ε, noticing that in
the Coulomb gauge the contradicting sequence (uk,∇k) converges smoothly to
a solution depending only on the two variables (y1, y2). To infer the smooth
convergence of the zero set (which is gauge invariant) one notices that, by the
explicit form of the Taubes solution, the Jacobian Juk(e1, e2) is bounded
away from zero. Convergence of the zero set then follows from the implicit
function theorem. Compare also with the proof of Proposition 6.6. □

In the next lemma we show that the energy on each slice is approximately
the excess on the slice plus the degree of u on the boundary.

Lemma 5.8. Let (u,∇) be an arbitrary smooth pair defined on B
2
1 ×B

n−2
1

(not necessarily a critical point) with

eε(u,∇)(x) ≤ e−K/ε for all x ∈ ∂B2
1 ×Bn−2

1

and |u(x)| ≥ 1
2 for all x in the same set. Then we have∣∣∣∣∣deg(u/|u|, ∂B2

1 × {z}) +Ez −
1

2π

ˆ
B2

1×{z}
eε(u,∇)

∣∣∣∣∣ ≤ 4εe−K/ε,

for all z ∈ Bn−2
1 , up to conjugating the pair.

Proof. First of all, by a completion of squares, since

J := J(u,∇)(e1, e2) = 2⟨i∇1u,∇2u⟩+ (1− |u|2)ω(e1, e2),
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we see that

1

2π

ˆ
B2

1×{z}
eε(u,∇)

= (E1)z +
1

2π

ˆ
B2

1×{z}

[
|∇1u|2 + |∇2u|2 + ε2ω(e1, e2)

2 +
(1− |u|2)2

4ε2

]

= (E1)z +
1

2π

ˆ
B2

1×x

[
|i∇1u−∇2u|2 +

∣∣∣∣εω(e1, e2)− 1− |u|2

2ε

∣∣∣∣2 + J

]

= Ez +
1

2π

ˆ
B2

1×{z}
J.

(5.12)

We then define the modulus r : B2
1 → [0,∞) and the phase θ : B2

1 \ {r =
0} → S1 by

r(y) := |u(y, z)|, θ(y) :=
u

|u|
(y, z).

Writing ∇ = d− iα, we also have

r2(dθ − α)(y) = ⟨∇u, iu⟩(y, z)

(note that θ and α are not gauge-invariant). Recalling that J(u,∇) =
dα+ d⟨∇u, iu⟩, we compute

ˆ
B2

1×{z}
J(u,∇) =

ˆ
∂B2

1×{z}
[(1− r2)α(τ) + r2∂τθ],

where τ is the tangent vector to ∂B2
1 . Hence, we have

ˆ
B2

1×{z}
J(u,∇) = 2π deg(u/|u|, ∂B2

1 × {z}) +
ˆ
∂B2

1×{z}
(1− r2)[α(τ)− ∂τθ],

and the last integrand is bounded by

(|u|−2 − 1)|⟨∇u, iu⟩| ≤ 4(1− |u|2)|∇u| ≤ 4εeε(u,∇)

in absolute value. Combining these bounds, the claim follows. □

6. Slicing the current and Lipschitz approximation

In this section, inspired by [5, 37, 19], we slice the currents Γε dual to the
Jacobians J(u,∇). We get metric-space-valued functions of bounded variation
(MBV) in the sense of Ambrosio [3], with values in 0-currents in R2. Then, by
placing a threshold on the maximal function of E1, we construct a Lipschitz
approximation of the barycenter of each slice with a uniform W 1,2 bound.
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6.1. Slicing identities and BV estimates. We start by defining vertical
slices.

Definition 6.1. We define the vertical slices of the current Γε, (Γε)z =
⟨Γε, P, z⟩, by the following identity:ˆ

Bn−2
1 (0)

⟨(Γε)z, ψ⟩ϕ(z) dz = ⟨Γε, ψ(y)ϕ(z)dz⟩,

for any two functions ψ ∈ C∞
c (B2

1) and ϕ ∈ C∞
c (Bn−2

1 ), where P : R2 ×
Rn−2 → Rn−2 is the projection on the last n− 2 coordinates.

In the next lemma we derive BV estimates for the slices, given a smooth
pair (u,∇) defined on B2

1 ×Bn−2
1 .

Lemma 6.2 (BV-type estimate). Define the function Φψ : Bn−2
1 → R by

Φψ(z) := ⟨(Γε)z, ψ⟩.

Then, assuming
´
B2

1×B
n−2
1

eε(u,∇) ≤ 2πΛ, the total variation of Φψ(x) is

bounded by E1 and E as follows:

1

2
|DΦψ|(Bn−2

1 )2 ≤ ∥dψ∥2L∞Λmin{C(n)E1,E},

where |DΦψ| denotes the total variation measure, and E and E1 are measured

on B2
1 ×Bn−2

1 (without normalization).

Proof. The notation and line of argument is inspired from [19, Lemma A.1].
For any ϕ ∈ C∞

c (Bn−2
1 ,Rn−2) we define the (n− 3)-form α by

α :=
n∑
k=3

(−1)k−1ϕk(x3, . . . , xn)dx3 ∧ · · · ∧ dxk−1 ∧ dxk+1 ∧ · · · ∧ dxn,

so that

dα = (div ϕ)(z)dz.

Now, writing x = (y, z), we haveˆ
Bn−2

1

Φψ(z) div ϕ(z) dz =

ˆ
Bn−2

1

⟨(Γε)z, ψ⟩(div ϕ)(z) dz

= ⟨Γε, ψ(y)(div ϕ)(z)dz⟩
= ⟨Γε, d(ψα)⟩ − ⟨Γε, dψ ∧ α⟩
= −⟨Γε, dψ ∧ α⟩,

where the last equality follows from the fact that ∂Γε = 0. Now notice that
dψ ∧ α is a linear combination of (n− 2)-covectors of the form

dxj ∧ dx3 ∧ · · · ∧ dxk−1 ∧ dxk+1 ∧ · · · ∧ dxn with j = 1, 2, k = 3, . . . , n.
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As a consequence,

|⟨Γε, dψ ∧ α⟩|

≤ ∥dψ∥L∞∥α∥L∞
∑
j=1,2
k=3,...,n

ˆ
B2

1×B
n−2
1

[2|⟨i∇eju,∇eku⟩|+ (1− |u|2)|ω(ej , ek)|],

which, by Cauchy–Schwarz, is bounded by

∥dψ∥L∞∥α∥L∞ · C(n)
√
Λ
√
E1.

Taking the supremum over the functions ϕ with ∥ϕ∥L∞ ≤ 1, we get the BV
bound

|DΦψ|(Bn−2
1 ) ≤ C(n)∥dψ∥L∞

√
Λ
√

E1.

We can also estimate in the following way. Set B := B2
1 ×Bn−2

1 and

e⃗n−2 = e3 ∧ · · · ∧ en, e∗n−2 := dx3 ∧ · · · ∧ dxn,

and let us write dΓε =
−→
Γ ε d|Γε| (viewing Γε as a measure with values in

Λn−2Rn). Since dψ ∧ α does not have any e∗n−2-component, if we write

Γ⃗ε = (Γ⃗ε · e⃗n−2)e⃗n−2 + R⃗ (where the dot denotes the scalar product in
Λn−2Rn), we get

⟨Γε, dψ ∧ α⟩ =
ˆ
B
R⃗ · (dψ ∧ α) d|Γε|,

and moreover ˆ
B
|R⃗|2 d|Γε| =

ˆ
B
(1− (Γ⃗ε · e⃗n−2)

2) d|Γε|

≤ 2

ˆ
B
(1− Γ⃗ε · e⃗n−2) d|Γε|

= 2e(Γε, B, e⃗n−2),

where e(Γε, B, e⃗n−2) is the current excess defined by

e(Γε, B, e⃗n−2) :=
1

2

ˆ
B
|
−→
Γ ε − e⃗n−2|2 d|Γε|.

Hence,

|⟨Γε, dψ ∧ α⟩| =
∣∣∣∣ˆ
B

−→
R · (dψ ∧ α) d|Γε|

∣∣∣∣
≤ |dψ ∧ α|

ˆ
B
|R⃗| d|Γε|

≤ ∥dψ∥L∞∥α∥L∞
√
2e(Γε, B, e⃗n−2)

√
|Γε|(B) .

Again, taking the supremum over the functions ϕ with ∥ϕ∥L∞ ≤ 1, we get

|DΦψ|(Bn−2
1 ) ≤ ∥dψ∥L∞

√
2e(Γε, B,

−→e n−2)
√

|Γε|(B).
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From the pointwise bound of the Jacobian |Γε| ≤ 1
2πeε(u,∇) we see that

e(Γε, B,
−→e n−2) = |Γε|(B)− ⟨Γε,1B−→e n−2⟩ ≤ E.

The previous bounds, together with |Γε|(B) ≤ Λ, give the conclusion. □

Remark 6.3. The Jerrard–Soner-type computations in Lemma 6.2 are valid
for any current without boundary (formally dual to a closed form). In the
case of the Yang–Mills–Higgs Jacobian, we record the following identity for
convenience (it will be used in Proposition 6.4 and Proposition 7.2):

⟨dΦψ, ϕ⟩ =
1

2π

ˆ
B2

1×B
n−2
1

∑
j=1,2

n∑
k=3

(−1)j [⟨2i∇eju,∇eku⟩

+ (1− |u|2)ω(ej , ek)]∂e3−jψ ϕk,

(6.1)

for any ϕ ∈ C1
c (B

n−2
1 ,R2).

6.2. Lipschitz approximation of the barycenter. Parallel to the regularity
theory of minimal currents, we define a Lipschitz approximation of the
barycenter of the slices of Γε (see for instance [19, Lemma A.2]). First we fix
some notation which will be used frequently:

• we use E1 as shorthand for E1(u,∇, B2
1 ×Bn−2

1 ,Rn−2), and similarly for E;

• as already mentioned, for any z ∈ Bn−2
1 we denote the excess on the slice

B2
1 × {z} by (E1)z, and similarly for Ez;

• we write ME1(z) to denote the maximal function of (E1)z;
• we fix a cut-off function χ ∈ C∞

c (B2
3/4) such that 0 ≤ χ ≤ 1 and χ = 1 on

B2
1/2.

Proposition 6.4 (Lipschitz approximation). Given 0 < η ≤ η0(n) small
enough, there exist τ0(n, η) > 0 and ε0(n, η) > 0 such that the following holds.
Let (u,∇) be a critical pair for Eε, defined on B2

1 ×Bn−2
1 , satisfying u(0) = 0,

(4.1)–(4.2), and the energy bound

1

|Bn−2
1 |

ˆ
B2

1×B
n−2
1

eε(u,∇) ≤ 2π + τ0.

Then, up to conjugating (u,∇), for 0 < η ≤ η0(n) small enough there exists a
Lipschitz approximation h : Bn−2

3/4 → R2 with the following properties:

(i) Lip(h) ≤ Cη and
´
Bn−2

3/4
|dh|2 ≤ CE1;

(ii) h|Gη = Φχ(x1,x2) for a set Gη ⊆ Bn−2
3/4 such that |Bn−2

3/4 \ Gη| ≤ C E1
η2
;

(iii)
´
B2

3/4
×(Bn−2

3/4
\Gη) eε(u,∇) ≤ C E1

η2
+ e−K/ε;

(iv)
´
Gη

|dh|2
2 ≤ (1 + δ)

´
Gη Ez dz + e−K/ε with δ(n, η) > 0 such that

limη→0 δ(n, η) = 0.

Here C = C(n) > 0 and K = K(n) > 0, provided that ε ≤ ε0.
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Proof. We define the good set to be

Gη := {z ∈ Bn−2
3/4 : ME1(z) ≤ η2}.(6.2)

By the weak L1 bound and Vitali’s covering lemma, we can bound the
measure of the complement of the good set, namely the bad set, by

Hn−2(Bn−2
3/4 \ Gη) ≤ C(n)

E1

η2
.(6.3)

Bounding energy on the bad set. To check that the third conclusion holds,

we introduce another bad set Bη, defined on the n-dimensional space: it is the
set of points x = (y, z) ∈ B2

3/4 ×Bn−2
3/4 such that, for some radius r ∈ (0, 1

50),

we have E1(u,∇, Bn
r (x),Rn−2) > η2.

By Vitali’s covering lemma, we can cover Bη with balls B5ri(xi) such
that the balls Bri(xi) are disjoint and E1(u,∇, Bri(xi),Rn−2) > η2. By
monotonicity of the energy, the energy on each dilated ball B5ri(xi) is at most
C(n)rn−2

i , givingˆ
Bη

eε(u,∇) ≤
∑
i

C(n)rn−2
i

≤
∑
i

C(n)

η2
rn−2
i E1(u,∇, Bri(xi),Rn−2)

≤ C(n)

η2
E1

(recall that the excess on a ball Br(x) is normalized by a factor r2−n). Since
the measure of Bn−2

3/4 \ Gη obeys the same bound, it is enough to show that

ˆ
S
eε(u,∇) ≤ C(n)

for η small enough, where S := (B2
3/4 × {z}) \ Bη.

We denote by dZ the distance from the vorticity set Z = {|u| ≤ 3
4}. As

we can see from the proof of Lemma 5.4, its conclusion holds without any
rotation in the present situation (as necessarily energy concentrates along
Rn−2 as τ0, ε0 → 0). Hence, we can assume that, for any (y, z) ∈ S on this
slice, we have dZ(y, z) ≥ 1

200 unless |y| < 1
100 .

Given s ≥ ε, by Lemma 5.7 we know that if

dZ(y, z), dZ(y
′, z) < s,

for two points (y, z), (y′, z) ∈ S with |y|, |y′| < 1
100 , then

|y − y′| ≤ Cs,

provided that η, ε and ε/s are small enough. With this observation in hand,

we can apply Proposition 4.5 (giving eε(u,∇)(y, z) ≤ Ce−Kmin{dZ(y,z),1/10}/ε
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on S) and the coarea formula to writeˆ
S
eε(u,∇) ≤ C

ε3

ˆ 2

0
e−Kt/ε|{y ∈ B2

1/100 : dZ(y, z) < t}| dt+ C

ε3
e−K/(200ε).

The previous observation says that {y ∈ B2
1/100 : dZ(y, z) < t} is included in

a ball of radius Cmax{t, ε}. We deduce that the last integral is bounded by

C

ε3

ˆ 2

0
e−Kt/εCmax{t2, ε2} dt ≤ C,

giving the desired bound ˆ
S
eε(u,∇) ≤ C(n).

Bounds in terms of (E1)z. Now we establish Dirichlet energy bounds for

Φψ on the good set, for ψ ∈ C1
c (B

2
3/4). Given z ∈ Gη, we can use Remark 6.3

to bound

|dΦψ|2(z)

≤ C
∑
j=1,2

n∑
k=3

[ˆ
B2

1×{z}

(
|⟨2i∇eju,∇eku⟩|+ (1− |u|2)|ω(ej , ek)|

)
|∂e3−jψ|

]2

≤ C∥dψ∥2L∞

[ˆ
B2

3/4
×{z}

|∇e1u|2 + |∇e2u|2 +
(1− |u|2)2

ε2

]
(E1)z.

Since z ∈ Gη, we have S = B2
3/4 × {z} in the previous argument. Thus, the

last integral is bounded by C(n). As a consequence,

|dΦψ|2(z) ≤ C(n)∥dψ∥2L∞(E1)z for all z ∈ Gη.

Bounds in terms of Ez. Also, we can use Lemma 6.2 (cf. [19, Lemma

A.2]) to conclude that

|dΦχ(x1,x2)|
2(z) ≤ 2Ez lim

r→0

|Γε|(B2
1/2 ×Bn−2

r (z))

|Bn−2
r |

+ Ce−K/ε.

