
University of Pisa

Department of Mathematics

Master Degree in Mathematics

Reinforcement Learning for
Conformal Field Theories

Master Thesis

Supervisors
Prof. Davide Bacciu
Dr. Andrea Cossu
Dr. Pietro Ferrero

Candidate
Alessandro Trenta

Academic year 2022–2023

ii

Reinforcement Learning for
Conformal Field Theories

Candidate:
Alessandro Trenta

Supervisors:
Prof. Davide Bacciu
Dr. Andrea Cossu
Dr. Pietro Ferrero

2

Table of Contents

1 Introduction 5

2 Conformal Field Theories 9
2.1 From Quantum Mechanics to Quantum Fields 9

2.1.1 Formalism of Quantum Mechanics 10
2.1.2 Quantum Field Theory . 12

2.2 Conformal Transformations . 18
2.2.1 Classification of conformal transformations 20

2.3 Conformal Field Theories . 22
2.4 Correlators and the Operator Product Expansion 26

2.4.1 Conformal invariance in the Euclidean plane 32
2.5 Conformal Bootstrap . 35

2.5.1 Historical approaches and success 36

3 Reinforcement Learning Generalities 39
3.1 Machine Learning . 39

3.1.1 Motivations and main concepts 40
3.1.2 Deep Feedforward Networks . 42
3.1.3 Training . 44
3.1.4 Optimization . 47

3.2 Reinforcement Learning . 50
3.2.1 Finite Markov Decision Processes 50
3.2.2 Returns and Episodes . 52
3.2.3 Policies and Value functions . 53

3.3 Model-free and Off-policy RL . 56
3.3.1 Policy Gradient Methods . 57
3.3.2 Actor-Critic methods . 60

3.4 Soft Actor-Critic . 61
3.4.1 Soft Policy Iteration . 62
3.4.2 Soft Actor-Critic . 65

4 Bootstrap Stochastic Optimization with SAC 69
4.1 Reinforcement learning approach for Conformal Bootstrap 69

4.1.1 The algorithm . 72
4.2 Additional remarks on the SAC implementation 74
4.3 2D Ising model . 76
4.4 1D defect CFT on the Half-BPS Wilson line 78

4.4.1 Integral constraints and the bounds on OPE coefficients 80
4.4.2 Final remarks on the implementation 83

3

Table of Contents

4.4.3 Previous approaches in literature 85

5 Results 87
5.1 Experimental Setup . 87
5.2 The benchmark model: Ising 2D . 88

5.2.1 Free search experiments . 90
5.2.2 Constrained search experiments 92

5.3 Half-BPS Wilson line defect CFT . 97
5.3.1 Initial search and the Role of Integral Constraints 97
5.3.2 Experiments at weak coupling 100
5.3.3 Experiments at strong coupling 105

5.4 Discussion . 110

6 Conclusion 113

A Further results 115
A.1 ⟨σσσσ⟩ correlator in the Ising 2D model 115
A.2 Experiments at weak coupling . 117

A.2.1 Second and third squared OPE coefficients 117
A.3 Experiments at strong coupling . 120
A.4 Higher dimensional operators in the 1D CFT 121

4

Chapter 1

Introduction

Conformal Field Theories (CFTs) are particular kinds of Quantum Field Theories
(QFTs) that, in addition to relativistic invariance under the Poincaré group of trans-
formations, require invariance under a larger set of transformations: conformal trans-
formations. CFTs have an axiomatic mathematical definition [Sch08] and can describe
natural phenomena such as second-order phase transitions, as well as complex theories
such as string theory. The 2D Ising model, well known in statistical mechanics as well,
is an example of CFT that researchers have completely solved [BPZ84].

The addition of conformal symmetry in CFTs is more than a simple restriction:
it unlocks many tools and properties and puts additional constraints on the theory.
The Operator Product Expansion (OPE) lets us write a product of operators as an
infinite sum of individual operators and defines an associative algebra. In general
QFTs, the OPE is an asymptotic expansion with a vanishing radius of convergence,
while in CFTs this expansion is a convergent series with a strictly positive radius of
convergence [Pol98], [PRER12].

