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Introduction Setting and notations

Notations

We consider an undirected graph G = (V ,E ) with n vertices.

The adjacency matrix associated to G is the n × n matrix A such that

Aij =

{
1 if (i , j) ∈ E ,

0 otherwise.

The graph is undirected, so A is symmetric.
Define the following:

1 = [1 . . . 1]T ∈ Rn;
d = A1 the vector of degrees, and D = Diag(d) ∈ Rn×n;
The stochastic matrix P = D−1A, i.e. such that P ≥ 0 and P1 = 1.
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Introduction Setting and notations

The random walk

The matrix P defines a random walk on the graph: if Xk denotes the
position of the walker at time k , we have

Pij = P(Xk+1 = j |Xk = i) = P(X1 = j |X0 = i).

This is a homogeneous discrete time Markov chain.
The probability distribution of Xk is given by

xTk = xT0 Pk , ∀k ∈ N.

We denote by π a stationary probability distribution, i.e. such that

πT = πTP, π ≥ 0, πT1 = 1.

For an undirected graph, A = AT and it is easy to see that π = d/(1Td)
is a stationary distribution.
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Introduction Setting and notations

In order to state the Perron-Frobenius theorem, we need the following
definitions:

Definition (Irreducible matrix)
A matrix A is irreducible if the associated graph is strongly connected: for
every pair of nodes (i , j) there is a path going from i to j and viceversa.

Definition (Primitive matrix)
A non-negative matrix A is primitive if there exists m > 0 such that
Am > 0 (component-wise).

Remark
We have (Ak)ij > 0 ⇐⇒ there is a path of length k from i to j .
So A primitive means that there exists m > 0 such that for any pair of
nodes (i , j), there exists a path of length m that goes from i to j .
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Introduction Perron-Frobenius theory

Perron - Frobenius theorem

Theorem (Perron - Frobenius [4])
Let A be an irreducible n × n non-negative matrix. Then the following
statements hold:
(i) The spectral radius ρ(A) is an eigenvalue of A with algebraic

multiplicity one.
(ii) The eigenvector x associated to ρ(A) can be chosen so that x > 0

(component-wise), and ρ(A) is the only eigenvalue with this property.
(iii) If A is primitive, all other eigenvalues λ of A satisfy |λ| < ρ(A).

(iv) If A is primitive and ρ(A) = 1, it holds lim
k→∞

Ak =
1

yT x
xyT , where x

and y are respectively the right and left eigenvector associated to
ρ(A).
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Introduction Perron-Frobenius theory

Consequences

The stationary distribution satisfies πT = πTP , i.e. it is a left
eigenvector associated to 1.
By the Perron-Frobenius theorem, a strongly connected graph always
has a unique stationary probability distribution.
For an undirected graph, this is given explicitly by π = d/(1Td).
If the adjacency matrix A graph is primitive, the stationary distribution
can be computed as

πT = lim
k→∞

xT0 Pk

for any initial probability vector x0.

From now on we will assume that the graph is undirected and A is primitive.
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Random walks First hitting times

Definition (First hitting probability)
Given a pair of nodes (i , j) and an integer k > 0, define the first hitting
probability

Fij(k) = P(Xk = j ,Xk−1 6= j , . . . ,X1 6= j |X0 = i).

This is the probability of going from i to j in exactly k steps. We define
Fij(0) = δij .

Definition (Mean first hitting time)
Given a pair of nodes (i , j), the mean first hitting time is defined as

Tij =
∞∑
k=1

kFij(k).
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Random walks First hitting times

Note that with this definition we have Tii = 0.
The mean first return times are instead given by

τi = 1 +
n∑

α=1

PiαTαi = 1 + (PT )ii .

With a short computation one can easily prove that

Tij = 1 +
n∑

α=1

PiαTαj − δijτj = 1 + (PT )ij − δijτj .

This can be written in the equivalent matrix form

(I − P)T = 11T − Diag(τ1, . . . , τn).
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Random walks First hitting times

Consider the equation we obtained:

(I − P)T = 11T − Diag(τ1, . . . , τn).

By multiplying it on the left by πT , we get

0 = 1T − πT Diag(τ1, . . . , τn) ⇒ τi = 1/πi .

By multiplying it on the right by π, we get

(I − P)Tπ = 0 ⇒ Tπ ∈ ker(I − P).