(indeed, this bound follows by applying Lemma 6.2 and its proof with
ψ := χ(ax1 + bx2) for an arbitrary (a, b) ∈ S1 and using the fact that this ψ
is 1-Lipschitz on B2

1/2, outside of which the energy density is exponentially

small).
To conclude, we have

|Γε|(B2
1/2 ×Bn−2

r (z)) ≤ |Bn−2
r |+

ˆ
Bn−2

r (z)
Ez + |Bn−2

r |e−K/ε

by Lemma 5.8, giving

|dΦχ(x1,x2)|
2(z) ≤ 2Ez(1 +Ez) + Ce−K/ε,
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where we can actually replace Ez with the excess on the smaller disk B2
1/2×{z},

denoted by Ez(B
2
1/2). Now, fixing L > 1 large, by an obvious variant of

Lemma 5.6 we have that Ez(B
2
ε (y)) is small for all y ∈ B2

1/2 (see also the

remark below). Since we can cover the set {y ∈ B2
1/2 : dZ(y, z) ≤ Lε} with

C(n,L) such disks, we infer that

Ez(B
2
1/2) ≤ δ(n,L, η) +

C(n)

ε3

ˆ 2

Lε
e−Kt/ε|{y ∈ B2

1/2 : dZ(y, z) < t}| dt

+
C(n)

ε3
e−K/(4ε),

for some quantity δ(n,L, η) vanishing as η → 0. Choosing L suitably large, we
deduce that

Ez(B
n−2
1/2 ) ≤ δ(n, η) + e−K/ε

for some quantity δ(n, η) vanishing as η → 0. The statement follows by
extending h := Φχ(x1,x2)|Gη to a function with Lipschitz constant C(n)η. □

Remark 6.5. As a technical remark, a simple continuity argument as in
Proposition 5.3 shows that the possible need of conjugating the pair (u,∇)
in Lemma 5.6 happens precisely when the degree of u/|u| along the circle
∂B2

1/2(0)× {0} is −1 instead of 1.

6.3. Lipschitz approximation of the zero set. In this part we collect
information about the Lipschitz approximation of the zero set. We use
compactness arguments similar to [54, Sectoin 5].

Proposition 6.6 (Zero set is Lipschitz on the good set). For any σ, δ > 0,
there exists η0(n, σ, δ) small enough with the following property. For (u,∇) as
in the previous statement, for any η ≤ η0(δ, σ), the set u−1(0) ∩ (B2

3/4 × Gη)
is included in a δ-Lipschitz graph h0 : Bn−2

3/4 → B2
σ with the following estimate:ˆ

Bn−2
3/4

|h0 − h|2 ≤ Cσ2
E1

η2
+ Cε2| log(E2)|2E2 + Ce−K/ε,

for C = C(n) (provided that ε ≤ ε0(n, σ, δ) and the energy is ≤ 2π+τ0(n, σ, δ)).

Proof. The proof is similar to [54, Lemma 5.3].

Lipschitz approximation at scale ε. This is essentially the second part of

Lemma 5.7, but we present a detailed argument here. Notice that, locally at
scale ε, critical points enjoy uniform Ck estimates in the Coulomb gauge (and
thus Ck bounds for gauge-invariant quantities): see [42, Appendix]. Then
around any x0 = (y0, z0) ∈ B2

3/4 × Gη with u(x0) = 0 we rescale as follows:

ũ(x) := u(x0 + εx), ∇̃ := ϕ∗x0,ε(∇),

where ϕx0,ε is the map x 7→ x0 + εx. The resulting pair (ũ, ∇̃) satisfies

sup
r≤1/(4ε)

E1(ũ, ∇̃, B2
1/(4ε) ×Bn−2

r ,Rn−2) ≤ η2
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(where the excess is normalized by a factor r2−n). By Arzelà–Ascoli we

conclude that, for small enough η, (ũ, ∇̃) is C1-close to a pair (u0,∇0) that
satisfies the Yang–Mills–Higgs equations (3.2)–(3.3) and depends only on the
variables x1, x2 (as in the proof of Lemma 5.6). As noted in the proof of
Proposition 5.3, u0/|u0| has degree ±1 on large circles, and u(·, z0)|B2

3/4

By the main result of [51, 52], we deduce that (u0,∇0) is the standard
entire solution of degree ±1, centered to vanish just at the origin. For this
solution, we have

|Ju0|(0) > 0,(6.4)

where Ju0 is the Jacobian of u0 in the local Coulomb gauge in Bn
1 . It then

follows that, for small enough η > 0, we have |Jũ(e1, e2)| ≥ c > 0. Then, by
an application of the implicit function theorem and the fact that {ũ = 0} is a
gauge-invariant set, we see that {ũ = 0} is locally a Lipschitz graph with a
(qualitatively) small Lipschitz constant. The fact that the zero set intersects
the slice only at x0 follows from Lemma 5.7, which says that there is no zero
outside a Cε-neighborhood of x0, while in this neighborhood uniqueness
follows from the fact that it holds for u0 (see also a similar argument in
the proof of [31, Theorem 4.1]). Hence, for small enough η, we can define a
function h0 : Gη → R2 such that

{u = 0} ∩ (B2
3/4 × Gη) = graph(h0).

Lipschitz approximation at larger scales. By the first part of Lemma 5.7,

we see that given two points (y, z), (y′, z′) ∈ {u = 0} ∩ (B2
3/4 × Gη) we have

|z − z′| ≤ δ|y − y′| if |y − y′| ≥ C(n, δ)ε,

for a constant δ = δ(η) > 0 such that

δ(η) → 0 as η → 0.

Together with the previous control at scales comparable with ε, this tells us
that h0 is indeed Lipschitz, with Lip(h0) vanishing as η → 0. We apply the
classical extension theorem to build a Lipschitz extension of h0 defined on
Bn−2
s .

L2 estimates. Using the soft height bound of Lemma 5.4 (note that
no rotation is needed in the present situation, as necessarily the energy
concentrates along Rn−2), we have

|h|+ |h0| ≤ σ

for η (and hence ε) small enough. Using the estimates of Lemma A.1 on the
good set Gη (see also Remark A.3) and the measure bound for the bad set
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Bn−2
3/4 \ Gη we see that

ˆ
Bn−2

3/4

|h0 − h|2 ≤
ˆ
Gη

|h0 − h|2 +
ˆ
Bn−2

3/4
\Gη

|h0 − h|2

≤ Cε2| logE2|2E2 + Cσ2
E1

η2
+ Ce−K/ε.

We thus get the desired conclusion. □

Remark 6.7. We remark that the function h0 is well-behaved under
small rotations, since the construction also rotates. However, the Lipschitz
approximation of the slice barycenters, a priori, might not behave well under
rotations.

7. Harmonic approximation and a Caccioppoli-type estimate

7.1. Harmonic approximation. In this section we show that the Lipschitz
approximation of Proposition 6.4 nearly satisfies the Laplace equation. We
achieve this by relating the stress-energy tensor to the slices of Γε using the
self-dual discrepancy excess E2. Then we use this with uniform W 1,2 bounds
to show that the Lipschitz approximation is well approximated in L2 by a
harmonic function. To begin with, we state a very well-known lemma.

Lemma 7.1. For any ν > 0 small there exists τ(n, ν) > 0 with the following
property. Let f be a function in W 1,2(Bn

1 ) such that

ˆ
Bn

1

|∇f |2 ≤ 1,

∣∣∣∣∣
ˆ
Bn

1

⟨df, dϕ⟩

∣∣∣∣∣ ≤ τ∥dϕ∥L∞ ,

for any ϕ ∈ C1
c (B

n
1 ). Then there exists a harmonic function w : Bn

1 → R such
that ˆ

Bn
1

|dw|2 ≤ 1,

ˆ
Bn

1

|w − f |2 ≤ ν.

Moreover, if f has zero average, we can choose w so that w(0) = 0.

Proof. The claim follows easily from Rellich’s compact embedding theorem:
see for instance [20, Lemma 6.1]. For the second part, by the mean value
property of harmonic functions and

´
f = 0 one gets that

|Bn
1 ||w(0)| =

∣∣∣∣∣
ˆ
B1

w −
ˆ
Bn

1

f

∣∣∣∣∣ ≤ C(n)∥w − f∥L2 ≤
√
ν.

The function w − w(0) satisfies the conclusion of the lemma. □

Proposition 7.2 (Harmonic approximation). Let (u,∇) be a critical point of
Eε as in the previous section and let h : Bn−2

3/4 be the Lipschitz approximation
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built in Proposition 6.4 for η. Then there exist constants C(n),K(n) > 0 such
that, for any test function ϕ ∈ C∞

c (Bn−2
3/4 ,R

2), we have

∣∣∣∣∣
ˆ
Bn−2

3/4

⟨dh, dϕ⟩

∣∣∣∣∣ ≤ C(η−1E1 +
√

EE1 + e−K/ε)∥dϕ∥L∞ .

Moreover, given any ν > 0, if e−K/ε ≤ E1 and E is small enough (depending
on n, η, ν), there exists a harmonic function w : Bn−2

3/4 → R2 with w(0) = 0

such that

ˆ
Bn−2

3/4

|dw|2 ≤ C,

ˆ
Bn−2

3/4

|(E1)
−1/2(h− c)− w|2 ≤ ν,

where c is the average of h.

Proof. First, we define the vector field X := ϕ(x3, . . . , xn)e1 for any compactly
supported test function ϕ ∈ C∞

c (Bn−2
3/4 ), and we test (4.9) with ψ(x1, x2)X,

where ψ is a smooth cut-off function such that ψ = 1 on B2
1/2 and ψ = 0

outside of B2
3/4. We obtain∣∣∣∣∣

ˆ
B2

1/2
×Bn−2

3/4

⟨Tε(u,∇), DX⟩

∣∣∣∣∣ ≤ Ce−K/ε∥dϕ∥L∞ ,

thanks to the fact that dψ is supported in the annulus B2
3/4 \B

2
1/2 and the

exponential decay away from the vorticity set Z, which intersects B2
3/4 ×Bn−2

3/4

only inside B2
1/4 ×Bn−2

3/4 . Then, since DX is traceless, we compute

ˆ
B2

1/2
×Bn−2

3/4

⟨Tε(u,∇), DX⟩

= −2

ˆ
B2

1/2
×Bn−2

3/4

n∑
k=3

⟨∇e1u,∇eku⟩+ ε2
n∑
j=1

ω(e1, ej)ω(ek, ej)

 ∂ekϕ.
Except for j = 2, the integral of the terms involving the curvature ω is
bounded by C(n)E1, giving∣∣∣∣∣

ˆ
B2

1/2
×Bn−2

3/4

n∑
k=3

[⟨∇e1u,∇eku⟩+ ε2ω(e1, e2)ω(ek, e2)]∂ekϕ

∣∣∣∣∣
≤ C(E1 + e−K/ε)∥dϕ∥L∞ .

(7.1)
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We now want to relate the expression in the left-hand side with the identity
for dΦχx1 obtained in Remark 6.3, which in particular gives∣∣∣∣∣

ˆ
Bn−2

3/4

⟨dΦχx1 , dϕ⟩

∣∣∣∣∣
≤ C

∣∣∣∣∣
ˆ
B2

1/2
×Bn−2

3/4

n∑
k=3

[⟨2i∇e2u,∇eku⟩+ (1− |u|2)ω(e2, ek)]∂ekϕ

∣∣∣∣∣
+ Ce−K/ε∥dϕ∥L∞ ,

or equivalently∣∣∣∣∣
ˆ
Bn−2

3/4

⟨dΦχx1 , dϕ⟩

∣∣∣∣∣
≤ C

∣∣∣∣∣
ˆ
B2

1/2
×Bn−2

3/4

n∑
k=3

[
−⟨i∇e2u,∇eku⟩+

1− |u|2

2
ω(ek, e2)

]
∂ekϕ

∣∣∣∣∣
+ Ce−K/ε∥dϕ∥L∞ .

(7.2)

We observe that the two integrals in (7.1) and (7.2) differ by the integral of

n∑
k=3

[
⟨∇e1u+ i∇e2u,∇eku⟩+

(
ω(e1, e2)−

1− |u|2

2

)
ω(ek, e2)

]
∂ekϕ.

Hence, recalling the definition of E2 and using Cauchy–Schwarz, we conclude
that ∣∣∣∣∣

ˆ
Bn−2

3/4

⟨dΦχx1 , dϕ⟩

∣∣∣∣∣ ≤ C(n)(E1 +
√
E1E+ e−K/ε)∥dϕ∥L∞ .

Repeating the same for Φχx2 , we arrive at the same conclusion for Φχ(x1,x2),

integrated against any ϕ ∈ C∞
c (Bn−2

3/4 ,R
2). To conclude we note that thanks

to items (i) and (ii) of Proposition 6.4,ˆ
Bn−2

3/4
\Gη

|dh| ≤ Cη|Bn−2
3/4 \ Gη| ≤ C

E1

η

and, in view of Remark 6.3, Cauchy–Schwarz, item (iii) of Proposition 6.4 and

the assumption e−K/ε ≤ E1,

ˆ
Bn−2

3/4
\Gη

|dΦχ(x1,x2)| ≤ C
√

E1

(ˆ
B2

3/4
×Bn−2

3/4
\Gη

eε(u,∇)

)1/2

≤ C
E1

η
.

The second part follows from Lemma 7.1, noting that the normalized
function h̃ := (E1)

−1/2h has Dirichlet energy bounded by C(n) by item (i) of
Proposition 6.4. □
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7.2. Caccioppoli-type estimates. The starting point in the regularity
theory of elliptic partial differential equations is the Caccioppoli–Leray bound,
obtained by testing the equation with ϕ2u, where ϕ is a cut-off function and u
is the solution. We aim to do something similar in spirit. Here the function
that we deal with is the barycenter of the energy measure at any slice. This
suggests that testing the stress-energy tensor with ϕ2x1e1 and ϕ2x2e2 is an
appropriate choice.

Proposition 7.3. Let (u,∇) be a critical point of Eε as in the previous
section. For any σ > 0 there exist ε0(n, σ) and τ0(n, σ) small enough such
that the following Caccioppoli-type estimate holds:

ˆ
Bn−2

3/4

ϕ2(z)(E1)z dz

≤ C

ˆ
B2

1/2
×Bn−2

3/4

(x21 + x22)eε(u,∇)∆ϕ2 + C(σ2E1 + e−K/ε)∥D2ϕ∥∞,

for any test function ϕ ∈ C∞
c (Bn−2

3/4 ), where C = C(n) and K = K(n, σ).

Proof. First, we define the vector fields

X :=
n∑
k=3

∂kϕ
2(x3, . . . , xn)

x21 + x22
2

ek, Y := ϕ2(x3, . . . , xn)(x1e1 + x2e2)

and we calculate their derivatives:

DX =
1

2

∑
3≤j,k≤n

∂2ej ,ekϕ
2(x21 + x22)ej ⊗ e∗k +

n∑
k=3

∂ekϕ
2(x1ek ⊗ e∗1 + x2ek ⊗ e∗2)

DY = ϕ2(e1 ⊗ e∗1 + e2 ⊗ e∗2) +

n∑
k=3

∂ekϕ
2(x1e1 ⊗ e∗k + x2e2 ⊗ e∗k).