Observables in QFTs are correlation functions between local operators inserted in
points in space

⟨ϕ(x1) · · ·ϕ(xn)⟩ =
1

Z

ˆ
[dϕ]ϕ(x1) · · ·ϕ(xn)e−S[ϕ] (1.1)

where Z = ⟨1⟩ is the partition function while [dϕ] and S[ϕ] are respectively a mea-
sure over fields and the action of the field, both supposed invariant under conformal
transformations. Additionally, e−S[ϕ][dϕ] acts as a probability distribution.

Conformal symmetry fixes completely 2 and 3-point correlators. Higher-order cor-
relators, on the other hand, are not fixed by conformal invariance and are dynamical
quantities that vary from theory to theory. Thanks to the OPE, to calculate higher-
order correlators we only need to look at 4-point functions and generalize the ap-
proach [FGG73]. If we expand the products ϕ(x1)ϕ(x2) and ϕ(x3)ϕ(x4), the correlator
is written as a series of two-point functions of the form

∑
iC

2
i ⟨ϕ∆i

(y)ϕ∆i
(z)⟩. Switch-

ing x1 with x3 leads to the same function but now with a different expansion. This
equality between functions is an additional constraint that we have put on the CFT
and is called the Conformal bootstrap equation [Pol74]. We can write the equation in
the form ∑

i

C2
i F∆i,si(z, z̄) = 0 (1.2)

where the F∆i,si(z, z̄) are defined in terms of known functions called conformal blocks.
The equation has to be satisfied for all points in the complex plane except the half

5

Chapter 1. Introduction

lines (−∞, 0] and [1,∞), with unknowns being the squared OPE coefficients C2
i and

the operators’ scaling dimensions ∆i and spins si.
Solving this equation is a hard task. Previous approaches consist of numerical

studies on the conformal bootstrap equation as a way to exclude possible values for
the scaling dimensions [RRTV08] using semidefinite programming [SD15]. Reviews of
these methodologies can be found in [PRV19], [SD16]. This found application in various
CFTs, most remarkably the 3D Ising model [KPSD14]. Most recent approaches include
Monte Carlo [LVS22] and Reinforcement Learning (RL) techniques [KPN22a,KPN22b,
KNPR23] with the latter being the basis of our work.

RL [SB18] is a technique in Machine Learning (ML) that involves the interaction
between two components: the agent and the environment. At each step, the agent
chooses an action and receives a reward and some kind of information on the envi-
ronment. The objective is to find a strategy, or policy, that maximizes the cumula-
tive reward in the long run. Recent algorithms can deal with complex problems and
large environments using neural networks as policy and value-function estimators. Soft
Actor-Critic (SAC) [HZAL18] is an example that uses 4, but has a particular addition
to it. SAC includes in its objective function an entropy term on the stochastic policy
to regulate how much it should explore the environment compared to the best policy
it has found up to that point.

Attempts to solve the conformal bootstrap equation with RL use the Soft Actor-
Critic (SAC) algorithm. In fact, with SAC it is possible to find an approximate solution
to the conformal bootstrap equation for the 2D Ising model and other CFTs [KPN22a,
KPN22b,KNPR23]. The critical part of this approach is translating the CFT setting
and the conformal bootstrap equation as an agent-environment framework. This is
done by truncating the equation up to a maximum number of operators or a maximum
value for the operators’ scaling dimensions and selecting a set of Nz points in the
complex plane where the conformal bootstrap equation is evaluated. At each step, the
agent performs an action by updating a couple of points (∆i, C

2
i), while the reward and

the information received are based on the evaluation of the equation on the selected
points and the current CFT data. This way, the agent learns how to move in the
landscape of the conformal bootstrap equation, following the optimal route toward a
solution.

We validate the technique on the 2D Ising model where an analytical solution is
available. We show that if the search is kept completely free on all 22 unknowns
the problem is very complex and the results are sometimes unexpected. By fixing
an increasing number of scaling dimensions, the problem becomes easier and more
approachable with the results being more coherent with the theoretical expectations.
Additionally, by giving ∆ values as input to the algorithm we put ourselves in a setting
closer to the one of interest: the 1D defect CFT on the 1

2
-BPS Wilson line in a 4D

theory known as N = 4 super Yang-Mills.
This theory is related to string theory and studies particles and their fields, such

as bosons and fermions, in a supersymmetric 4 dimensional setting with conformal
with conformal symmetry. The 1D defect CFT has one important parameter de-
scribing interactions: the coupling constant g. In this theory, no analytical solution
to the conformal bootstrap equation is available, although the scaling dimensions of
the first 10 operators are known with good precision [CGJP22a] using integrabil-
ity [GKP98, BAA+11, DKN+19, Lip94, FK95, MZ03]. Furthermore, the theory has 2
additional constraints we can impose on the integrals of functions of the conformal

6

blocks [CGJP22a, DK06a, CGJP22b], which can increase the precision of the results.
These constraints were used to obtain bounds on the first three squared OPE coef-
ficients [CGJP22a]. We remark that no previous application of RL on this theory is
available in the literature and that is not straightforward to apply a working RL setting
to a new problem in which the environment and the reward are different.

