1 Esercizio 1 Proving Stuff

1. Sia \mathbb{K} un campo di caratteristica 0, e $\{\alpha_1,\ldots,\alpha_n\}=S\subset\mathbb{K}$. Vogliamo dimostrare che $\mathbb{Z}[S]\neq\mathbb{K}$. Per Zariski, dato che $\mathbb{Z}[S]\subset\mathbb{Q}[S]\subset\mathbb{K}$, possiamo supporre che \mathbb{K} sia algebrico su \mathbb{Q} , altrimenti otteniamo immediatamente la tesi. Per ogni k sia μ_k un polinomio a coefficienti interi che annulla α_k . Sia $p\in\mathbb{Z}$ un primo che non divide nessuno dei coefficienti direttori dei μ_k al variare di k. Consideriamo la localizzazione $A=\mathbb{Z}_{(p)}$. Per la scelta di p si ha che A[S] è un'estensione intera di A, perciò $\dim_{\mathrm{krull}}(A[S])=\dim_{\mathrm{krull}}(A)=1$, e in particolare $A[S]\neq\mathbb{K}$. La tesi segue osservando che $\mathbb{Z}[S]\subset A[S]\subset\mathbb{K}$.

2. Osserviamo che A/M è fintamente generata, diciamo da $\{\alpha_1,\ldots,\alpha_n\}$, dato che A lo è. Dunque, dato che è un campo, se per assurdo fosse di caratteristica 0, allora sarebbe una \mathbb{Z} -algebra e otteniamo una contraddizione dal punto precedente. Quindi, dato che A/M è di caratteristica positiva, otteniamo che $\mathrm{Ann}_{\mathbb{Z}}(A/M) = \{k \in \mathbb{Z} | k(A/M) = 0\} = (p)$ per un certo p primo, perciò A/M è una \mathbb{F}_p -algebra. Per Zariski otteniamo che l'estensione di campi $\mathbb{F}_p \subset A/M$ è finita, quindi concludiamo osservando che A/M è uno spazio vettoriale di dimensione finita su un campo, \mathbb{F}_p , di cardinalità finita.

2 Esecizio 2 Proving Stuff

1. $[\subseteq]$ Sia $a \in A \setminus J(A)$. Deve esiste $\mathfrak{m} \lhd A$ massimale che non contiene a. Dunque, preso \mathfrak{m}' che sta sopra \mathfrak{m} , che esiste ed è massimale perché $A \subset B$ è intera, otteniamo che $a \notin J(B) \cap A \subset \mathfrak{m}' \cap A = \mathfrak{m}$. $[\supseteq]$ Sia $a \in J(A)$, dico che $a \in \mathfrak{m}$ per ogni $\mathfrak{m} \lhd B$ massimale. Infatti, usando che in estensioni intere gli ideali massimali stanno sopra a ideali massimali, preso $\mathfrak{m} \lhd B$ massimale, abbiamo che $a \in J(A) \subset \mathfrak{m} \cap A \subset \mathfrak{m}$.

2. Usando il punto precedente, l'implicazione $J(B)=0 \Longrightarrow J(A)=0$ è immediata, dimostriamo l'altra implicazione. Supponiamo per assurdo esista $0 \ne b \in B$ tale che $b \in J(B)$. Siano $a_i \in A$ tali che $\sum_{i=0}^n a_i b^i = 0$, che esistono perché l'estensione considerata è intera. Dato che siamo in un dominio, dividendo entrambi i membri per una potenza opportuna di b, possiamo supporre senza perdita di generalità che $a_0 \ne 0$. Usando la caratterizzazione di Jacobson, usando la relazione algebrica di cui sopra, otteniamo che per ogni $x \in B$ si ha $1 - x(\sum_{i=1}^n a_i b^{i-1})b = 1 + xa_0 \in B^*$. Dunque anche $a_0 \in J(B)$, e, usando il punto precedente, anche $a_0 \in J(A)$, il che è assurdo perché J(A) = 0 per ipotesi.