Then we test (4.9) with χX and χY , where χ = χ(x1, x2) is a smooth
cut-off function such that χ = 1 on B2

1/2 and χ = 0 on B2
1 \B2

3/4. We note

that the terms containing dχ are supported in (B2
3/4 \B

2
1/2)×Bn−2

3/4 , where

|Tε(u,∇)| ≤ C(n)eε(u,∇) is very small by the exponential decay. Hence,

∣∣∣∣∣
ˆ
B2

1/2
×Bn−2

3/4

⟨Tε(u,∇), DY ⟩ − ⟨Tε(u,∇), DX⟩

∣∣∣∣∣ ≤ C∥D2ϕ∥L∞e−K/ε.
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Using the previous expansion of DX and DY , together with the symmetry of
Tε(u,∇), we see that the above integrand equals

1

2

∑
3≤j,k≤n

Tε(u,∇)(ej , ek)∂
2
ej ,ek

ϕ2(x21 + x22)−
∑
j=1,2

Tε(u,∇)(ej , ej)ϕ
2

=
x21 + x22

2

eε(u,∇)∆ϕ2 − 2
∑

3≤j,k≤n
(∇u∗∇u+ ε2ω∗ω)(ej , ek)∂

2
ej ,ek

ϕ2


− 2

eε(u,∇)− |∇e1u|2 − |∇e2u|2 −
∑
j=1,2

n∑
k=1

ε2ω(ej , ek)
2

ϕ2.
By the Modica-type inequality (4.2), the last expression multiplying −2ϕ2 is
bounded below by

n∑
k=3

|∇eku|
2+

(1− |u|2)2

4ε2
−ε2ω(e1, e2)2 ≥

n∑
k=3

|∇eku|
2+ε2

∑
(j,k)̸=(1,2)

ω(ej , ek)
2

(where the last sum is over all pairs (j, k) ̸= (1, 2) with j < k), which is the
integrand in the definition of E1. Hence, combining the previous bounds, we
arrive atˆ

B2
1/2

×Bn−2
3/4

ϕ2(z)(E1)z dz

≤
ˆ
B2

1/2
×Bn−2

3/4

x21 + x22
2

eε(u,∇)∆ϕ2

+ C

ˆ
B2

1/2
×Bn−2

3/4

x21 + x22
2

∑
3≤j,k≤n

(∇u∗∇u+ ε2ω∗ω)(ej , ek)∂
2
ej ,ek

ϕ2

+ C∥D2ϕ∥L∞e−K/ε.

Now, by the soft height bound, we can assume that the vorticity set Z
intersects B2

1/2 ×Bn−2
3/4 in a small cylinder B2

σ ×Bn−2
3/4 ; the conclusion follows

by exponential decay, up to replacing K with another constant K(n, σ). □

Remark 7.4. In the statement of Proposition 7.3 we can replace the first
term of the right-hand side as follows:

ˆ
Bn−2

3/4

ϕ2(z)(E1)z dz ≤ C

ˆ
B2

1/2
×Bn−2

3/4

[(x1 − c1)
2 + (x2 − c2)

2]eε(u,∇)∆ϕ2

+ C(σ2E1 + e−K/ε)∥D2ϕ∥∞,

provided that |c| ≤ Cσ for C = C(n). The proof is essentially the same.
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8. Proof of decay of the tilt-excess

In this section we prove Theorem 1.4: roughly speaking, we prove that E1,
the first part of the excess, decays up to scales where it becomes comparable
with ε2. We will deduce this from the excess decay property of harmonic
functions, stated in the next elementary lemma.

Lemma 8.1. Given a harmonic function w : Bn
1 (0) → R, we have the decay

estimate

sup
x∈Bn

ρ (0)
|w(x)− w(0)− dw(0)[x]| ≤ C(n)ρ2∥dw∥L2 ,(8.1)

for ρ ∈ (0, 12).

Proof. By a Taylor expansion, the left-hand side is bounded by the quantity
ρ2

2 ∥D
2w∥L∞(Bn

1/2
), which is bounded by C(n)ρ2∥dw∥L2 by the mean-value

property of harmonic functions. □

8.1. Proof of the excess decay in the case of small |dw(0)|. First, we
prove Theorem 1.4 when the harmonic approximation has |dw(0)| ≤ δ, for a
small δ > 0 to be chosen later. We dilate the ball Bn

1 to Bn√
2
(and replace ε

with ε/
√
2), in such a way that it includes B2

1 ×Bn−2
1 ; we also assume that

S = Rn−2 in the statement.
Let c be the average of h on the ball Bn−2

3/4 . The construction of h shows

that

|c| ≤ Cσ + Ce−K/ε ≤ Cσ

for ε small enough (depending on n, σ).
We apply the Caccioppoli-type estimates in Proposition 7.3, with x1 − c1

and x2 − c2 in place of x1 and x2, see Remark 7.4. Taking ϕ ∈ C∞
c (Bn−2

2ρ ) to

be a cut-off function with ϕ = 1 on Bn−2
ρ and |D2ϕ| ≤ C(n)ρ−2 we getˆ

Bn−2
3/4

ϕ2(z)(E1)z dz

≤ C

ˆ
B2

1/2
×Bn−2

3/4

eε(u,∇)[(x1 − c1)
2 + (x2 − c2)

2]∆ϕ2

+ Cρ−2(σ2E1 + e−K/ε).

The contribution of the bad set Bn−2
3/4 \ Gη can be bounded using the soft

height bound of Lemma 5.4 and energy estimate on the bad set (item (iii) in
Proposition 6.4), obtainingˆ

B2
1/2

×(Bn−2
3/4

\Gη)
eε(u,∇)[(x1 − c1)

2 + (x2 − c2)
2]∆ϕ2

≤ Cρ−2(σ2 + e−K/ε)
E1

η2
.
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On the good set Gη, we apply Lemma A.2 to estimate the second moment
of good slices as follows:∣∣∣∣∣

ˆ
B2

1/2
×Gη

eε(u,∇)[(x1 − c1)
2 + (x2 − c2)

2]∆ϕ2 −
ˆ
Gη

ε2v0∆ϕ
2

∣∣∣∣∣
≤ Cρ−2

[
ε2| logE2|2E1/2

2 + σ2E1 +

ˆ
Gη

|h− c|2(E2)
1/2
z + e−Kσ/ε

](8.2)

(see also Remark A.3), where h is the Lipschitz approximation obtained in
Proposition 6.4. Note that the term containing v0 disappears once integrated
on Bn−2

2ρ , as v0 is a constant and ∆ϕ2 has zero integral.
Combining the previous bounds, we arrive at∣∣∣∣∣

ˆ
Bn−2

3/4

ϕ2(z)(E1)z dz

∣∣∣∣∣
≤ Cρ−2

ˆ
Bn−2

2ρ

|h− c|2

+ Cρ−2

[
(σ2 + ε2)

E1

η2
+

(
1 +

E1

η2

)
e−K/ε + ε2| logE2|2E1/2

2

]
.

Assuming e−K/ε ≤ E1, we now apply Proposition 7.2 and Lemma 8.1. Since
∥(h− c)−

√
E1w∥2L2 ≤ νE1, we haveˆ

Bn−2
2ρ

|h−c|2 ≤ 2νE1+2E1

ˆ
Bn−2

2ρ

|w|2 ≤ 2νE1+CE1(ρ
4+(n−2)+δ2ρ2+(n−2)).

Thus, for some C = C(n) and K = K(n, σ), we get

ρ2−n
ˆ
Bn−2

ρ

E1(z)

≤ CE1(ρ
−nν + ρ2 + δ2)

+ Cρ−n
[
(σ2 + ε2)

E1

η2
+

(
1 +

E1

η2

)
e−K/ε + ε2| logE2|2E1/2

2

]
.

We now choose η, ρ and, subsequently, δ, σ, ν to be small enough. The claim
follows (with the same plane S = Rn−2) once we assume that E1 is small
enough.

8.2. Tilting the picture. In the general case, before using the Caccioppoli-
type estimate, we need to tilt the picture slightly to ensure that |dw|(0) is
small enough. We assume that Rn−2 minimizes E1(u,∇, Bn

1 , ·).
Consider a rotation R ∈ SO(n) bringing Rn−2 to the graph of the linear

map
√
E1dw(0). Since w is harmonic with the bound ∥dw∥L2 ≤ C, we have

|
√
E1dw(0)| ≤ C

√
E1. Hence, we can find R such that

∥R− I∥ ≤ CE
1/2
1 , ∥(PRn−2 ◦R− I) ◦ PRn−2∥ ≤ CE1,(8.3)
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for a dimensional constant C = C(n): indeed, calling S the graph of
√
E1dw(0),

using the spectral theorem we can find an orthonormal basis {v3, . . . , vn} of
Rn−2 such that the vectors PS(vi) form an orthogonal basis of S, so that
⟨PS(vi), vj⟩ = ⟨PS(vi), PS(vj)⟩ = 0 for i ̸= j. Thus, PRn−2 ◦ PS(vi) is parallel
to vi and

PS(vi)

|PS(vi)|
=

(
√
E1dw(0)[vi], vi)√

1 +E1|dw(0)[vi]|2

(under the identification Rn−2 = {0} × Rn−2).
We extend {v3, . . . , vn} to an orthonormal basis {v1, . . . , vn} of Rn. The

desired rotation is obtained by sending vi to
PS(vi)
|PS(vi)| for i ≥ 3 and v1, v2 to

suitable unit vectors v1 +O(
√
E1) and v2 +O(

√
E1), obtained for instance via

the Gram–Schmidt algorithm on the collection { PS(v3)
|PS(v3)| , . . . ,

PS(vn)
|PS(vn)| , v1, v2}.

For i ≥ 3, since |PS⊥vi| ≤ C
√
E1 we have |PSvi| ≥ 1− CE1, and hence the

previous formula gives

R(vi) = R(0, vi) = (
√

E1dw(0)[vi], vi) +O(E1) for i ≥ 3.(8.4)

Then we define the rotated pair (ũ, ∇̃) as follows:

ũ := R∗u, ∇̃ := R∗∇.(8.5)

First we prove that the excess changes proportionally after this rotation.

Lemma 8.2 (Tilted excess estimate). There exists a dimensional constant
C(n) such that, for a pair (u,∇) as in Theorem 1.4 with small enough
τ0, ε0 > 0 and a rotation R as above, the tilted excess is bounded by the initial
excess; more precisely,

E1(ũ, ∇̃, Bn
1 ,Rn−2) ≤ CE1, E2(ũ, ∇̃, Bn

1 ,Rn−2) ≤ CE.(8.6)

Proof. Take an orthonormal basis e1, e2, . . . , en for Rn such that {e3, . . . , en}
is an orthonormal basis for Rn−2. Then, recalling the definition of the excess
E1, we have

E1(ũ, ∇̃, Bn
1 ,Rn−2) =

ˆ
Bn

1

 n∑
k=3

|∇Reku|
2 +

∑
(j,k)̸=(1,2)

ε2ω(Rej , Rek)
2


≤ CE1 + C∥R− I∥2Eε(u,∇)

≤ CE1.

The second line above follows from the elementary bounds

|∇Rek −∇eku| ≤ ∥R− I∥|∇u|

and

|ω(Rej , Rek)− ω(ej , ek)| ≤ 2∥R− I∥|ω|.
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We estimate E2 in a similar way:

E2(ũ, ∇̃, Bn
1 ,Rn−2)

=

ˆ
Bn

1

[
|∇Re1u+ i∇Re2u|2 +

∣∣∣∣εω(Re1, Re2)− 1− |u|2

2ε

∣∣∣∣2
]

≤ CE2 + C∥R− I∥2Eε(u,∇)

≤ C(E1 +E2).

This is indeed the desired conclusion. □

Then we claim that the Lipschitz approximations h and h̃ are approximately
a rotation of one another. To do this, we first notice that the Lipschitz
approximation h0 of the zero set in Proposition 6.6 (applied with δ = σ)

behaves well under rotations: take h̃0 to be the function whose graph is
obtained by rotating of the graph of h0 by R−1 (cf. [54, Section 8.2]). For z in

the domain of h̃0, there exists z′ ∈ Bn−2
3/4 such that

(h̃0(z), z) = R−1(h0(z
′), z′).

Since ∥(PRn−2 ◦R−I)◦PRn−2∥ ≤ CE1 and |h0| ≤ σ, we have |z′−z| ≤ CE1+
C
√
E1σ. Moreover, we have Lip(h0) ≤ σ, giving |h0(z′)− h0(z)| ≤ C

√
E1σ.

Thus, assuming
√
E1 ≤ σ,

(h̃0(z), z) = R−1(h0(z), z) +O(
√
E1σ);

recalling (8.4), we see that R(0, z) = (
√
E1dw(0)[z], z) +O(E1|z|), so that

h̃0(z) = h0(z)−
√
E1dw(0)[z] +O(

√
E1σ),(8.7)

with an implicit constant C(n). Note that h̃0 can be taken as a Lipschitz
approximation of the zero set of the tilted pair: in order to have the conclusion
of Proposition 6.6, the only property that we care about is that its graph
covers the zeros of ũ, except some exceptional ones projecting on a set of
measure at most C(n)E1

η2
, and this holds for the rotated graph.

8.3. Proof of the excess decay in the general case. Now we can use
(8.7) and the L2 bound from Proposition 6.6 to conclude the proof of the
tilt-excess decay theorem in the general case.

Proof of Theorem 1.4. Recall that Rn−2 minimizes E1(u,∇, Bn
1 , ·). Let h̃ be

the Lipschitz approximation of the barycenter (built in Proposition 6.4) for

the tilted pair (ũ, ∇̃). We have

|h̃(z)− (h(z)−
√

E1dw(0)[z])|

≤ |h̃− h̃0|+ |h− h0|+ |h̃0 − (h0 −
√

E1dw(0)[z])|.
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We combine the main estimate of Proposition 6.6 and (8.6)–(8.7) to see thatˆ
Bn−2

1/2

|h̃(z)− (h(z)−E1
1/2dw(0)[z])|2

≤ C

(
σ2

η2
+ σ2

)
E1 + Cε2| logE|2E+ Ce−K/ε.

(8.8)

We assume in the sequel that

ε2| logE|2E, e−K/ε ≤ σ2E1,

so that ˆ
Bn−2

1/2

|h̃(z)− (h(z)−E
1/2
1 dw(0)[z])|2 ≤ C

(
σ2

η2
+ σ2

)
E1.

Now, taking the harmonic approximation for the tilted pair to be w̃, we can
see thatˆ
Bn−2

1/2

|Ẽ1/2
1 w̃(z)−E

1/2
1 (w(z)− dw(0)[z])|2 dz

≤ C

ˆ
Bn−2

1/2

[|h−E
1/2
1 w|2 + |h̃− Ẽ

1/2
1 w̃|2 + |h̃(z)− (h(z)−E

1/2
1 dw(0)[z])|2]

≤ C

(
ν +

σ2

η2
+ σ2

)
E1

(the last line follows from Ẽ1 ≤ CE1, as we saw in (8.6)). Since

Ẽ
1/2
1 w̃(z)−E

1/2
1 (w(z)− dw(0)[z])

is harmonic, its differential at the origin

|Ẽ1/2
1 dw̃(0)|2 ≤ C

(
ν +

σ2

η2
+ σ2

)
E1.

Since Ẽ1 ≥ E1, this tells us that |dw̃(0)| can be made arbitrarily small,
reducing to the previous situation. □

Remark 8.3. In all the results obtained so far we were assuming that the
center of the ball (or cylinder) belongs to the zero set, but actually they also
hold if it belongs to the vorticity set Z = {|u| ≤ 3

4}, since this is enough to
guarantee that it belongs to the support of the energy concentration measure
in compactness arguments.

9. Iteration arguments and Morrey-type bounds

9.1. Proof of Theorem 1.9: the case of critical pairs for 2 ≤ n ≤ 4. We
prove the following theorem, which is the first part of Theorem 1.9.
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Theorem 9.1. For 2 ≤ n ≤ 4, there exists τ0(n) > 0 such that the following
holds. If (u,∇) is an entire critical point for the energy E1, given by (3.1) for
ε = 1, with u(0) = 0 and the energy bound

lim
R→∞

1

|Bn−2
R |

ˆ
Bn

R

[
|∇u|2 + |F∇|2 +

1

4
(1− |u|2)2

]
≤ 2π + τ0,(9.1)

then (u,∇) is two-dimensional. More precisely, we have (u,∇) = P ∗(u0,∇0)
up to a change of gauge, where P is the orthogonal projection onto a two-
dimensional subspace and (u0,∇0) is the standard degree-one solution of
Taubes [51] (or its conjugate), centered at the origin.

Proof. We can assume n ∈ {3, 4}. First, we claim that it is enough to show
that

lim
R→∞

R2min
S

E1(u,∇, Bn
R, S) = 0.