Once we determine the best way to include the 2 integral constraints into the reward,
we focus on finding the OPE coefficients that solve the conformal bootstrap equation
with the scaling dimensions fixed to the provided values. We can also fix the first OPE
coefficient as the available bounds on it are very narrow while, for the second and the
third coefficients, the situation is different and highly depends on the coupling constant
g. We show that for small values of g the results obtained are very precise while being
not very coherent with previous research, while larger values of g produce interesting
results but lack precision whenever two operators have a very similar scaling dimension.
As we will see, this is an expected consequence of the conformal blocks being analytical
functions of ∆.

The rest of this thesis is organized as follows.
In Chapter 2, we define all the tools necessary to introduce CFTs in a mathematical

and axiomatic way, studying conformal transformations and their action on the opera-
tors of the theory. We derive the form of the 2 and 3-point correlators using conformal
symmetry, and we obtain the conformal bootstrap equation from the OPE.

Chapter 3 introduces ML and RL concepts, from optimization up to recent algo-
rithms involving value function approximations and stochastic policies. We finally in-
troduce Soft Actor-Critic (SAC), which is the main algorithm of the bootstrap stochas-
tic optimization.

In Chapter 4 we define the environment and the RL setting to solve the conformal
bootstrap equation, going through all the parameters and specifications. We also de-
scribe the two theories of our interest: the 2D Ising model, used as a benchmark of the
approach, and the 1D defect CFT, the main objective of this work.

Finally, chapter 5 presents the results obtained by running the algorithm multiple
times and selecting the best runs, differentiating small coupling g ≤ 1

2
from strong

coupling g ≥ 1. We further discuss the critical points of the method and possible
causes of the loss in precision for some values of g.

7

Chapter 1. Introduction

8

Chapter 2

Conformal Field Theories

2.1 From Quantum Mechanics to Quantum Fields

In this first section, we introduce the formalisms of Quantum Mechanics (QM) and
Quantum Field Theories (QFT), which will form the basis of the theories we will later
analyze in depth: the Conformal Field Theories (CFT). In particular, we focus on:

• States, observables and operators in QM, the elements for a mathematical de-
scription of physical systems with a finite number of degrees of freedom and the
measurements we can perform on them.

• An axiomatic definition of QFT and the generalizations of QM concepts to infinite
degrees of freedom.

• The mathematical tools and objects to study QFTs such as the Operator Product
Expansion (OPE), a very important tool that will turn out to be fundamental
for further studies on CFTs.

QM is the backbone of modern physics which led to the explanation of many phe-
nomena and aspects of nature in ways we could not comprehend with Classical Me-
chanics, such as atoms, the nature of light and the tunnel effect. QM requires us to
abandon the deterministic point of view on the study of natural phenomena which had
been dominant since the first historical approaches in ancient times.

In Classical Mechanics our measurements of physical systems can be arbitrarily
good: any uncertainty is related to our instruments or human error but there is no
theoretical limit to our precision. In QM, on the other hand, uncertainty and random-
ness are intrinsic to the theory and there is no possible way of increasing the precision
of a measurement beyond a certain limit set by nature itself, other than shifting the
error from one quantity to another. A famous example of this is Heisenberg’s uncer-
tainty principle: if σx and σp are the standard deviations of the variables representing
respectively the position and momentum of a particle, we have that σxσp ≥ ℏ

2
, where

ℏ = h
2π

and h is the Plank’s constant. This inequality shows in a mathematical form
that an increase in precision for a physical quantity often requires sacrificing precision
in another.

Another fundamental difference that characterizes QM is quantization: in some
physical systems, quantities like energy and angular momentum of particles cannot
take any continuous as in Classical Mechanics. Instead, only a discrete set of values
turns out to be physically realized. This is true not only for the state of a single particle

9

Chapter 2. Conformal Field Theories

but also for interactions: exchanges of energy between systems often happen in packets
of small but not continuous quantities, called quanta.