3 Esercizio 2 Computing Stuff

Dimostrazione. Osservato che $\mathbb C$ è un campo, per i teoremi relativi all'altezza sappiamo che

$$\dim_{\mathrm{krull}}(\mathbb{C}[x_1,\ldots,x_4]/I) = 4 - ht(I).$$

L'altezza di I è minore o uguale a 3 per il teorema dell'altezza, ed è maggiore o uguale a due perché l'ideale $(x_1x_4 - x_2x_3)$ è primo ed è un sottoideale proprio di I (infatti si verifica facilmente a mano che il polinomio $x_1x_4 - x_2x_3$ è irriducibile, quindi primo). Di conseguenza $\dim_{\mathrm{krull}}(\mathbb{C}[x_1,\ldots,x_4]/I) \in \{1,2\}$, affermo che è uguale a 2. Per mostrarlo esibisco una catena di ideali primi lunga 2 in $\mathbb{C}[x_1,\ldots,x_4]/I$. La catena è la seguente $(0) \subset (\overline{x_2},\overline{x_3},\overline{x_4}) \subset (\overline{x_1},\overline{x_2},\overline{x_3},\overline{x_4})$. Che questi ideali sono primi segue facilmente dalle caratterizzazioni degli ideali primi monomiali. Le inclusioni sono strette, infatti l'inclusione $I \subset (x_2,x_3,x_4)$ è stretta perché qualunque combinazione dei generatori di I non contiene monomi di grado 1 (in questo caso il grado è inteso come somma degli esponenti delle varie indeterminate). Abbiamo esibito catena di ideali primi, dunque $\dim_{\mathrm{krull}}(\mathbb{C}[x_1,\ldots,x_4]/I) \neq 1$, allora deve essere due per quanto detto sull'altezza di I.

4 Esercizio 4 Computing Stuff

1. Usiamo la caratterizzazione dei DVR. $A_{\mathfrak{m}}$ è locale a artiniano: locale perché è una localizzazione, artiniano perché A è artiniano. Per dimostrare che A è un dominio basta verificare che il polinomio

 $p(x,y)=x^2-x^3+y^2+y$ sia irriducibile. Dato che questo polinomio ha grado 2 in y, ogni fattorizzazione ricade in uno dei seguenti due casi:

- $p(x,y) = p_1(x,y)p_2(x)$, in questo caso però p_2 deve essere invertibile, altrimenti nel prodotto comparirebbe monomio di grado diverso da 0 sia in x sia in y.
- $p(x,y) = p_1(x,y)p_2(x,y)$ con $deg_y(p_1) = deg_y(p_2) = 1$. Per lo stesso ragionamento di prima il monomio dove compare y non può contenere x. Dunque rimaniamo con questa condizione $x^2 x^3 + y^2 + y = (y + ax^n)(y + bx^m)$ che non è soddisfatta da nessuna scelta di $n, m \in \mathbb{N}$ e $a, b \in \mathbb{C}$. Ne consegue che questo caso non può mai avvenire.

Inoltre per il teorema dell'altezza $\dim_{\mathrm{krull}}(A) = 1$ in quanto l'ideale al quoziente è primo, diverso da 0 e generato da un elemento quindi di altezza 1. Dato che $\dim_{\mathrm{krull}}(A_{\mathfrak{m}}) \leq \dim_{\mathrm{krull}}(A)$, ma non può essere 0 perché non è un campo, allora è 1. Inoltre $\mathfrak{m}/\mathfrak{m}^2$ è uno s.v. di dim 1, infatti è generato da x, y perché \mathfrak{m}^2 contiene tutti i monomi di secondo grado però usando la relazione al quoziente otteniamo che y è somma di monomi che appartengono a \mathfrak{m}^2 .

Dimostrazione. Dal polinomio al quoziente ottengo $y = x^2(x-1)(y+1)$. Sostituendo in f ottengo $f = x^5(x^2 - x + y + 1)/(y + 1)^3$. Dato che dal punto precedente e dalla teoria otteniamo che x è l'uniformizzante, ricordando che gli invertibili di $A_{\mathfrak{m}}$ sono i polinomi con termine noto non nullo, si ottiene subito che la valutazione di f è 5.