Indeed, once this is done, we have

R4−n
ˆ
Bn

R

 n∑
a=3

|∇eRa
u|2 +

∑
(a,b) ̸=(1,2)

ω(eRa , e
R
b )

2

→ 0

as R → ∞, for a suitable choice of planes S(R), where {eR1 , . . . , eRn } is an
orthonormal basis such that S(R) is spanned by {eR3 , . . . , eRn }. Extracting a
limit S(R) → S along a subsequence and assuming without loss of generality
that S = Rn−2, the fact that n ≤ 4 and Fatou’s lemma give

ˆ
Rn

 n∑
a=3

|∇eau|2 +
∑

(a,b)̸=(1,2)

ω(ea, eb)
2

 = 0.

As in the proof of Lemma 5.6, this implies that (u,∇) depends only on the
first two coordinates up to a change of gauge, and the conclusion follows from
the classification of planar solutions by Taubes [51].

We now turn to the previous claim. By Proposition 5.3, we have

1

|Bn−2
R |

ˆ
Bn

R

eε(u,∇) → 2π

as R→ ∞, as well as

E(u,∇, Bn
R, S(R)) → 0

for suitable oriented planes S(R), up to conjugating the pair. Arguing as in the
proof of Proposition 5.3, we see that S(R), viewed as an unoriented plane, has
vanishing distance from any unoriented plane S minimizing E1(u,∇, Bn

R, S);
hence, we can assume that S(R) minimizes E1 on Bn

R.
The proof now becomes an elementary iteration argument. In Theorem 1.4

we first fix ρ ∈ (0, 1) such that Cρ2 ≤ ρ and then τ and ε0 accordingly. Let
C ′ > 1

ε0
. Without loss of generality we can also assume that

E1(u,∇, Bn
R, S(R)) > 0, E(u,∇, Bn

R, S(R)) ∈ (0, 1)
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are small enough to allow applying Theorem 1.4 on Bn
R (by rescaling our pair),

for all R ≥ C ′. For every k ∈ N let us define the minimum excess on each ball
BC′ρ−k :

E1(k) := E1(u,∇, BC′ρ−k , S(C ′ρ−k)).

Then Theorem 1.4 gives

either E1(k) ≤ ρE1(k + 1)

or E1(k) ≤ max{ρ2k| logE(k + 1)|2
√

E(k + 1), e−Kρ
−2k},

(9.2)

where E(k) := E(u,∇, BC′ρ−k , S(C ′ρ−k)). By Proposition 5.3, we have

lim
k→∞

E1(k) = 0, lim
k→∞

E(k) = 0.(9.3)

In order to iterate (9.2), we define

f(k) := logE1(k) + 2k log ρ−1

and

g(k) := max

{
2 log | logE(k + 1)|+ 1

2
logE(k + 1),−Kρ−2k + 2k log ρ−1

}
.

Then (9.2) can be rewritten in terms of the functions f, g : N → R as

f(k) ≤ f(k + 1)− λ or f(k) ≤ g(k),(9.4)

where λ := 3 log ρ−1. Condition (9.3) also means that

lim
k→∞

f(k)− 2k log ρ−1 = −∞, lim
k→∞

g(k) = −∞.(9.5)

We claim that if f, g satisfy (9.4) and (9.5) then

f(k) ≤ sup
m≥k

[g(m)− λ(m− k)].

We prove this by contradiction: assume that there is some index k0 such that

f(k0) + λ(m− k0) > g(m) for all m ≥ k0.(9.6)

In particular we have f(k0) > g(k0), so that (9.4) and (9.6) give

f(k0 + 1) ≥ f(k0) + λ > g(k0 + 1).

By induction, we see that for all m ≥ k0

f(m) ≥ f(k0) + λ(m− k0).

Taking the limit m→ ∞ and noting that λ > 2 log ρ−1, we obtain

f(k0) ≤ lim
m→∞

[f(m)− λ(m− k0)]

≤ lim
m→∞

[f(m)− 2m log ρ−1] + 2k0 log ρ
−1

= −∞,

where we used (9.5) in the last equality. This is a contradiction, proving our
claim.
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As a consequence, we have

f(k) ≤ sup
m≥k

[g(m)− λ(m− k)] ≤ sup
m≥k

g(m).

Since limk→∞ g(k) = −∞ by (9.5), we deduce that

lim
k→∞

f(k) = −∞.

In other words, we have ρ−2kE1(k) → 0, as desired. □

9.2. Proof of Corollary 1.6 and Theorem 1.7. Given any n ≥ 3 and
(u,∇) as in Theorem 1.7, for any τ ′0 > 0 a standard compactness argument
shows that

1

|Bn−2
r |

ˆ
Br(x)

eε(u,∇) ≤ 2π + τ ′0

for all x ∈ Z ∩ Bn
3/4 and r = 1

8 , provided that τ0 and ε0 are taken small

enough, and hence also for r ≤ 1
7 by energy monotonicity.

This, together with Proposition 5.3, implies that, for some oriented planes
S(x, r),

E(u,∇, Br(x), S(x, r)) ≤ δ

for some δ > 0 to be chosen momentarily and C(n, δ)ε ≤ r ≤ 1
8 . As in the

previous proof, we can assume that S(x, r) minimizes E1 on the ball Br(x).
Given α ∈ [0, 1), we first fix ρ such that Cρ2 ≤ ρ2α where C is the constant

appearing in Theorem 1.4. We now choose δ, τ0 small such that Theorem 1.4
applies on each ball Br(x) with x ∈ Z ∩Bn

3/4, compare with Remark 8.3. We

then consider

(9.7) max{Mε, ε1/(1+α)} ≤ r ≤ 1

8

where M chosen large enough to ensure that

e−Kr/ε ≤ ε2

r2

if ε/r ≤ 1/M . Applying the scaled version of Theorem 1.4 (with ε replaced by

ε/r), and noticing that sup0<s≤δ | log δ|2δ1/2 ≤ 1, we finally obtain that either

E1(u,∇, Bρr(x), S(x, ρr)) ≤ ρ2αE1(u,∇, Br(x), S(x, r))

or

E1(x, r) := E1(u,∇, Br(x), S(x, r)) ≤
ε2

r2
≤ r2α.

This immediately implies

E1(x, r) ≤ C(n, α)r2α for all x ∈ Z ∩Bn
3/4 and any radii satisfying (9.7).

Moreover, if S(x, r) is different from S(x, r′), for some r′ ∈ [r, 2r], then we can
find an orthonormal basis {e1, . . . , en} such that {e3, . . . , en} spans S(x, r)
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and e2 belongs to the span of the two planes, namely e2 = v + w with
v ∈ S(x, r) and w ∈ S(x, r′), with the bound

|v|+ |w| ≤ C(n)∥PS(x,r) − PS(x,r′)∥−1,

as the next simple lemma shows.

Lemma 9.2. Given two different planes S, S′ ∈ Gr(n, k), there exists a
unit vector e ∈ (S + S′) ∩ S⊥ such that e = v + w, with v ∈ S, w ∈ S′, and
|v|, |w| ≤ C(n)∥PS − PS′∥−1.

Proof. We can assume that S + S′ = Rn and S ∩ S′ = {0} (otherwise we
work on (S ∩ S′)⊥), so that n = 2k. We can also assume without loss of
generality that ∥PS − PS′∥op < c(n) for a constant c(n) > 0 to be determined
momentarily, since otherwise the statement follows from an immediate
compactness argument (using the fact that, if Sj → S∞ and S′

j → S′
∞, then

each unit vector in S∞ + S′
∞ has vanishing distance from Sj + S′

j , even when

the former sum has smaller dimension).
It is elementary to check that the statement holds when k = 1: in this

case, calling θ ∈ (0, π2 ] the angle between the lines S and S′, we have

∥PS − PS′∥ =
√
2 sin θ, and we can find vectors as in the statement with

|v|, |w| ≤ 1
sin θ .

Let ẽ be an eigenvector of PS − PS′ , corresponding to an eigenvalue λ with
0 < |λ| = ∥PS − PS′∥op < c(n). Then

PS ẽ− PS′ ẽ = λẽ,

so that in particular PS ẽ, PS′ ẽ ̸= 0 and

PSPS′ ẽ = (1− λ)PS ẽ.

Similarly we have

PS′PS ẽ = (1 + λ)PS′ ẽ.

From the equation

⟨PS′PS ẽ, PS′ ẽ⟩ = ⟨PS ẽ, PS′ ẽ⟩ = ⟨PS ẽ, PSPS′ ẽ⟩

we deduce that

|PS′ ẽ|2 = 1− λ

1 + λ
|PS ẽ|2.

In particular, calling θ ∈ (0, π2 ] the angle between the vectors PS ẽ and PS′ ẽ,
these identities easily give

sin2 θ = 1− ⟨PS ẽ, PS′ ẽ⟩2

|PS ẽ|2|PS′ ẽ|2
= λ2.

We now take

Z := span{PS ẽ, PS′ ẽ},
which is a two-dimensional plane. By the case k = 1, we can find

e ∈ Z, v ∈ span{PS ẽ}, w ∈ span{PS′ ẽ}
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such that e ⊥ PS ẽ is a unit vector and |v|, |w| ≤ λ−1. In order to conclude, it
suffices to check that e ⊥ S. Writing

e = αPS ẽ+ βPS′ ẽ,

we have

PSe = αPS ẽ+ βPSPS′ ẽ = [α+ β(1− λ)]PS ẽ.

Since e ⊥ PS ẽ, we have

0 = ⟨αPS ẽ+βPS′ ẽ, PS ẽ⟩ = α|PS ẽ|2+β⟨PSPS′ ẽ, PS ẽ⟩ = [α+β(1−λ)]|PS ẽ|2.

Since PS ẽ ̸= 0, we have α+ β(1− λ) = 0, proving the claim. □

Since E(x, r) ≤ δ, we have

r2−n
ˆ
Br(x)

eε(u,∇)

≤ C(n)δ + C(n)r2−n
ˆ
Br(x)

 n∑
k=2

|∇eku|
2 +

∑
(j,k)

ε2ω(ej , ek)
2

 .
Since the left-hand side is close to 2π, and in particular larger than π (for
r ≥ Cε), using the previous fact from linear algebra for the term ∇e2u we
obtain

1 ≤ C(n)[E1(x, r) +E1(x, r
′)](∥PS(x,r) − PS(x,r′)∥−2 + 1),

and thus, since ∥PS(x,r) − PS(x,r′)∥ ≤ C(n),

(9.8) ∥PS(x,r) − PS(x,r′)∥ ≤ C(n)
√

E1(x, r) +E1(x, r′) ≤ C(n, α)rα.

As a consequence, summing over dyadic scales, we have

∥PS(x,r) − PS(x,s)∥ ≤ C(n, α)max{r, s}α

for max{C(n, α)ε, ε1/(1+α)} ≤ r, s ≤ 1
8 .

A similar argument works varying the center: for two different points
x, x′ ∈ Z ∩Bn

3/4, looking at the balls Br(x) ⊂ B2r(x
′) with r := |x− x′|, we

also have

∥PS(x,r) − PS(x′,r)∥ ≤ C(n, α)rα,(9.9)

provided that r = |x− x′| ∈ [max{C(n, α)ε, ε1/(1+α)}, 1
16 ].

Actually, the previous proof gives some extra information, which will be
crucial in the sequel. We record it in the next proposition.

Proposition 9.3. Up to a rotation, we have ∥PS(x,r) − PRn−2∥ ≤ γ for any
γ > 0 fixed in advance (up to decreasing ε0, τ0), for all x ∈ Z ∩ Bn

3/4 and

r ∈ [C(n, γ)ε, 18 ].
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Proof. Let C be the constant in the excess decay statement, fix ρ such that
Cρ2 ≤ ρ and fix τ0 and ε0 accordingly. Letting rk := ρk, the first inequality of
(9.8) gives that

∥Pk+1 − Pk∥ ≤ C
√

E1(x, rk).

Iterating we get that

∥Pℓ − Pk∥ ≤ C(n)

ℓ−1∑
j=k

√
E1(x, rj)

≤ C(n)
√
E1(x, rk)(1 + ρ1/2 + ρ+ . . . )

≤ C
√
E1(x, rk)

as long as E1(x, rj) >
ε2

r2j
for j = 0, . . . , ℓ− 1 and rℓ ≥Mε =: r where M is a

large constant that we will fix at the end. Hence, if we call rk1 > · · · > rkN ≥ r

the possible radii where E1(x, rki) ≤ ε2

r2ki
, we deduce that

∥Pℓ − P0∥ ≤ Cmax{
√

E1(x, r0),
√
E1(x, rk1), . . . ,

√
E1(x, rkN )}

≤ C
[√

E1(x, r0) +
ε

r

]
≤ C

[√
E1(x, r0) +

1

M

]
.

Also, P0 can be assumed arbitrarily close to Rn−2 by a simple compactness
argument (similar to the proof of Proposition 5.3). Since

√
E1(x, r0) and 1/M

can be taken arbitrarily small, the claim follows. □

The same proof gives the following.

Proposition 9.4. For any x ∈ Z ∩Bn
3/4 and r ∈ [C(n)ε, 18 ], we have

E1(u,∇, Br(x),Rn−2) ≤ C(n)E1(u,∇, B1(0),Rn−2) + C(n)
ε2

r2
.

We now prove Corollary 1.6.

Proof of Corollary 1.6. We have already seen in Proposition 5.3 that the
energy on BR is asymptotic to 2πRn−2. We can then apply Proposition 9.3:
for any γ > 0 we have

∥PS(0,R) − PS(0,R′)∥ ≤ γ

for R < R′ large enough (we use Proposition 9.3 after scaling the picture
down by a factor (R′)−1). We deduce that the limit

lim
R→∞

S(0, R)

exists. □
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Proposition 9.5. Up to a rotation, the vorticity set Z̃ := Z ∩ [B2
1/2 ×Bn−2

1/2 ]

is included in a C(n, γ)ε-neighborhood of the graph of a C1 map

f : Bn−2
1/2 → B2

γ

with Lip(f) ≤ γ, if we assume that τ0 and ε0 are small enough (depending on
n, γ).

Proof. Indeed, as seen in the proof of Proposition 5.3, for ε small enough we
have u(·, z) ̸= 0 on ∂B2

1/2, for all z ∈ Bn−2
1/2 , and the degree of (u/|u|)(·, z) is

±1 on this circle. Hence, each slice B2
1/2 × {z} intersects the zero set.

Moreover, using Lemma 5.4 on B1(0), we see that Z̃ ⊆ B2
γ ×Bn−2

1/2 . Also,

Lemma 5.4 implies that for all x ∈ Z ∩Bn
3/4 and r ∈ [C(n, γ)ε, 18 ] we have

Z ∩Br(x) ⊆ Bγr(x+ S(x, r)),(9.10)

where Bγr(x+ S(x, r)) is the γr-neighborhood of the affine plane x+ S(x, r).

We now take a collection of points {zk} ⊂ Bn−2
1/2 with pairwise distance

at least C(n, γ)ε and Bn−2
1/2 ⊆

⋃
k B

n−2
5C(n,γ)ε(zk). For each k, we fix a point

xk = (yk, zk) ∈ Z̃. We then see that

|yk − yj | ≤ Cγ|xk − xj |,
thanks to the previous observation applied with r := 2|xk − xj | and the
fact that S(x, r) is γ-close to Rn−2 (for |xk − xj | > 1

16 , this follows just
from Lemma 5.4). Hence, the assignment zk 7→ yk defines a C(n)γ-Lipschitz
function, which we can extend to a C(n)γ-Lipschitz function f : Bn−2

1/2 → B2
γ .

It is easy to check that (a regularization of) f satisfies the desired conclusion,
completing the proof. □

We are now in position to prove Theorem 1.7.