2.1.1 Formalism of Quantum Mechanics

We will now review the mathematical description of QM, starting from a fundamental
physical object: the state of a particle, which is represented by an element of a Hilbert
space called the wavefunction.

States

We will consider the tridimensional space R3 to be the space where the particles live.
The reference Hilbert space to describe the physical states of the particle is H =
L2(R3;C) that is the space of square-integrable functions on R3 with values in the
complex plane C, that we will write simply as H = L2(R3).

Definition 2.1. A state of a physical system is represented by a wavefunction ψ(x, t),
that is a complex-valued function that at any time t is an element of the Hilbert space
H = L2(R3) and is normalized with norm 1.

The inner product that makes H a Hilbert space, with the usual QM notation of
|ψ⟩ = ψ(x, t), is defined as

⟨ψ|ϕ⟩ =
ˆ
R3

ψ(x)∗ϕ(x)dx3 (2.1)

where ψ(x, t)∗ denotes the complex conjugate. For simplicity, we will sometimes omit
the time variable t and when two or more functions are used together we assume them
to be evaluated at the same time.

In the above definition, we added a requirement on the norm of the wavefunction. As
a consequence, the space of admissible states is the projective space P(H), with states
being equivalent if they differ by a complex factor. When thinking of wavefunction as
elements of H, the states we are interested in are therefore those with ∥ψ∥2 = ⟨ψ|ψ⟩ <
∞ since we can always normalize it to have norm 1.

Since the space of states is a Hilbert space we can also consider linear combinations
of states: if we have α, β ∈ C with |α|2 + |β|2 = 1 and |ψ⟩ , |ϕ⟩ are admissible states,
also α |ψ⟩+ β |ϕ⟩ is an admissible state.

Physically the wavefunction contains all the information describing the physical
state of a particle and, in particular, the squared norm of its value evaluated in position
x at time t corresponds to a probability density |ψ(x, t)|2 = p(x, t) for which

P[particle in M ⊆ R3 at time t] =
ˆ
M

|ψ(x, t)|2dx (2.2)

The normalization requirement makes more sense now since it is equivalent to the
probability of the particle being anywhere in the whole R3.

The time evolution of the states is governed by the Schrodinger’s equation:

iℏ
∂ψ

∂t
= Ĥψ (2.3)

10

2.1. From Quantum Mechanics to Quantum Fields

where Ĥ is a Hermitian operator on the Hilbert space L2(R3) and is called the Hamil-
tonian, which takes the same form of the classical Hamiltonian but with the scalar
position and momentum replaced with the corresponding operators that we will shortly
see. The Hamiltonian contains the laws of physics we are considering for the evolu-
tion of the particle, while Schrodinger’s equation describes the evolution of physical
systems. The formal solution can be written as

ψ(x, t) = e−
i
ℏ
´
Ĥ(t′)dt′ψ(x, 0) (2.4)

and, to be calculated, requires the diagonalization of the operator Ĥ.
Notice how Schrodinger’s equation is differential in the first order in contrast to the

classical F = ma. This goes with the fact that a state in QM is completely described
by just ψ(x, t) without the derivative ψ̇(x, t).

Observables and Operators

In classical mechanics any function f(x,p) of the position x and momentum p can
be considered as an observable. Example of observables are the energy E(x,p) =
p2

2m
+ V (x) or the angular momentum L = x × p. In QM, functions get replaced by

operators:

Definition 2.2. An observable in Quantum Mechanics is a hermitian linear operator
Ô acting on the Hilbert space L2(R3)

where an hermitian operator satisfies the following relation: ⟨ϕ|Ôψ⟩ = ⟨Ô†ϕ|ψ⟩.
In QM, observables are operators acting on the underlying space of states. Exam-

ple of basic operators are the position operator x̂ψ(x, t) = xψ(x, t), the momentum
operator p̂ = −iℏ∇, the angular momentum operator L̂ = −iℏx ×∇ and the energy
operator Ĥ = − ℏ2

2m
∇2 + V (x). The energy operator is exactly the Hamiltonian for

particles moving in a potential V (x).