From the Perron-Frobenius theorem, ker(I − P) = span(1), so there
exists a constant K such that Tπ = K1, or

n∑
j=1

Tijπj = K , ∀i = 1, . . . , n.

The constant K is known as Kemeny’s constant for the graph G.
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Random walks Kemeny’s constant and the random walk centrality

We can get an explicit expression for T in terms of the graph Laplacian
matrix L = D − A.

Define the (symmetric) normalized graph Laplacian

L = D−1/2LD−1/2 = I − D1/2PD−1/2.

We have

T = (1Td)
(
1vT − D−1/2L+D−1/2

)
, vi = L+ii /di ,

where L+ denotes the Moore-Penrose generalized inverse of L.

A centrality measure is a function that associates a value to each node:
this provides a ranking of the nodes based on their importance, in some
sense.
The above expression for T can be used to define a random walk
centrality for the graph G.
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Random walks Kemeny’s constant and the random walk centrality

From the previous expression for T , we can see that the skew-symmetric
part of T has rank 2:

T − TT = (1Td)(1vT − v1T ) = 1kT − k1T , ki = L+ii /πi .

Component-wise, this reads Tij − Tji = kj − ki , so

Tij > Tji ⇐⇒
1
ki
>

1
kj
.

Definition
Given any vector k such that T − TT = 1kT − k1T , the vector with
entries 1/ki is a random walk centrality for the graph G.

k can be interpreted as a ranking of the nodes based on their
accessibility: i is "more accessible" than j if and only if 1/ki > 1/kj .
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Random walks Kemeny’s constant and the random walk centrality

Consider again the equation

T = (1Td)
(
1vT − D−1/2L+D−1/2

)
, vi = L+ii /di ,

By multiplying it on the left by πT = dT/(1Td), we get

πTT = (1Td)vT − dTD−1/2L+D−1/2 = (1Td)vT

since dTD−1/2L+ = 0.
Hence

(πTT )j = (1Td)vj ⇒
n∑

i=1

πiTij = L+jj /πj .

This is similar to the expression for Kemeny’s constant: recall that

n∑
j=1

Tijπj = K .
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Random walks Kemeny’s constant and the random walk centrality

If we replace k with ` = k + α1 for some α ∈ R, we still have

T − TT = 1`T − `1T .

We have seen that the entries of ` and Kemeny’s constant K satisfy

`j =
n∑

i=1

πiTij + α,

K =
n∑

i=1

πiTji ∀j .

If we choose α = K , we get `j =
n∑

i=1

πi (Tij + Tji ).

This choice produces the natural random walk centrality 1/`j , which has a
direct random walk interpretation.
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Fractional dynamics Fractional diffusion and random walks

The graph Laplacian

The Laplacian matrix L = D − A represents the discrete Laplace
operator with Neumann boundary conditions on the graph G.
It is used to model diffusion on the graph:

d
dt

x(t) = −Lx(t), x(0) = x0.

Its normalization L̃ = D−1L is also used to describe a continuous time
random walk on the graph:

d
dt

P(t) = −P(t)L̃, P(0) = I .

The solution to this differential equation is the matrix exponential

P(t) = exp(−L̃t).
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Fractional dynamics Fractional diffusion and random walks

The fractional Laplacian

In order to model long-range dynamics on the graph, we define fractional
powers of the graph Laplacian matrix: Lγ , for γ ∈ (0, 1).
In the case we consider, the graph is undirected and the definition can be
given in terms of the eigendecomposition of L.
There exists an orthogonal matrix Q such that

L = QΛQT , Λ = Diag(λ1, . . . , λn),

and we can define

Lγ = QΛγQT , Λγ = Diag(λγ1 , . . . , λ
γ
n).

In a more general setting, the definition can be given using Hermite
polynomial interpolation or the Jordan canonical form of L.
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Fractional dynamics Fractional diffusion and random walks

Fractional dynamics: motivation

In some applications, the random walker can perform "long-range
jumps" and move directly to a node not connected by an edge to the
previous one, with probability that is lower the more distant the new
node is.
The fractional Laplacian Lγ is usually a full matrix, with entries that
decay when going "far" from the sparsity pattern of L.

Thus fractional dynamics are useful to capture this long-range behaviour.
Using the normalized fractional Laplacian L(γ) = Diag(Lγ)−1Lγ , we define

W = I − L(γ).