Proof of Theorem 1.7. Let η > 0 small such that Proposition 6.4 applies. We
first remark that the previous points xk can be taken such that u(xk) = 0 and
zk ∈ Gη. Indeed, by Proposition 9.4, we have

E1(u,∇, Br(x),Rn−2) ≤ c(n)η2

for all points x ∈ Z ∩Bn
3/4 and radii r ∈ [C(n)ε, 18 ] (by taking ε0, τ0 suitably

small). We can apply this with r :=Mε; by Proposition 9.5 and exponential
decay of energy away from Z, we have

r2−n
ˆ
Bn−2

r/2
(z)

(E1)z ≤ c(n)η2 + e−K/M ≤ 2c(n)η2

once we take M = C(n) large enough, for any z ∈ Bn−2
1/2 . Once we take c(n)

small enough, by the weak L1 bound we can then find

z′ ∈ Bn−2
r/2 (z) ∩ Gη

(where we use slices of radius 1
2 in the definition of Gη), showing the claim.
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As a consequence of Lemma A.1, we deduce that

|h(zk)− yk| = |h(zk)− h0(zk)| ≤ ε.

We immediately deduce that Z̃ is included in a C(n)ε-neighborhood of the
graph of h, which is the only consequence of the claim which we will use in
the sequel.

Now let ρ := max{Mε, ε1/(1+α)} (with M as in (9.7)) and consider another
finite collection of points {zk} ⊂ Bn−2

1/2 such that the balls Bn−2
ρ (zk) are

disjoint and the dilated balls Bn−2
4ρ (zk) cover B

n−2
1/2 . Let xk = (yk, zk) be a

point in Z̃ for each k.
On Bn

10ρ(xk) we consider the Lipschitz approximation hk built with respect

to the rotated picture, obtained as a graph over Sk := xk + S(xk, 10ρ). When

viewed as a graph over Rn−2, it becomes a function h̃k defined on the slightly
smaller ball Bn−2

5ρ (zk).
By a scaled version of Proposition 6.4, we haveˆ
Bn

30ρ/4
(xk)∩Sk

|dhk|2 ≤ Cρn−2E1(u,∇, Bn
10ρ(xk), S(xk, 10ρ)) ≤ Cρn−2+2α.

In particular, by Poincaré,ˆ
Bn

30ρ/4
(xk)∩Sk

|hk − (hk)|2 ≤ Cρn+2α.

Now, as in (8.7), we observe that

|h̃k(z)− hk(z)−Ak(z)| ≤ Cρ
√
E1(u,∇, Bn

10ρ(xk), S(xk, 10ρ)) ≤ Cρ1+α

for a suitable affine function Ak (where, with abuse of notation, hk(z) means
hk composed with the isometry Rn−2 → Sk). Combining these two bounds,
we get ˆ

Bn−2
5ρ (zk)

|h̃k −A′
k|2 ≤ Cρn+2α

for another affine function A′
k.

We now take a partition of unity φk subordinated to the cover {Bn−2
4ρ (zk)}

and we let

f :=
∑
k

φkh̃k.

Since the zero set is within a Cε-neighborhood of the graph of h̃k (on the set
B2

1/2 ×Bn−2
5ρ (zk)), we deduce that

|h̃k − h̃k′ | ≤ Cε

on Bn−2
5ρ (zk) ∩Bn−2

5ρ (zk′). Thus, we also have

|Ak −Ak′ | ≤ Cε+ Cρ1+α
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whenever Bn−2
4ρ (zk)∩Bn−2

4ρ (zk′) ̸= ∅. Since ε ≤ ρ1+α, this allows us to conclude
that ˆ

Bn−2
2ρ (z)

|f −Az|2 ≤ Cρn+2α

for any z ∈ Bn−2
1/2 , for a suitable affine function Az depending on z.

Thus, taking a standard mollifier χρ, setting

g := χρ ∗ f

and using the previous bound, we deduce that

|dg − dAz| ≤ Cρα on Bn−2
ρ (z),

and in fact

[dg]C0,α(Bn−2
ρ (z)) ≤ C.

Finally, recalling that dAk is the slope of the plane PS(xk,10ρ), we also have

|dAk − dAk′ | ≤ C|zk − zk′ |α

by the Hölder continuity (9.9), while

|dAz − dAk| ≤ Cρα for z ∈ Bn−2
4ρ (zk).

From these bounds, we easily deduce that

|dg(z)− dg(z′)| ≤ C|z − z′|α for |z − z′| ≥ ρ,

completing the proof of the C1,α regularity of g. Since |g − f | ≤ Cρ, it follows
that the vorticity set is included in a Cρ-neighborhood of the graph of g.

It is clear from the proof that we can actually make [dg]C0,α arbitrarily
small, up to decreasing τ0 and ε0. □

10. Constructing competitors for local minimizers: a good gauge

In this section we prepare the ground to construct competitors for minimizers
and to show that the full excess decays as long as it is above εβ , for any β > 0,
giving a proof of Theorem 1.10. To investigate minimizers, we construct
competitors with the same boundary conditions and compare the energies to
show that the excess E is effectively approximated by the Dirichlet energy of
the harmonic approximation.

To do this, we need to construct competitors modeled on graphs in the
interior and then glue them to the boundary condition, while controlling the
error terms. We pullback the ε-rescaled degree-one solution along the graph of
the Lipschitz approximation, as obtained in Proposition 6.4. Then we gauge
fix in balls of size ε| log ε| and, using the estimates at that scale, we define a
global gauge by a partition of unity. In this gauge we can interpolate between
the intial pair and the new one with good estimates.
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10.1. The pullback pair. Here we introduce the pullback pair (uf ,∇f ) whose
zero set is prescribed to be the graph of a Lipschitz function f : Bn−2 → B2

1 .
We prove that the excess of these pairs are well approximated by the Dirichlet
energy of f , as in the following proposition.

Proposition 10.1 (Constructing the pullback pair). There exist small
constants η0(n), ε0(n) > 0 with the following property. Given any ε ≤ ε0 and a
Lipschitz function f : Bn−2

1 → B2
1/2 with Lip(f) = η ≤ η0, there exists a pair

(uf ,∇f ) obeying the following estimate:

1

2π

ˆ
B2

1×B
n−2
1

eε(uf ,∇f ) = |Bn−2
1 |+ (1 +O(η2))

ˆ
Bn−2

1

|df |2

2
+O(e−K/ε),

with implicit constants C(n). Moreover, we have that

u−1
f (0) = graph(f).

Proof. To construct (uf ,∇f ) we pull back the planar degree-one solution of

Taubes [51], via the map Qε : B
2
1 ×Bn−2

1 → R2 given by

Qε(x) =
(x1, x2)− f(x3, . . . , xn)

ε
.

Then we define (uf ,∇f ) by

(uf ,∇f ) := Q∗
ε(u0,∇0),(10.1)

where (u0,∇0) is the degree-one solution in [51] with u0(0) = 0 (unique up to
change of gauge). First, we note that, since

dQε(x)[ek] = −∂ekf1(x3, . . . , xn)e1 − ∂ekf2(x3, . . . , xn)e2,

we have the following identities for k = 3, . . . , n:

|(∇f )kuf |2(x) = ε−2|∂ekf1(∇0)e1u0 + ∂ekf2(∇0)e2u0|2 (Qε(x))

= ε−2 |∂kf |2

2
|∇0u0|2 (Qε(x)) ,

(10.2)

where we omitted the argument of f and we used the fact that (∇0)e2u0 =
i(∇0)e1u0 for solutions of the vortex equations (4.13). We also have

|(∇f )e1uf |2(x) + |(∇f )e2uf |2(x) = ε−2|∇0u0|2 (Qε(x)) .(10.3)

We also compute for the curvature term −iωf := F∇f
= FQ∗

ε(∇0) = Q∗
ε(F∇0)

that

∑
j=1,2

ε2ωf (ej , ek)
2(x) = ε−2ω0(e1, e2)

2 (Qε(x)) |∂ejf |2 for j = 1, 2, k ≥ 3,

(10.4)

and moreover

ε2ωf (e1, e2)
2(x) = ε−2ω2

0(e1, e2) (Qε(x)) ,(10.5)
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as well as

ε2ωf (ek, eℓ)
2(x) ≤ ε−2|df |4ω0(e1, e2)

2 (Qε(x)) for 3 ≤ k < ℓ ≤ n.(10.6)

To compute Eε(uf ,∇f ), we use (10.2)–(10.6) to see thatˆ
B2

1×B
n−2
1

eε(u,∇)

=

ˆ
Bn−2

1

[ˆ
B2

1

ε−2e1(u0,∇0)(Qε(x))

(
1 +

|df |2

2
+O(|df |4)

)
+O(e−K/ε)

]

= 2π

[
|Bn−2

1 |+
ˆ
Bn−2

1

|df |2

2
+O(|df |4)

]
+O(e−K/ε).

In the above display we used the exponential decay from [36, Chapter III,
Theorem 8.1]: ˆ

R2\B2
1/(2ε)

e1(u0,∇0) = O(e−K/ε).

Recalling that |df | ≤ η we get the desired estimate. □

10.2. Constructing the interpolation gauge. In this section we find
a gauge transformation (u,∇) 7→ (eiξu,∇− idξ) for which the new pair is
L2-close to the pullback pair (uh,∇h) constructed in Proposition 10.1, where
h : Bn−2

1 → B2
1/2 is the Lipschitz approximation built in Proposition 6.4.

Since this is the most technical part of the paper, we provide an overview of
the arguments.

Step 1. To begin with, we cover the vortex set with cylinders of the form

{B2
5C|ε log ε|(yk) × Bn−2

5Cε (xk)}Nk=1 with xk = (yk, zk) ∈ R2 × Rn−2 such that

Bn−2
5Cε (zk) is a Vitali cover of Bn−2

1 . Then we name a cylinder good if the
excess on it is small, and bad otherwise. We also define a partition of unity,
subordinate to this cover, with derivatives at most Cε−1.

Step 2. In each cylinder we pass to the Coulomb gauge, via a function ξk
with mean equal to the mean of θh − θ on an appropriate annulus away from
the vortex set (note that θ − θh is well-defined far from the vortex set of
both u and uh) Then we use Gaffney- and Poincaré-type inequalities from
Appendix B to derive estimates for eiξku− uh and (α+ dξk)− αh, where we
write ∇ = d− iα. Far from the vorticity set we modify the gauge so that eiξku
and uh have the same phase. Then we use the exponential decay away from
the vortex set, which is where the error εβ comes from; however, this will be
enough to show the classification result in all dimensions, since we are free to
take β arbitrarily large.

Step 3. We use the estimates on (α + dξk)− αh (and the mean condition)

and Poincaré–Gaffney-type inequalities from Appendix B to bound ξj − ξk on
overlapping cylinders.
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Step 4. We patch together the ξk’s with the partition of unity defined in

the first step to obtain the function ξ. Then we use the bounds on ξj − ξk to

derive estimates on (α+ dξ)− αh and eiξu− uh.

Proposition 10.2 (The interpolation gauge). For any β > 0 there exist
τ0(n, β), ε0(n, β) > 0 and C0(n, β) > 0 with the following property. Let (u,∇)
be a critical pair for Eε on Rn, with u(0) = 0, ε ≤ ε0, and the energy bound

1

|Bn−2
2 |

ˆ
Bn

2

eε(u,∇) ≤ 2π + τ0.

Moreover, let h : Bn−2
1 → B2

1/2 be the Lipschitz approximation defined in

Proposition 6.4 (for a suitable η chosen later on) and let (uh,∇h) be the
pullback pair constructed in Proposition 10.1. Then, on a given annulus

As,δ := B2
1 × (Bn−2

s+δ \Bn−2
s )

with δ ∈ [C0ε,
1
16 ] and s ≤

3
4 , we can find a gauge transformation

(u,∇) 7→ (eiξu,∇− idξ),

via a smooth function ξ : As,δ → R such that:

(i) letting P : Rn → Rn−2 be the projection onto the last n− 2 coordinates,
we haveˆ

As,δ

[ε−2|eiξu− uh|2 + |(α+ dξ)− αh|2]

≤ C(n, β)| log ε|8
ˆ
P (As−δ,3δ)

[Ez + 1GηEz| logEz|2] + εβ;

(ii) letting Z := {|u| ≤ 3/4} and

ZC0ε| log ε| := {x = (y, z) : dist(x, Z ∩ (B2
1 × {z})) ≤ C0ε| log ε|},

the function eiξu→ C \ {0} has the same phase as uh far from the
vortex set, i.e.,

eiξu

uh
∈ R+ on As,δ \ Z5C0|ε log ε|.

Proof. First we choose ε0, τ0 small enough so that Theorem 1.7 applies (for
α = 0). We divide the proof into several steps.

Covering arguments and a partition of unity. To begin with, by Theo-

rem 1.7, we can find a collection of points

{xk = (yk, zk)}Nk=1 ⊂ Z ∩ As,δ

satisfying the following.
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(i) The projected collection {zk = P (xk)}Nk=1 ⊂ Bn−2
s+δ \ Bn−2

s gives a
Vitali covering of the projected annulus P (As,δ):

P (As,δ) = Bn−2
s+δ \Bn−2

s ⊆
N⋃
k=1

Bn−2
5C0ε

(zk),

Bn−2
C0ε

(zj) ∩Bn−2
C0ε

(zk) = ∅ for all j ̸= k.

(10.7)

This last line shows in particular that N ≤ C(n)ε2−n, where by now
C0 depends only on n.

(ii) As a direct consequence of Theorem 1.7, we can guarantee that

ZC0ε| log ε| ∩ As,δ ⊆
N⋃
k=1

B2
5C0ε| log ε|(yk)×Bn−2

5C0ε
(zk).(10.8)

(iii) We say that a point xk = (yk, zk) is a good point if

sup
ε≤r≤10C0ε

r2−nE1(u,∇, B2
1 ×Bn−2

r (zk),Rn−2) ≤ η20,

where with a certain abuse of notation we have set

E1(u,∇, B2
1 ×Bn−2

r (z),Rn−2)

:=

ˆ
B2

1×B
n−2
r (z)

 n∑
k=3

|∇eku|
2 + ε2

∑
(j,k)̸=(1,2)

ω(ej , ek)
2

(10.9)

(note the absence of normalization). Let the set of good indices be G.
We also denote the set of bad ones by B := {1, . . . , N} \G.

(iv) Again as a direct consequence of Theorem 1.7 we get that

|uh|, |u| >
3

4
on

N⋃
k=1

(B2
5C0ε| log ε|(yk) \B

2
C0ε| log ε|(yk))×Bn−2

5C0ε
(zk).(10.10)

Since both u and uh have degree 1 on each of the previous domains
(up to conjugating (u,∇) on Rn), the difference of phases θ − θh is
well-defined on these domains.

(v) We also define a partition of unity {ϕk}Nk=1, subordinate to the
cylinders:

ϕk ∈ C1
c (B

2
5C0ε| log ε|(yk)×Bn−2

5C0ε
(zk)), 0 ≤ ϕk ≤ 1,(10.11)

and

N∑
k=1

ϕk = 1 on ZC0ε| log ε| ∩ As,δ.

We also require that |dϕk| ≤ C̃ε−1 for all k = 1, . . . , N .
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(vi) Up to modifying the ϕk’s, we can define ϕ0 ∈ C1
c (As,δ \ ZC0|ε log ε|)

with 0 ≤ ϕ0 ≤ 1 and

ϕ0 = 1 on As,δ \ Z5C0|ε log ε|,

ϕ0 +
N∑
k=1

ϕk = 1 on As,δ.

Lastly, |dϕ0| ≤ C̃|ε log ε|−1.

Note that C0 > 0 is some large enough constant that we are still free to choose
later on (C̃ above depends on C0). In the sequel we also use the following
notation for the excess on each ball:

E(k) := E(u,∇, B2
1 ×Bn−2

10C0ε
(zk),Rn−2).