Definition 2.3. Given an operator Ô, if there exist λ ∈ C, ψ(x) ∈ L2(R3) such that
Ôψ(x) = λψ(x), then λ is an eigenvalue, ψ(x) is a eigenstate or eigenfunction
and the collection of the eigenvalues is called the spectrum.

Hermitian operators have very important properties for our purposes:

• We can construct a complete basis of an orthonormal eigenfunction of any hermi-
tian operator Ô: this means that any ψ ∈ L2(R3) can be written as an (infinite)
linear combination of the eigenstates ψ(x) =

∑∞
i=0 anϕn(x).

• All their eigenvalues λn are real, which makes them very good candidates to
describe physical observables.

• If two eigenvalues are different λn ̸= λm then the corresponding eigenfunctions
are orthogonal ⟨ϕn|ϕm⟩ = 0.

One fundamental fact in QM is that the outcome of the measurement always lies in the
spectrum of the corresponding operator. The second property of hermitian operators is
therefore very important: all measurements give real outcomes. If we decompose a state
into the orthonormal basis ψ(x) =

∑∞
i=0 anϕn(x), the probability of the measurement

being λn is given by the Born rule:

11

Chapter 2. Conformal Field Theories

Definition 2.4. Let a measurable be described by a hermitian operator Ô, with eigen-
values λn, eigenvectors ϕn(x) and each eigenspace being related to a projection operator
P̂n. From the measurement of Ô, the probability of obtaining the outcome λn is

P[λn] = ⟨ψ|P̂n|ψ⟩ (2.5)

If all eigenspaces have dimension 1, the probability takes the form

P[λn] =
∑
k,l

akal ⟨ϕk|P̂n|ϕl⟩ = |an|2 (2.6)

Since a physical state is normalized and the norm of ψ(x) given its decomposition
is
∑∞

n=0 |an|2 we are sure that
∑∞

n=0P[λn] = 1, which means that the probabilities for
every outcome sum up to 1. When a measurement is performed, the initial state ψ(x)
collapses into the eigenstate corresponding to the eigenvalue obtained ψ(x)→ ϕn(x).

A useful mathematical relation is that the expected value of the outcome of a
measurement can be written as ⟨Ô⟩ψ = ⟨ψ|Ôψ⟩ =

∑∞
n=0 |an|2λn. For example, the

average position of a particle in state ψ(x) is given by ⟨ψ|x̂ψ⟩ =
´
R3 dx3|ψ(x)|2x

which is appropriate, recalling that |ψ(x)|2 is the density probability of the particle
being at x.

An important concept related to operators and measurement is commutation.

Definition 2.5. The commutator of two operators Ô, M̂ is the operator defined as

[Ô, M̂] = ÔM̂ − M̂Ô (2.7)

acting as
[Ô, M̂]ψ(x) = ÔM̂ψ(x)− M̂Ôψ(x) (2.8)

Assume we are measuring an observable associated with Ô. After the measurement
the initial state ψ(x) collapses in a wavefunction ϕ1(x) that is an eigenfunction of
Ô. If we then measure M̂ , the new state obtained afterwards ϕ2(x) is often not an
eigenfunction of Ô and the result of a subsequent measurement of Ô may produce a
different outcome from the previous.

Being able to measure two observables simultaneously or subsequently without los-
ing information is strictly related to the commutation relations of the operators. In par-
ticular, two observables Ô, M̂ can be measured simultaneously if and only if [Ô, M̂] = 0
and this happens if and only if Ô and M̂ are simultaneously diagonalizable.

As an example, the commutation relations of the position x̂ = (x̂1, x̂2, x̂3) and the
momentum operator p̂ = (p̂1, p̂2, p̂3) are given by

[x̂i, x̂j] = [p̂i, p̂j] = 0 and [x̂i, p̂j] = iℏδij (2.9)

The position and momentum operators do not commute and the Heisenberg’s uncer-
tainty principle can be proven to be a consequence of these relations.

2.1.2 Quantum Field Theory

Quantum Mechanics deals with a finite number of degrees of freedom while, in general,
we may want to study quantized systems where the degrees of freedom are infinite.

12

2.1. From Quantum Mechanics to Quantum Fields

Classical fields

In classical theories, a distribution of degrees of freedom for each point in space can be
described as a field:

Definition 2.6. A field is a quantity defined at every point of time and space (x, t),
written as ϕa(x, t) where a is a label.