Then W is a stochastic matrix, and it can be interpreted as the transition
matrix of a fractional random walk on the graph G.
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Fractional dynamics Fractional diffusion and random walks

Fractional dynamics: summary

Fractional diffusion:

d
dt

x(t) = −Lγx(t), x(0) = x0.

Discrete time fractional random walk:{
xTk+1 = xTk W

xT0 1 = 1, x0 ≥ 0.

Continuous time fractional random walk:

d
dt

P(t) = −P(t)L(γ), P(0) = I .
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Fractional dynamics Decay of matrix fractional powers

Decay in the fractional Laplacian

To show a theoretical result on the decay properties of the fractional
Laplacian, we will use the following approximation theorem:

Theorem (Jackson [5])
Let f : [a, b]→ R be a function with modulus of continuity ω.
Denote by Pn the set of polynomials of degree ≤ n. Then it holds

En(f ) := inf
pn∈Pn

‖f − pn‖∞ ≤ cω(1/n),

where c = 1
2(1 + π2/2)(b − a) is a constant that only depends on the

interval [a, b].
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Fractional dynamics Decay of matrix fractional powers

Decay in the fractional Laplacian

Using Jackson’s theorem we can prove the following:

Proposition
Let L be the Laplacian matrix of an undirected graph G and let γ ∈ (0, 1).
Denote by d(i , j) the length of the shortest path connecting nodes i and j
in G. Then the following holds:

|(Lγ)ij | ≤ C
1

|d(i , j)− 1|γ
, C = (1 + π2/2)

ρ(L)

2
.

Corollary

The off-diagonal entries of W = I − L(γ) satisfy:

|Wij | ≤ (1 + π2/2)
ρ(L)2−γ

2mini di
· 1
|d(i , j)− 1|γ

.
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Fractional dynamics Decay of matrix fractional powers

Decay in eA for A positive semidefinite, bandwidth k = 5, and a
simple eigenvalue at 0:
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Fractional dynamics Decay of matrix fractional powers

Decay in A1/2 for A positive semidefinite, bandwidth k = 5, and a
simple eigenvalue at 0:
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Fractional dynamics Speed of exploration and numerical experiments

Speed of exploration

The fractional random walk with transition matrix W = I − L(γ)
explores the graph faster than the standard random walk, both for
continuous and discrete time.

The differential equation for the continuous time fractional random walk is

d
dt

P(t) = −P(t)L(γ), P(0) = I ∈ Rn×n.

To quantify the "speed of exploration", we define the average fractional
return probability (for continuous time)

p
(γ)
0 (t) =

1
n

n∑
i=1

P(t)ii =
1
n
tr
(
exp(−L(γ)t)

)
=

1
n

n∑
i=1

exp(−λ(γ)i t).

The limit for t →∞ of this probability is p(γ)0 (∞) =
1
n
.
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Fractional dynamics Speed of exploration and numerical experiments

The speed of the continuous time exploration is quantified by the global
time

T̄cont =

∫ ∞
0

(
p
(γ)
0 (t)− p

(γ)
0 (∞)

)
dt =

1
n

n∑
i=2

1

λ
(γ)
i

,

where 0 = λ
(γ)
1 < λ

(γ)
2 ≤ · · · ≤ λ(γ)n ≤ 2 are the eigenvalues of L(γ).

We can define an equivalent time for the discrete time random walk, which
is related to the fractional fundamental matrix and Kemeny’s constant:

T̄disc =
∞∑
k=0

(
1
n

n∑
i=1

(
W k − 1πT

)
ii

)
=

1
n

n∑
i=1

R
(γ)
ii =

1
n
K .

It turns out that T̄cont and T̄disc are actually the same.
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Fractional dynamics Speed of exploration and numerical experiments

Average return probabilities p(γ)0 (t) for different graphs and values of
γ:
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Fractional dynamics Speed of exploration and numerical experiments

Average global times T̄cont = T̄disc for different graphs and values of γ:
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Conclusions

Conclusions

We have presented expressions for the matrix of first hitting times T
in terms of the normalized Laplacian L.
We have used those expressions for T to obtain Kemeny’s constant
and define the random walk centrality.
We introduced the fractional Laplacian L(γ) in order to model
long-range dynamics on the graph.
We have seen that fractional dynamics explore the graph faster than
the standard ones, more significantly for large world graphs.
The exploration speed is related to the fact that the standard
Laplacian is a sparse matrix, while the fractional Laplacian is a full
matrix with decay.
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