We define E(k) = E1(k) + E2(k) similarly. Since the balls Bn−2
C0ε

(zk) are

disjoint, the dilated balls have bounded overlap (i.e., at most C(n) of them
intersect), giving

N∑
k=1

E(k) ≤ C

ˆ
P (As−δ,3δ)

Ez,

and the same holds for E1 and E2. With abuse of notation, we also write

(10.12) | logE|2E(k) :=


´
Bn−2

5C0ε
(zk)

| logEz|2Ez if k ∈ G,´
Bn−2

5C0ε
(zk)

Ez if k ∈ B.

Remark 10.3. We will often use the following observation implicitly. For all
z ∈ Bn−2

1 , the results in the previous section show that

r2−nE1(u,∇, B2
1 ×Bn−2

r (z),Rn−2) ≤ η̃20

for an (arbitrarily) small η̃0 and all radii Λε ≤ r ≤ 1
2 , for some Λ depending

on n, η̃0. If k ∈ G then, for all z ∈ Bn−2
5C0ε

(zk), we have

(C0ε)
2−nE1(u,∇, B2

1 ×Bn−2
C0ε

(z),Rn−2) ≤ 10n−2η20.

As a consequence of Lemma 5.7, if we take C0 ≥ C(n) large and η20 very small,
we have

r2−nE1(u,∇, B2
1 ×Bn−2

r (z),Rn−2) ≤ η̃20

also for r ∈ (0,Λε), since we have C1 control on the pair at this scale. We now
fix η̃0 such that we actually apply Proposition 6.4 for η := η̃0, so that every
z ∈ Bn−2

5C0ε
(zk) gives a good slice.

Gauge fixing on each small cylinder with bounds. Fix k ∈ {1, . . . , n} and

consider the unique solution ξk to the following Neumann boundary value
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problem: 
∆ξk = d∗(α− αh) in Ck,
∂νξk = −(α− αh)(ν) at ∂Ck,´
Ak

[(θ + ξk)− θh] = 0,

(10.13)

where

Ck := B2
5C0ε| log ε|(yk)×Bn−2

5C0ε
(zk)

and

Ak := (B2
5C0ε| log ε|(yk) \B

2
C0ε| log ε|(yk))×Bn−2

5C0ε
(zk).

Recall that θ − θh is well-defined on Ak. Then we perform the following
gauge transformation in Ck: writing ∇ = d− iα, we transform

(u, α) 7→ (eiξku, α+ dξk).

Since d∗[(α+ dξk)− αh] = 0 and [(α+ dξk)− αh](ν) = 0, we can use the
Gaffney–Poincaré-type inequality in Lemma B.1:ˆ

Ck
|(α+ dξk)− αh|2 ≤ C(n,C0)|ε log ε|2

ˆ
Ck

|dα− dαh|2.(10.14)

We bound separately the contributions of the good set and the bad set, using
Lemma 10.4 and Lemma 10.5 below, obtainingˆ

Ck
|(α+ dξk)− αh|2 ≤ C| log ε|2| logE|4E(k) + Cεβ+3n(10.15)

for some C = C(n,C0, β) = C(n, β).

Gauge fixing far from the vortex set with bounds. Far from the vortex

set, in the set As,δ \ ZC0|ε log ε|, we gauge fix via a function ξ0 such that

eiξ0u/uh is real-valued. Hence, we define

ξ0 := θh − θ on As,δ \ ZC0|ε log ε|;(10.16)

note that a priori ξ0 is well-defined only in the quotient R/2πZ, but this is
enough to have a well-defined gauge transformation (in fact, since the vorticity
set is included in a Cε-neighborhood of a graph, we can check that θh − θ is a
well-defined real number).

We can estimate eiξ0u− uh and (α+ dξ0)− αh in this domain using the
exponential decay (Proposition 4.5), as follows:ˆ

As,δ\ZC0|ε log ε|

[ε−2|eiξ0u− uh|2 + |(α+ dξ0)− αh|2]

≤
ˆ
As,δ\ZC0|ε log ε|

[ε−2||u| − |uh||2 + 2|α− dθ|2 + 2|αh − dθh|2]

≤ C(n)ε−2e−K(n)C0| log ε|.

In the last inequality, we used the following observation: since each slice
intersects the zero set and | log ε| ≥ C(n), using Lemma 5.7 we see that on
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B2
1 × {z} the distance from {|u| ≤ 3/4} is comparable with the distance from

(B2
1 × {z}) ∩ {|u| ≤ 3/4}.
Taking C0 large enough, we see thatˆ

As,δ\ZC0|ε log ε|

[ε−2|eiξ0u− uh|2 + |(α+ dξ0)− αh|2] ≤ εβ+3n.(10.17)

Difference of local gauges in the overlap regions. Fix 1 ≤ j < k ≤ N

such that

Ωj,k := Cj ∩ Ck ̸= ∅.

Notice that we can bound the L2 norm of the difference dξk − dξj as follows:ˆ
Ωj,k

|dξj − dξk|2 ≤ 2

ˆ
Cj
|(α+ dξj)− αh|2 + 2

ˆ
Ck

|(α+ dξk)− αh|2.

By (10.15) we then have

ˆ
Ωj,k

|d(ξj − ξk)|2 ≤ C| log ε|4(| logE|2E(j) + | logE|2E(k)) + Cεβ+3n.

(10.18)

Our goal is to apply a Poincaré-type inequality on Ωj,k to estimate ξk − ξj .
To this aim, we first look at ξj , ξk on an appropriate annulus. By the definition
of Cj , Ck and the structure of the vortex set in Theorem 1.7 we can see that

|xj − xk| ≤ 20C0ε. We name the midpoint xj,k = (yj,k, zj,k) :=
xj+xk

2 and we
see that

Aj,k := [B2
3C0ε| log ε|(yj,k) \B

2
2C0ε| log ε|(yj,k)]× [Bn−2

5C0ε
(zj) ∩Bn−2

5C0ε
(zk)]

⊆ Aj ∩ Ak,

which is included in Ωj,k. So we can compute that
ˆ
Aj,k

|ξj − ξk|2 ≤ 2

ˆ
Aj

|(θ + ξj)− θh|2 + 2

ˆ
Ak

|(θ + ξk)− θh|2.

We know that (θ + ξj)− θh and (θ + ξk)− θh have zero mean on Aj and Ak,
respectively. Hence, we can apply Lemma B.3 on each annulus to see thatˆ

Aj,k

ε−2|ξj − ξk|2 ≤ C

ˆ
Aj

|d(θ + ξj)− dθh|2 + C

ˆ
Ak

|d(θ + ξk)− dθh|2,

and we can bound

|d(θ + ξj)− dθh| ≤ |α− dθ|+ |αh − dθh|+ |α+ dξj − αh|.

As before, on Aj we have

|α− dθ|2 + |αh − dθh|2 ≤ |u|−2|∇u|2 + |uh|−2|∇huh|2 ≤ εβ+3n
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by exponential decay, and the same holds for k. Together with (10.15) we thus
estimate

ˆ
Aj,k

ε−2|ξj − ξk|2 ≤ C| log ε|4(| logE|2E(j) + | logE|2E(k)) + Cεβ+3n.

(10.19)

By (10.18)–(10.19), using Lemma B.3 and Remark B.4, we arrive at

ˆ
Ωj,k

ε−2|ξj − ξk|2 ≤ C| log ε|4(| logE|2E(j) + | logE|2E(k)) + εβ+3n.

(10.20)

We also need to estimate the difference of ξk − ξ0 for all 1 ≤ k ≤ N . Defining

Ω0,k := Ck ∩ [As,δ \ ZC0|ε log ε|],

we see that

Ω0,k ⊆ A′
k := [B2

5C0ε| log ε|(yk) \B
2
(C0/2)ε| log ε|(yk)]×Bn−2

5C0ε
(zk).

Note that by (10.16) we have ξ0 = θh − θ in Ω0,k. Hence, we can apply
Lemma B.3 and compute that

ε−2

ˆ
Ω0,k

|ξk − ξ0|2 ≤ ε−2

ˆ
A′

k

|(θ + ξk)− θh|2

≤
ˆ
A′

k

|d(θ + ξk)− dθh|2

≤
ˆ
A′

k

[|α− dθ|2 + |αh − dθh|2 + |(α+ dξk)− αh|2],

where again we used the fact that (θ + ξk)− θh has zero mean on Ak ⊂ A′
k.

Summing the previous bounds and noting that there are at most (Cε2−n)2

pairs (j, k), while any point belongs to at most C = C(n,C0) domains Ωj,k,
we arrive at ∑

0≤j<k≤N

ˆ
Ωj,k

ε−2|ξj − ξk|2

≤ C|log ε|4
ˆ
P (As−δ,3δ)

|logEz|2Ez + CE+ Cεβ+1,

(10.21)

for some C = C(n, β) (recall (10.12)).

Constructing the global gauge via the partition of unity. Recall the def-

inition of the partition of unity in (10.11). We define the global gauge
transformation function as follows:

ξ :=
N∑
k=0

ϕkξk on As,δ.(10.22)
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Then we estimate

ˆ
As,δ

ε−2

∣∣∣∣∣eiξu−
N∑
k=0

ϕke
iξku

∣∣∣∣∣
2

≤ ε−2

ˆ
As,δ

N∑
k=0

ϕk|ξ − ξk|2

≤ 2
∑
j<k

ˆ
Ωj,k

ε−2|ξj − ξk|2

≤ C| log ε|4
ˆ
P (As−δ,3δ)

| logEz|2Ez + CE+ Cεβ+1.

In particular,ˆ
As,δ

ε−2|eiξu− uh|2

≤ 2

ˆ
As,δ

ε−2

∣∣∣∣∣eiξu−
N∑
k=0

ϕke
iξku

∣∣∣∣∣
2

+
N∑
k=0

ϕk|eiξku− uh|2


≤ C| log ε|8
ˆ
P (As−δ,3δ)

| logEz|2Ez + CE+ Cεβ+1,

(10.23)

where we used Lemma 10.4 and Lemma 10.5 to estimate the term involving
eiξku− uh.

Moreover, for the connection part, we can boundˆ
As,δ

|(α+ dξ)− αh|2

≤ 2

ˆ
As,δ

 N∑
k=0

ϕk|(α+ dξk)− αh|2 +

∣∣∣∣∣
N∑
k=0

dϕkξk

∣∣∣∣∣
2
 .(10.24)

The first term is bounded by (10.15) and (10.17). We are left to bound the
last term. Since the functions ϕk form a partition of unity, we have

N∑
k=0

dϕk(z) = 0.

We can then write
N∑
k=0

dϕkξk =
N∑

j,k=0

ϕjdϕk(ξk − ξj).

Since |dϕk| ≤ Cε−1, the last term above is bounded by

Cε−2
∑
j<k

ˆ
Ωj,k

|ξj − ξk|2,
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which is a quantity that we already estimated. Combining these bounds, we
see that ˆ

As,δ

[ε−2|eiξu− uh|2 + |(α+ dξ)− αh|2]

≤ C| log ε|8
ˆ
P (As−δ,3δ)

[Ez + 1GηEz| logEz|2] + εβ.

This is indeed the desired conclusion. □

We now turn to the bounds which were postponed in the previous proof.

Lemma 10.4. Assume that k ∈ G. Thenˆ
Ck
ε−2|eiξku− uh|2 ≤ C| log ε|8| logE|2E(k) + Cεβ+3n

and ˆ
Ck
ε2|dα− dαh|2 ≤ C| log ε|4η−2| logE|2E(k) + Cεβ+3n.

Proof. We bound each part separately.

Estimating dα− dαh. Recalling the definition of E1 in (10.9) and the

construction of αh, we haveˆ
Ck
ε2|dα− dαh|2 ≤

ˆ
Ck
ε2|dα(e1, e2)− dαh(e1, e2)|2 + CE1(k)

+ C

ˆ
Bn−2

5C0ε
(zk)

|dh|2.

We are going to use some estimates from [31] which are slightly more
refined than (4.14). Compared to the main result of [31], these hold under
some additional assumptions, which are however satisfied on good slices: in
particular, for any z ∈ Bn−2

5C0ε
(zk), the function u vanishes linearly at a unique

point along the slice B2
1 × {z}. We will often compare u with the function uh0 ,

where h0 is the function built in Proposition 6.6, whose graph approximates
the zero set; along the good slice, this function vanishes at the same point as
u, and is just a translation of the standard degree-one planar solution.

Specifically, using an ε-rescaling of (4.14) and Theorem 4.8 (applied with
N = 1), we have the following estimate:

ˆ
B2

1×{z}
[ε−2||u| − |uh0 ||2 + |uh0 |2+1/2|(α− dθ)(1,2) − (αh0 − dθh0)(1,2)|2

+ ε2|dα(e1, e2)− dαh0(e1, e2)|2]

≤ CEz,

(10.25)

for an absolute constant C, where the subscript (1, 2) means that we restrict
the one-form along the slice.
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Now by the construction in Proposition 10.1 we can see that (uh, αh), along
the slice B2

1 ×{z}, is equal to (uh0 , αh0) translated to vanish at the barycenter
Φχ(x1,x2)(z). As shown in Lemma A.1, the translation is by a vector v with

|v| ≤ Cε| logEz|
√
Ez + e−K/ε. By the mean value theorem, we then have

ˆ
B2

5C0ε| log ε|(yk)×{z}
[ε2|dαh(e1, e2)− dαh0(e1, e2)|2 + |(αh − αh0)(1,2)|2

+ ε−2|uh − uh0 |2]

≤ Cε2| log ε|2 · |v|2 · Cε−4

≤ C| log ε|2| logEz|2Ez + e−K/ε,

(10.26)

since Ez is bounded on good slices and the differential of each quantity
(such as εdαh(e1, e2) and so on) is bounded by Cε−2. The claimed estimate
follows by combining the previous bounds (together with item (iv) from

Proposition 6.4, which gives |dh|2(z) ≤ CEz + e−K/ε).

Estimating eiξku− uh. Writing formally u = |u|eiθ and using a similar

notation for uh and uh0 , recall that on the annulus

Ak,z := [B2
5C0ε| log ε|(yk) \B

2
C0ε| log ε|(yk)]× {z}

the differences θ − θh, θ − θh0 and θh − θh0 are well-defined. We record the
following estimate: ˆ

Ak,z

ε−2|θh − θhz |2 ≤ C| logEz|2Ez.(10.27)

This holds again by the mean value theorem, since |(dθh)(1,2)|(y) ≤ C|y−yk|−1.
We are going to use the Caffarelli–Kohn–Nirenberg-type inequality from
Lemma B.2, which implies thatˆ

B2
R(yk)

|y − h0(z)|2|f(y)|2 ≤ CR3/2

ˆ
B2

R(yk)
|y − h0(z)|2+1/2|df(y)|2,

for f ∈ C1
c (B

2
R(yk)), with R := 5C0ε| log ε| (since there exists a biLipschitz

transformation sending B2
R(yk) to itself and mapping the origin to h0(z)).

Recalling that the standard degree-one solution vanishes linearly at the origin,
by the construction of uh0 in Proposition 10.1 we have

C−1 ≤ |uh0 |(y, z)
min{ε−1|y − h0(z)|, 1}

≤ C

on the good slice, for some universal constant C. Moreover,

1 ≤ ε−1|y − h0(z)|
min{ε−1|y − h0(z)|, 1}

≤ C| log ε| for all y ∈ B2
5C0ε| log ε|(yk).
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Hence, given a C1 function f on B2
5C0ε| log ε|(yk)× {z} vanishing near the

boundary, we can write

ˆ
B2

5C0ε| log ε|(yk)×{z}
|uh0 |2|f |2 ≤ Cε2| log ε|4

ˆ
B2

5C0ε| log ε|(yk)×{z}
|uh0 |2+1/2|df |2.