The dynamics of a single particle are described by a finite number of coordinates
qa(t), indexed by a, while in field theory we consider both a and x as labels or indexes.
Classical examples of fields are the electric and magnetic fields E(x, t),B(x, t), both
of which are 3-dimensional and governed by Maxwell’s equations. Using the Einstein
notation and the 4-component version of the field in spacetime we can define the
electromagnetic potential as Aµ(x, t) = (ϕ,A) with µ = 0, 1, 2, 3 and the 0 component
being the time component. Electric and magnetic fields are then obtained by

E = −∇ϕ− ∂A

∂t
and B = ∇×A (2.10)

from which the first two Maxwell’s equations ∇ · B = 0 and dB
dt

= −∇ × E follow
immediately.

The dynamics of fields are governed by the Lagrangian:

Definition 2.7. A Lagrangian is a function of ϕa(x, t), ∂µϕa(x, t) and ∇ϕa(x, t) in
the form

L(t) =

ˆ
R3

dx3L(ϕa, ∂µϕa) (2.11)

where L is the Lagrangian density, often called Lagrangian as well. The action is
defined as

S =

ˆ t2

t1

dt
ˆ
R3

dx3L =

ˆ
dx4L (2.12)

From the principle of least action, we can obtain the usual Euler-Lagrangian equa-
tions for the motion of fields, well known in the theory of Calculus of Variations.

∂µ

(
∂L

∂(∂µϕa)

)
− ∂L
∂ϕa

= 0 (2.13)

Going back to the example of the electromagnetic field we consider the Lagrangian

L = −1

2
(∂µAν)(∂

µAν) +
1

2
(∂µA

µ)2 (2.14)

from which we obtain

∂µ

(
∂L

∂(∂µϕa)

)
= −∂µ(∂µAν − ∂νAµ) ≡ −∂µF µν (2.15)

and, using (2.13), we obtain the remaining two Maxwell’s equations ∇ ·E = 0, ∂E
∂t

=
∇×B.

Our next step is to describe the formalism behind an axiomatic definition of Quan-
tum Fields, starting from the field operators or Quantum Fields.

13

Chapter 2. Conformal Field Theories

Field Operators

To build a mathematical framework for Quantum Field Theories we need to first define
field operators and recall some common definitions. Let H be a Hilbert space.

Definition 2.8. An operator is pair (A,D) consisting of a subspace D = DA ⊂ H
and a C-linear mapping A : D → H. A is densely defined if DA is dense in H. O(H)
is the set of all densely defined operators on the Hilbert space.

We call SO(H) the set of all self-adjoint operators on H.

Definition 2.9. The Schwartz space is the space of rapidly decreasing smooth func-
tions, that is the complex vector space of all functions f : Rd → C with continuous
partial derivatives of any order satisfying

|f |p,k = sup
|α|≤p

sup
x∈Rn

|∂αf(x)|(1 + |x|2)k <∞ (2.16)

for all p, k ∈ N where α is a multi-index.

Definition 2.10. A tempered distribution T is a linear functional T : S → C

continuous with respect to all the seminorms |f |p,k.
We are now ready to give a formal definition of a quantum field

Definition 2.11. A field operator or quantum field is an operator-valued distri-
bution

ϕ : S(Rd)→ O(H) (2.17)
such that there exist a dense subspace D ⊂ H satisfying:

• for each f ∈ S(Rd) the domain of definition of Dϕ(f) contains D.

• The induced map S(Rd)→ End(D), f 7→ ϕ(f)|D is linear.

• For each v ∈ D and w ∈ H the assignment f 7→ ⟨w, ϕ(f)(v)⟩ is a tempered
distribution.

Field operators are the analogs of a classical field in the quantum framework. There
is still one very important concept in physics we have not presented yet that is funda-
mental for QFTs: relativistic invariance. We will not go into the detail of the theory
of relativity, nor how it is applied to QM and QFT, but we will briefly describe the
group of transformations and the invariance relations needed to define the axiomatic
QFT.

We will now work within the framework of the Minkowski space M = R1,d−1, that
is the space Rd equipped with the Lorentz metric

x2 = ⟨x, x⟩ = x0x0 −
d−1∑
j=1

xjxj = g1,d−1
µν xµxν (2.18)

Definition 2.12. Two subsets U, V of M are space-like separated if for any x ∈
U, y ∈ V we have (x− y)2 < 0 that is if

(x0 − x0) <
d−1∑
j=1

(xj − yj)2 (2.19)

The forward cone is C+ := {x ∈ M : ⟨x, x⟩ ≥ 0, x1 ≥ 0} with the causal order
given by x ≥ y ⇐⇒ x− y ∈ C+.