(10.28)

To estimate ueiξk − uh0 , we first notice that u and uh0 have the same
unique zero point (with the same degree around it), and hence the difference
θ − θh0 gives a well-defined smooth function on the full slice.
We define a cut-off χ : B2

1 → R with χ = 1 on B2
C0ε| log ε|(yk) and χ = 0

outside of B2
5C0ε| log ε|(yk), with |dχ| ≤ C|ε log ε|−1. Then we use the first term

of (10.25) to bound |u| − |uhz | and (10.28) to see that

ε−2

ˆ
B2

5C0ε| log ε|(yk)×{z}
χ2|eiξku− uh0 |2

≤ C

ˆ
B2

5C0ε| log ε|(yk)×{z}
χ2

[
||u| − |uh0 ||

2

ε2
+

|uh0 |2

ε2
|(θ + ξk)− θh0 |2

]
≤ CEz + C(I+ II),

where

I := | log ε|4
ˆ
B2

5C0ε| log ε|(yk)×{z}
|uh0 |2+1/2χ2|d(θ + ξk − θh0)(1,2)|2,

II := | log ε|4
ˆ
B2

5C0ε| log ε|(yk)×{z}
|uh0 |2+1/2|dχ|2|θ + ξk − θh0 |2.

First we estimate I using the second term in (10.25) and (10.26) (to replace
αh0 with αh):

I ≤ C| log ε|6| logEz|2Ez + C| log ε|4
ˆ
B2

5C0ε| log ε|(yk)×{z}
χ2|(α+ dξk)− αh|2.

Then we estimate II: we note that |dχ| is supported in Ak,z and |dχ| ≤
C|ε log ε|−1, and hence we can use (10.27) to estimate

II ≤ C| log ε|2| logEz|2Ez + C| log ε|2
ˆ
Ak,z

ε−2|θ + ξk − θh|2.
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Putting I and II together and integrating over Bn−2
5C0ε

(zk), we see that

ˆ
Ck
ε−2|eiξku− uh0 |2

≤ C| log ε|6| logE|2E(k) + C| log ε|4
ˆ
Ck

|α+ dξk − αh|2

+ C| log ε|2
ˆ
Ak

ε−2|θ + ξk − θh|2

≤ C| log ε|8| logE|2E(k) + C| log ε|2
ˆ
Ak

ε−2|θ + ξk − θh|2 + εβ+3n,

where we used (10.15) (which uses only the previous bound on dα− dαh).
Recalling that we imposed ˆ

Ak

(θ + ξk − θh) = 0,

we can apply Lemma B.3 (suitably rescaled) and (10.15) another time to see
that

| log ε|2
ˆ
Ak

ε−2|θ + ξk − θh|2

≤ C| log ε|2
ˆ
Ak

|d(θ + ξk)− dθh|2

≤ C| log ε|2
ˆ
Ak

[|α− dθ|2 + |αh − dθh|2 + |(α+ dξk)− αh|2]

≤ C| log ε|6| logE|2E(k) + εβ+3n

(10.29)

up to taking C0 large enough (the last inequality follows from the exponential
decay of energy); combining these bounds with (10.26), we get the desired
bound for eiξku− uh. □

Lemma 10.5. For k ∈ B we haveˆ
Ck
[ε−2|eiξku− uh|2 + ε2|dα− dαh|2] ≤ C| log ε|2E1(k).

Proof. On the bad set we simply use L∞ bounds: we haveˆ
Ck
[ε−2|eiξku− uh|2 + ε2|dα− dαh|2]

≤ C| log ε|2εn−2

≤ C| log ε|2E1(k),

(10.30)

where we used the definition of bad index in the last inequality. □
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Corollary 10.6. We haveˆ
As,δ

[ε−2|eiξu− uh|2 + |(α+ dξ)− αh|2]

≤ C(n, β)| log ε|10
ˆ
P (As−δ,3δ)

Ez + εβ.

Proof. Recalling that for a good z the sliced excess Ez is small, it suffices to
split the integral of Ez| logEz|2 on the two sets {Ez ≤ εβ+1} and {Ez > εβ+1}.
On the second one, we bound | logEz|2 ≤ C| log ε|2, while on the first one we
have Ez| logEz|2 ≤ Cεβ+1| log ε|2. □

11. Proof of a stronger decay for local minimizers

11.1. Strong approximation of the excess for minimizers. In this
section we use variational arguments and the estimates from Proposition 10.2
to construct competitors. As a consequence, we prove that the full excess E is
well approximated by the Dirichlet energy of a harmonic approximation w
built as in Proposition 7.2.

Proposition 11.1 (Strong harmonic approximation of minimizers). For
any ν, β > 0 and any radius 0 < s < 1 there exist three small constants
ε0(n, s, ν, β), τ0(n, s, ν, β), η0(n, ν, β) > 0 with the following properties. Let
(u,∇) be a minimizer of Eε defined on Bn

2 (0), with ε ≤ ε0 and the energy
bound

1

|Bn−2
2 |

ˆ
Bn

2

eε(u,∇) ≤ 2π + τ0.

After a suitable rotation, let h : Bn−2
1 → B2

1 be the Lipschitz approximation
defined in Proposition 6.4 with η := η0. Then the following holds, assuming

Ce−K/ε ≤ Cεβ ≤ E := E(u,∇, Bn
2 ,Rn−2)

for some C = C(n, ν, β) and K = K(n): there exists a harmonic function
w : Bn−2

1 → R2 such that

(i)
´
Bn−2

1
|dw|2 ≤ C(n);

(ii) we have ˆ
Bn−2

1

∣∣∣∣∣h− (h)Bn−2
1√

E
− w

∣∣∣∣∣
2

≤ ν,

where (h)Bn−2
1

is the average;

(iii) most importantly, we haveˆ
Bn−2

s

Ez ≤ E

ˆ
Bn−2

s

|dw|2

2
+ νE.

Proof. We prove the statement by compactness and contradiction. Fix ν, β, s
and assume that there exist sequences εk, τk → 0 and a sequence of minimizers
(uk,∇k) for Eεk with the previous energy bound for τ0 = τk, violating the
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conclusion. Moreover, let hk : Bn−2
1 → B2

1 be the Lipschitz approximation for
the threshold η0, to be chosen below.

Lower bound on the energy of the given pair. First of all, recalling item

(i) in Proposition 6.4 we haveˆ
Bn−2

1

|dhk|2 ≤ C(n)E(k), E(k) := E(uk,∇k, B
n
2 ,Rn−2),

for k large enough. Hence, up to a subsequence, we can extract a weak limit

hk − (hk)Bn−2
1√

E(k)
⇀ w

in W 1,2, so that ˆ
Bn−2

1

|dw|2 ≤ C(n).

By Lemma 7.1 and Proposition 7.2, w is harmonic with w(0) = 0. This shows
that the first two conclusions hold, so we must haveˆ

Bn−2
s

E(k)
z > E(k)

ˆ
Bn−2

s

|dw|2

2
+ νE(k).(11.1)

By Lemma 5.8 and the bound Ce−K/ε ≤ ν
5E

(k), this gives

1

2π

ˆ
B2

1×B
n−2
s

eεk(uk,∇k) > |Bn−2
s |+E(k)

ˆ
Bn−2

s

|dw|2

2
+

4ν

5
E(k).

Let a, b ∈ (s, 1) with a < b, which we write as b = a + 4δ. Calling Gk
the good set for (uk,∇k), since the indicator function 1(Bn−2

a \Bn−2
s )∩Gk → 1

strongly L2(Bn−2
a \Bn−2

s ), we have

1(Bn−2
a \Bn−2

s )∩Gk

dhk√
E(k)

⇀ dw

weakly in this space, and henceˆ
Bn−2

a \Bn−2
s

|dw|2

2
≤ lim inf

k→∞

ˆ
(Bn−2

a \Bn−2
s )∩Gk

|dhk|2

2E(k)
.

Using item (iv) in Proposition 6.4 and the assumption E(k) ≥ Cεβk ≥ Ce−K/εk ,
we deduce

ˆ
Bn−2

a \Bn−2
s

|dw|2

2
≤ lim inf

k→∞

ˆ
(Bn−2

a \Bn−2
s )∩Gk

E
(k)
z

E(k)
.

Combined with (11.1), this gives
ˆ
Bn−2

a

E(k)
z > E(k)

ˆ
Bn−2

a

|dw|2

2
+

3ν

4
E(k).
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Using again Lemma 5.8 and E(k) ≥ Cεβk ≥ Ce−K/εk , we obtain

1

2π

ˆ
B2

1×B
n−2
a

eεk(uk,∇k) > |Bn−2
a |+E(k)

ˆ
Bn−2

a

|dw|2

2
+

3ν

5
E(k).(11.2)

Note that, for a fixed small δ > 0 to be specified later, we can find a and
b = a+ 4δ in (s, 1) such that

ˆ
Bn−2

b \Bn−2
a

[|dhk|2 +E(k)|dw|2 +E(k)
z ] ≤ C(n, s)δE(k),(11.3)

along a subsequence, by the classical pigeonhole argument.
Now we take a cut-off function χ such that χ = 1 on Bn−2

a and χ = 0
outside of Bn−2

a+δ , and we let

fk := (1− χ)hk + χ(
√
E(k)w + (hk)Bn−2

1
).

Since ∥hk − (hk)Bn−2
1

−
√

E(k)w∥2L2 = o(E(k)), the Dirichlet energy of fk on

Bn−2
b \Bn−2

a is

ˆ
Bn−2

b \Bn−2
a

[
(1− χ)2

|dhk|2

2
+E(k)(2χ− χ2)

|dw|2

2

]
+ o(E(k)).

In particular, by (11.3) we have
ˆ
Bn−2

b \Bn−2
a

|dfk|2 ≤ CδE(k).(11.4)

We apply Proposition 10.1 to obtain a new pair (ufk ,∇fk).

Construction of the competitor. We want to glue the latter to (uk,∇k) in

a suitable annular region and obtain a new pair whose energy in B2
1 ×Bn−2

b is
strictly lower than (uk,∇k), obtaining a contradiction to minimality. From
now on, we restrict attention to the region B2

1 ×Bn−2
b . We will also drop the

subscript k in the sequel. Note that f = h on Bn−2
a+4δ \B

n−2
a+δ .

For technical reasons, it will be convenient to glue on an annulus of width√
ε. We first select t ∈ [a+ 2δ, a+ 3δ] such that

ˆ
Bn−2

t+2
√
ε
\Bn−2

t−
√
ε

[Ez + |dh|2] ≤ C(n, s, δ)
√
εE.(11.5)

We first apply Proposition 10.2 and Corollary 10.6 to replace (u,∇)
with a gauge-equivalent pair, still denoted (u,∇), such that u

|u| =
uf
|uf | on

(B2
1 \B2

1/2)×Bn−2
b , with

ˆ
A
[ε−2|u− uh|2 + |α− αh|2] ≤ C| log ε|10

ˆ
P (Â)

Ez + εβ,
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where A := B2
1 × (Bn−2

t+
√
ε
\ Bn−2

t ) and Â := B2
1 × (Bn−2

t+2
√
ε
\ Bn−2

t−
√
ε
). In

particular, by (11.5) we have

ˆ
A
[ε−2|u− uh|2 + |α− αh|2] ≤ C

√
ε| log ε|10

ˆ
P (Â)

Ez + εβ = o(E) + εβ,

(11.6)

where the notation o(E) = o(E(k)) indicates a quantity infinitesimal with

respect to E(k), as k → ∞.
We take another cut-off function φ with φ = 1 on B2

1 ×Bn−2
t and φ = 0

outside of B2
1 ×Bn−2

t+
√
ε
. On B2

1 ×Bn−2
b , we define

ũ := (1− φ)u+ φuh, α̃ := (1− φ)α+ φαh.

We claim that ˆ
P (A)

Ẽz ≤ o(E) + Cεβ.(11.7)

Once this is done, using Lemma 5.8, we obtain

1

2π

ˆ
P (A)

eε(ũ, ∇̃) ≤ |P (A)|+ o(Ez) + Cεβ,

and hence by Proposition 10.1, together with (11.3) and (11.4), we get

1

2π

ˆ
B2

1×B
n−2
b

eε(ũ, ∇̃)

≤ |Bn−2
b |+ (1 +O(η20))

ˆ
Bn−2

b

|df |2

2
+

ˆ
Bn−2

b \Bn−2
a

Ez + o(E) + Cεβ

≤ |Bn−2
b |+E

ˆ
Bn−2

a

|dw|2

2
+

ˆ
Bn−2

b \Bn−2
a

[|df |2 +Ez] + Cη20E+ o(E) + Cεβ

≤ |Bn−2
b |+E

ˆ
Bn−2

a

|dw|2

2
+
ν

5
E,

once we take η0 and δ small enough. In the same way, (11.2) gives

1

2π

ˆ
B2

1×B
n−2
b

eε(u,∇) > |Bn−2
b |+E

ˆ
Bn−2

a

|dw|2

2
+

2ν

5
E.

This gives a contradiction: near ∂B2
1 ×Bn−2

t+
√
ε
, using the fact that ũ and uf

have the same phase, it is easy to modify (ũ, ∇̃) in order to make it agree with
(u,∇) (while this already holds on ∂B2

1 × (Bn−2
b \Bn−2

t+
√
ε
)), in a way which

changes the energy by O(e−K/ε) ≤ ν
5E: it is enough to interpolate between

the two pairs on the set

(B2
1 \B2

1/2)×Bn−2
b ,

using the fact that here the energy density is exponentially small, and hence
we can write |ũ− uf | = |(1− |ũ|)− (1− |uf |)| ≤ e−K/ε and |α̃− αf | ≤ e−K/ε
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(since, writing ũ = eiθ̃, we have |dθ̃− α̃| ≤ |ũ|−1|∇̃ũ| and similarly |dθ̃−αf | =
|dθf − αf | ≤ |uf |−1|∇fuf |).

Bounding the energy on the interpolation annulus. It remains to check

the previous claim. We first write

2πẼz =

ˆ
B2

1×{z}

∑
j≥3

|∇̃ej ũ|2 +
∑

(j,j′) ̸=(1,2)

ε2|dα̃(ej , ej′)|2 + |∇̃e1 ũ+ i∇̃e2 ũ|2

+

∣∣∣∣εdα̃(e1, e2)− 1− |ũ|2

2ε

∣∣∣∣2
=: I+ II+ III+ IV.

We start by bounding II: we have

dα̃ = (1− φ)dα+ φdαh + dφ ∧ (αh − α).

Hence, using the fact that |dφ| ≤ Cε−1/2, we have

II ≤ CEz + C|dh|2(z) + Cε2 · Cε−1

ˆ
B2

1×{z}
|αh − α|2.

The last term is bounded by the left-hand side of (11.6); together with (11.5),
this gives the desired bound.

As for IV, we note that

1− |ũ|2

2ε
= (1− φ)

1− |u|2

2ε
+ φ

1− |uh|2

2ε
+O(ε−1|u− uh|),

and hence IV is the squared norm of

(1− φ)

[
εdα(e1, e2)−

1− |u|2

2ε

]
+ φ

[
εdαh(e1, e2)−

1− |uh|2

2ε

]
+O(

√
ε|α− αh|) +O(ε−1|u− uh|).

Thus, we have

IV ≤ CEz + Cε

ˆ
B2

1×{z}
|α− αh|2 + Cε−2

ˆ
B2

1×{z}
|u− uh|2,

again bounded by (11.5) and (11.6).
We finally turn to I; the bound for III is obtained in the same way and

hence will be skipped. We note that

∇̃ũ = d[(1− φ)u+ φuh]− i[(1− φ)u+ φuh][(1− φ)α+ φαh]

= (1− φ)∇u+ φ∇huh + (uh − u)dφ+O(|u− uh||α− αh|).
Hence, ˆ

B2
1×{z}

|∇̃ej ũ|2 ≤ CEz + C|dh|2(z) + Cε−1

ˆ
B2

1×{z}
|u− uh|2

+ C

ˆ
B2

1×{z}
|α− αh|2.
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Again, the last two terms are bounded by the left-hand side of (11.6). This
completes the proof of (11.7), and hence the proof of the proposition. □

11.2. Proof of Theorem 1.10. In this section we finish the proof of the
stronger decay of excess for minimizers. We rescale Bn

1 (0) to B
n
2 (0) and apply

Proposition 11.1, with some s ∈ (0, 12) and ν > 0 to be chosen later and with

β + 1 in place of β. We obtain that either E = E(u,∇, Bn
2 (0),Rn−2) ≤ Cεβ+1

or the conclusions of Proposition 11.1 hold true (provided that the picture is
rotated in such a way that E is small enough).

In the first situation, we clearly have minS E(u,∇, Bn
2 , S) ≤ εβ for ε small

enough and we are done. Hence, in the sequel, we can assume that we are in
the second situation.

We will assume for simplicity that Rn−2 minimizes E(u,∇, Bn
2 , ·) and that

(11.8) |dw(0)| ≤ δ

with δ > 0 to be chosen momentarily.
Since |dw(z)− dw(0)| ≤ s supBn−2

s
|D2w| on Bn−2

s , we haveˆ
Bn−2

s

|dw|2 ≤ C(n)sn−2δ2 + C(n)sn sup
Bn−2

s

|D2w|2 ≤ C(n)sn−2(δ2 + s2),

where the last inequality comes from the bound ∥dw∥L2 ≤ C(n) and standard
elliptic estimates.

By item (iii) from Proposition 11.1 we then haveˆ
Bn−2

s

Ez ≤ E

ˆ
Bn−2

s

|dw|2

2
+ νE ≤ C(n)sn−2(δ2 + s2 + s2−nν)E.

This immediately gives

E(u,∇, Bn
s ,Rn−2) ≤ C(n)(δ2 + s2 + s2−nν)E.

The theorem follows under the assumption (11.8) by taking δ, s and subsequently
ν small enough. The general case can be reduced to this one by the very same
argument of Section 8.2; the only differences here are that we use item (ii)
from Proposition 11.1 in order to bound

∥h− (h)Bn−2
1

−
√
Ew∥2L2 ≤ νE

and that E1 is replaced by E throughout that argument.

11.3. Proof of Theorem 1.9: the case of minimizers. We prove the
following theorem, which contains the second part of Theorem 1.9.

Theorem 11.2. For n ≥ 2, there exists τ0(n) > 0 such that the following
holds. If (u,∇) is an entire, local minimizer for the energy E1, with u(0) = 0
and the energy bound

1

|Bn−2
R |

ˆ
Bn

R

[
|∇u|2 + |F∇|2 +

1

4
(1− |u|2)2

]
≤ 2π + τ0,
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then (u,∇) is two-dimensional. More precisely, we have (u,∇) = P ∗(u0,∇0)
up to a change of gauge, where P is the orthogonal projection onto a two-
dimensional subspace and (u0,∇0) is the standard degree-one solution of
Taubes [51] (or its conjugate), centered at the origin.

Proof. We can assume n ≥ 3.We proceed exactly as in the proof of Theorem 1.9:
letting β := n− 2 > 0, it is enough to prove that

lim
R→∞

Rβmin
S

E1(u,∇, Bn
R, S) = 0.

This follows from the stronger excess decay statement for minimizers, using
the same iteration argument employed in the proof of Theorem 1.9. □

Appendix A. Barycenter and variance of good slices

We show two lemmas which give a more refined control of a critical pair on
a good slice B2

1 × {z}, with z ∈ Gη, the good set defined in (6.2). We assume

that (u,∇) is a critical pair for Eε, defined on B2
1 ×Bn−2

1 , with ε ≤ ε0 and

Eε(u,∇) ≤ |Bn−2
1 |(2π + τ0)

(as well as (4.1)–(4.2)). Under this assumption, we haveˆ
(B2

3/4
\B2

1/2
)×{z}

eε(u,∇) ≤ e−K(n)/ε

for z ∈ Bn−2
3/4 , since this part of the slice is far from the vorticity set. Recall

that the barycenter
h(z) = Φχ(x1,x2)(z)

was defined using a cut-off function χ supported in B2
3/4, with χ = 1 on B2

1/2

(the notation in the subscript means χ · (x1, x2)).
Lemma A.1 (Barycenter of a good slice). For ε0, τ0, η0 > 0 small enough,
if η ≤ η0 and z ∈ Gη, then we have the following estimate (for a possibly
different K = K(n)):

|h(z)− h0(z)| ≤ C(n)ε| log(E2)z|(E2)
1/2
z + e−K/ε,

where h0 is the map from Proposition 6.6 giving the zero set on good slices.

In other words, the barycenter of the good slice is close to the actual zero of
u here (unique in B2

1/2 × {z}).

Proof. Recall that, by definition, we have

h(z) = Φχ(x1,x2)(z) =
1

2π

ˆ
B2

1/2
×{z}

(x1, x2)J(u,∇)(e1, e2) + Ce−K/ε.

Since the integral of the Jacobian on B2
1/2 × {z} is 2π +O(e−K/ε) (see, e.g.,

the proof of [42, Lemma 6.11]), we get

h(z)− h0(z) =
1

2π

ˆ
B2

1/2
×{z}

[(x1, x2)− h0(z)]J(u,∇)(e1, e2) + Ce−K/ε.
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On the other hand, using the notation from Proposition 10.1, we have∣∣∣∣∣ 12π
ˆ
B2

1/2
×{z}

[(x1, x2)− h0(z)]J(uh0 ,∇h0)(e1, e2)

∣∣∣∣∣ ≤ Ce−K/ε,

by symmetry of the standard planar solution.
Moreover, u(·, z) vanishes linearly at h0(z), as observed in Lemma 5.7. We

can then apply a rescaling of (4.15) in Theorem 4.8, which gives

ˆ
B2

1/2
×{z}

|J(u,∇)(e1, e2)− J(uh0 ,∇h0)(e1, e2)| ≤ C
√

(E2)z + Ce−K/ε.

(A.1)

Selecting a radius C(n)ε ≤ r ≤ 1
4 , we have

eε(u,∇)(y, z) ≤ C(n)ε−2e−K|y−h0(z)|/ε on [B2
1/2 \B

2
r (h0(z))]× {z}

for a possibly different K, since as observed in Lemma 5.7 the distance from
the vorticity set Z is comparable to the distance from

Z ∩ (B2
3/4 × {z}) ⊆ B2

C(n)ε(h0(z))× {z},

on good slices. Hence,ˆ
B2

1/2
×{z}

|(x1, x2)− h0(z)||J(u,∇)(e1, e2)− J(uh0 ,∇h0)(e1, e2)|

≤ r

ˆ
B2

r (h0(z))×{z}
|J(u,∇)(e1, e2)− J(uh0 ,∇h0)(e1, e2)|

+ Cε−2

ˆ
B2

1/2
\B2

r (h0(z))
|y − h0(z)|e−K|y−h0(z)|/ε dy

≤ Cr
√

Ez + Cεe−Kr/ε

for a possibly different K. Taking r :=Mε| logEz| for big enough M , we get

r
√
Ez + εe−Kr/ε ≤Mε

√
Ez| logEz|+ ε

√
Ez ≤ C(n)ε

√
Ez| logEz|

(recall that Ez ≤ 1
2 , by definition of good set), unless r < C(n)ε or r > 1

4 .
The situation r < C(n)ε cannot happen, once M is taken large enough, while

in the last case we obtain Ez ≤ e−K
′/ε and thus we are done again, by taking

r := 1
4 above. □

Next we show that on a good slice the variance is close to ε2v0, where v0 is
the variance of the standard degree-one planar solution.

Lemma A.2 (Variance of a good slice). For any σ ∈ (ε, 1) such that
|h0(z)| ≤ σ, we have the following estimate on good slices, for any c ∈ R2 with
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|c| ≤ σ:∣∣∣∣∣ 12π
ˆ
B2

1/2
×{z}

[(x1 − c1)
2 + (x2 − c2)

2]eε(u,∇)− ε2v0

∣∣∣∣∣
≤ C(n)ε2| log(E2)z|2

√
(E2)z + C(n)σ2(E1)z + C(n)|h(z)− c|2

√
(E2)z

+ C(n)e−Kσ/ε,

for a possibly different K = K(n).

Proof. First of all, since the integrand in the definition of excess E = E1 +E2

upper bounds eε(u,∇)− J(u,∇), we can replace eε(u,∇) with J(u,∇), up to
an error bounded as follows: for E1, we bound separately the contribution of
B2

2σ and the complement (where we use exponential decay) obtaining the error

9σ2(E1)z + C(n)e−Kσ/ε;

as for E2, we argue as in the previous proof, obtaining the error

C(n)|h0(z)− c|2(E2)z + C(n)ε2| log(E2)z|2(E2)z + e−K/ε,

where the first term comes from replacing c with the actual location h0(z) of
the zero. Moreover, by definition of v0, we have

1

2π

ˆ
B2

1/2
×{z}

|(x1, x2)− h0(z)|2J(uh0 ,∇h0)(e1, e2) = ε2v0 +O(e−K/ε);

since

|(x1, x2)− h0(z)|2 − |(x1, x2)− c|2 = 2⟨(x1, x2)− h0(z), c− h0(z)⟩
− |c− h0(z)|2

and ˆ
B2

1/2
×{z}

[(x1, x2)− h0(z)]J(uh0 ,∇h0) = O(e−K/ε),

we obtain

1

2π

ˆ
B2

1/2
×{z}

|(x1, x2)−c|2J(uh0 ,∇h0)(e1, e2) = |h0(z)−c|2+ε2v0+O(e−K/ε).

As in the previous proof, we can replace J(u0,∇0) with J(u,∇) here, up to

an error of the form C(n)(|h0(z)− c|2 + ε2| logEz|2)
√

(E2)z (using (4.15)
from Theorem 4.8). Finally, we can bound

|h0(z)− c|2 ≤ 2|h0(z)− h(z)|2 + 2|h(z)− c|2

≤ 2|h(z)− c|2 + C(n)ε2| log(E2)z|2(E2)z

using the previous proposition, and the claim follows. □
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Remark A.3. Since t 7→ t| log t|2 is concave for t > 0 small enough, we have

ˆ
S
Ez| logEz|2 ≤

(ˆ
S
Ez

) ∣∣∣∣log( 
S
Ez

)∣∣∣∣2 ≤ C

(ˆ
S
Ez

) ∣∣∣∣log( 
S
Ez

)∣∣∣∣2
for sets S ⊆ Gη of measure comparable with 1.

Appendix B. Poincaré–Gaffney-type inequalities

In the construction of the interpolation gauge in Proposition 10.2 we make
frequent use of Poincaré-type inequalities for functions and differential forms.
These inequalities are well known; we present the special cases used in this
paper for the convenience of the reader.

The following lemma is a consequence of results first appeared in the
original paper of Gaffney [27] (see also [35] for a systematic treatment on
manifolds with boundary), but for our application we need it to hold uniformly
for cylinders of the form B2

1 ×Bn−2
r of arbitrarily small width r > 0.

Lemma B.1 (Poincaré–Gaffney-type inequality for thin cylinders). Given a

1-form α ∈ Ω1(B
2
1 ×B

n−2
r ) with r ≤ 1 and the Neumann boundary condition

α(ν) = 0 on ∂(B2
1 ×Bn−2

r ), the following inequality holds:ˆ
B2

1×B
n−2
r

|α|2 ≤ C(n)

ˆ
B2

1×B
n−2
r

[|dα|2 + |d∗α|2].

Proof. Since B2
1 ×Bn−2

r is a convex domain and ινα = 0 at its boundary, we
can apply [15, Remark 9] to see thatˆ

B2
1×B

n−2
r

|∇α|2 ≤
ˆ
B2

1×B
n−2
r

[|dα|2 + |d∗α|2].

Now we rescale the domain with the map ϕ : B2
1 ×Bn−2

1 → B2
1 ×Bn−2

r given
by

ϕ(x1, . . . , xn) := (x1, x2, rx3, . . . , rxn),

and define α̃(x) := α(ϕ(x)) (notice that this is different from the pullback
ϕ∗(α)). Then we claim that there exists a constant C(n) > 0 such thatˆ

B2
1×B

n−2
1

|α̃|2 ≤ C(n)

ˆ
B2

1×B
n−2
1

|∇α̃|2 .(B.1)

We prove this by compactness and contradiction. By homogeneity, suppose
there exists a sequence α̃k with ινα̃k = 0 on ∂(B2

1 ×Bn−2
1 ) andˆ

B2
1×B

n−2
1

|α̃k|2 = 1, lim
k→∞

ˆ
B2

1×B
n−2
1

|∇α̃k|2 = 0.

Note that by the display above we have the bound ∥α̃k∥W 1,2(B2
1×B

n−2
1 ) ≤ 2 for

all large k ≥ 0. Up to extracting a subsequence, we can assume that α̃k
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converges weakly to α̃∞ in W 1,2. By Rellich–Kondrachov, the convergence is
strong in L2. Thus, ˆ

B2
1×B

n−2
1

|α̃∞|2 = 1, ∇α̃∞ = 0.

Hence, α̃∞ = v is a constant covector. The boundary condition passes to the
limit, giving that v(ν) = 0 on ∂(B2

1 ×Bn−2
1 ); since the normal vectors to the

boundary of this domain span all of Rn, we get that v = 0, a contradiction
establishing (B.1). Then we compute thatˆ

B2
1×B

n−2
r

|α|2 = rn−2

ˆ
B2

1×B
n−2
1

|α̃|2

≤ C(n)rn−2

ˆ
B2

1×B
n−2
1

|∇α̃|2

≤ C(n)

ˆ
B2

1×B
n−2
r

|∇α|2

≤ C(n)

ˆ
B2

1×B
n−2
r

[|dα|2 + |d∗α|2],

as desired. □

The next lemma is a weighted Poincaré estimate for functions in two
dimensions.

Lemma B.2. There exists a constant C > 0 such that for any compactly
supported function f ∈ C1

c (B
2
R) the following weighted Poincare type estimate

holds: ˆ
B2

R

|x|2|f |2(x) ≤ CR3/2

ˆ
B2

R

|x|5/2|df |2(x).

Proof. By scaling the domain, we can assume that R = 1. Then by [13, eq.
(1.4)] (for the choice of constants α := 5/4, a := 1, p = q = r := 2, γ, σ := 1/4)
we can see thatˆ

B2
1

|x|2|f |2(x) ≤
ˆ
B2

1

|x|1/2|f |2(x) ≤ C

ˆ
B2

1

|x|5/2|df |2(x).

This is indeed the desired conclusion. □

Lemma B.3 (Poincaré inequality on a thin annulus). Given a > b ≥ c ≥ 0,
there exists a constant C(n, a, b, c) > 0 with the following property. Let f be
a function in W 1,2((B2

a \ B2
c )× Ω), where Ω ⊆ Rn−2 is a convex bounded

domain, such that ˆ
(B2

a\B2
b )×Ω

f = 0.
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Then the following Poincaré inequality holds:ˆ
(B2

a\B2
c )×Ω

|f |2 ≤ C(n, a, b, c) diam(Ω)2
ˆ
(B2

a\B2
c )×Ω

|df |2.

Proof. First we apply the standard Poincaré inequality on each two dimensional
slice (B2

a \B2
c )× {z} for any z ∈ Ω:

ˆ
Ω

[ˆ
(B2

a\B2
c )×{z}

|f |2
]
dz

≤ C(a, b, c)

ˆ
(B2

a\B2
c )×Ω

|df |2 +
ˆ
Ω

∣∣∣∣∣
ˆ
(B2

c\B2
b )×{z}

f

∣∣∣∣∣
2

dz.

Notice that the function g(z) :=
´
(B2

a\B2
b )×{z} f has zero average on Ω. Hence

we can apply the Poincaré inequality on Ω to see thatˆ
Ω
|g|2 ≤ C(n) diam(Ω)2

ˆ
Ω
|dg|2.

Indeed, it is well-known that the Poincaré inequality on a convex domain
holds with a constant depending only on its diameter and n. This yields the
desired conclusion. □

Remark B.4. The same conclusion holds if we assume thatˆ
(B2

a\B2
b )×Ω′

f = 0

for some Ω′ with |Ω′| ≥ α|Ω| (the constant depending also on α).
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