14

2.1. From Quantum Mechanics to Quantum Fields

These concepts are very important for classical particles and fields in the relativistic
setting since they are related to the causal ordering of events. In particular, the law
of physics and the action of fields must be invariant under relativistic transformations,
which are described by the Poincaré group P (1, d−1) of transformations. The Poincaré
group is the group of isometries of the Minkowski space with the Lorentz metric above
and includes:

• Translations in time and space, identified by the commutative group Rd.

• The Lorentz group L of rigid rotations in space and relativistic boosts, which is
isomorphic to the component containing the identity of SO(1, d − 1) and corre-
sponds to the group of linear transformations that preserve the space-time causal
structure and separateness.

P (1, d− 1) is actually the semi-direct product of the two components P ≃ L⋉Rd. An
important remark to make is that the Lorentz group is related to the concept of spin,
which is a characteristic of particles and, in general, of operators. Spin is related to
the angular momentum and magnetic properties of particles but, mathematically, we
are interested in the fact operators can have a spin number l and that there exist a set
of transformations represented by a group called Spin(1, d − 1). This group describes
how operators with spin transform under some transformations such as rotations and
is actually the universal cover of the group SO(1, d− 1) we will later see.

The Poincaré group acts on S(Rn) from the left as

(q,Λ)f(x) = f(Λ−1(x− q)) (2.20)

where (q,Λ) ∈ L⋉Rd.
Without going in-depth with representation theory we assume to have a mapping

U : P (1, d− 1)→ U(H), (q,Λ) 7→ U(q,Λ) (2.21)

where U(H) is the set of unitary transformations on the space of states. This mapping
associates each transformation in the group to a unitary operator acting on states. An
important fact is that we can write

U(q, 1) = exp(i(q0P0 − q1P1 − . . .− qd−1Pd−1)) (2.22)

for q ∈ R1,d−1 and the P µ are self-adjoint operators on H. P0 is considered to be the
energy operator while the Pj operators represent the momentum operators as in QM.

Wightman axioms

Definition 2.13. A Wightman quantum field theory (Wightman QFT) in dimen-
sion d consists of the following elements:

• The space of states, that is the projective space P(H) of a separable Hilbert space
H.

• The vacuum vector Ω ∈ H of norm 1.

• A unitary representation U : P → U(H) as above.

15

Chapter 2. Conformal Field Theories

• A collection of field operators ϕa, a ∈ I

ϕa : S(Rd)→ O(H) (2.23)

with a dense subspace D ⊂ H as common domain, which means that the domain
Da(f) of ϕa contains D for all a ∈ I, f ∈ S(Rd). Moreover, D must contain Ω.

These elements satisfy the following axioms:

Axiom W1 (Covariance). A Wightman QFT is assumed to have the following prop-
erties:

• Ω is P -invariant, that is for every (q,Λ) we have

U(q,Λ)Ω = Ω (2.24)

and D is invariant under P , that is U(q,Λ)D ⊂ D.

• The common domain is invariant in the sense that ϕa(f)D ⊂ D for all f ∈ S(Rn)
and a ∈ I.

• The actions on H and S(Rn) are equivariant where P acts on End(D) by conju-
gation. That is, on D we have

U(q,Λ)ϕa(f)U(q,Λ)
† = ϕa((q,Λ)f) (2.25)

for all f and all conformal transformations.

Axiom W2 (Locality). ϕa(f) and ϕb(g) commute on D if the supports of f, g ∈
S(Rn) are space-like separated

ϕa(f)ϕb(g)− ϕb(g)ϕa(f) = [ϕa(f), ϕb(g)] = 0 (2.26)

Axiom W3 (Spectrum condition). The joint spectrum of the operators Pj defined
above is contained in the forward cone C+.

Axiom W4 (Uniqueness of the Vacuum). The only vectors in H left invariant by
the translations U(q, 1) are the scalar multiples of the vacuum Ω.

As we can see from the axioms, the Poincaré group and the covariance under rela-
tivistic transformations are key parts of the definitions of QFTs.

From now on, we will write ϕa(f) as an operator-valued function on the support
of f writing simply ϕa(x) = ϕa(f(x)). This is purely a formal way of writing field
operators since in reality, as shown in [Sch08], quantum fields cannot be represented as
functions. With this new notation, we can write more clearly the third point of Axiom
W1 (Covariance) as

U(q,Λ)ϕa(x)U(q,Λ)
† = ϕa(Λx+ q) (2.27)

Before we introduce conformal transformations and Conformal Field Theories, let
us review some objects we introduced for QM and classical fields in the framework of
QFTs, starting from states.

In order to construct the states, we need to foliate the space-time. For QFTs in the
Minkowski space R1,3 we can foliate space-time by considering surfaces of equal time,
also called leaves.

L(t0) = {x ∈ R1,3 : x0 = t0} ≃ R3 (2.28)

16

2.1. From Quantum Mechanics to Quantum Fields

Each time slice has a corresponding Hilbert space of states defined, in our case L2(R3).
Particles in QFT are local excitations of elementary fields (such as the vacuum state
|0⟩), written as |ψ⟩ = ϕ(x) |0⟩. This operation of adding a field operator to a state is
often called insertion. For example, photons are excitations given by the insertion of
a quantized electromagnetic field.

The correlation between states in the same leaf is written simply as ⟨ϕ|ψ⟩. To
correlate operators living in different time slices we need to evolve one of them with a
translation in time, which is represented by the unitary operator U = e−iP0∆t, where
∆t is the time difference between the two slices. Then, the correlation becomes

⟨ψ|U |ϕ⟩ (2.29)

One of the main objects of QFT is the n-point correlator function:

Definition 2.14. Given a measure over fields [dϕ] the n-point correlator function
is defined as

⟨ϕ1(x1) · · ·ϕn(xn)⟩ =
1

Z

ˆ
[dϕ]ϕ1(x1) · · ·ϕn(xn)e−S[ϕ] (2.30)

where Z is a normalization constant Z = ⟨1⟩ and is called the partition function.

Correlators can be thought of as the observables of QFT and from them one can
obtain the probabilities of particles interacting.

A very important tool to calculate correlators is the Operator Product Expansion
(OPE). Consider a state obtained from two insertions

|ψ⟩ = ϕ(x)ϕ(0) |0⟩ (2.31)

From translational invariance, we can assume one of them to be inserted at the origin.
In any Lorentz-invariant QFT, the operator product ϕ(x)ϕ(0) in the short distance
limit x→ 0 can be approximated as a sum of local operators of the form

ϕ(x)ϕ(0) ≃
∑
n

Cn(x
2)xµ1 · · ·xµlϕ(n)

µ1...µl
(0) (2.32)

where Cn depends only on x2 and l is the spin number of operator ϕ(n). The problem
with this tool is that, in general, it is just an asymptotic expansion, meaning that it can
have a vanishing radius of convergence. This is much weaker than having a convergent
sum which, as we will see, is the case for CFTs.

Lastly, QFTs have a Lagrangian formalism similar to classical fields. For example,
Lagrangians typically are polynomials of fields and their derivatives and they can be
thought of as composed of two terms

L = Lfree + gLint (2.33)

where Lfree is the free term which is quadratic in the fields, making the underlying
theory exactly solvable, and gLint is the interaction term. The constant g is called
coupling constant and determines the relation between the two terms. Usually,
these are very complicated objects and we can derive expansions of the Lagrangian for
small values of g, the weak coupling limit, while it is harder to access the dynamics of
systems with strong coupling. As a final example, the Lagrangian density for quantum
electrodynamics can be written as

L = ψ̄(iℏcγµ −mc2)ψ − 1

4
FµνF

µν − ecψ̄γµAµψ (2.34)

17

Chapter 2. Conformal Field Theories

Without explaining the quantities in the Lagrangian, we can see the two terms above
being

Lfree = ψ̄(iℏcγµ −mc2)ψ − 1

4
FµνF

µν

Lint = cψ̄γµAµψ
(2.35)

where the coupling constant is g = e, the elemental charge of the electron.

2.2 Conformal Transformations

Conformal Field Theories are a special kind of QFTs that can be used to describe
phase transitions and critical phenomena, such as ferromagnetic transition or complex
theories such as string theories. In the modern understanding of QFTs, CFTs play
a fundamental role: every QFT can be thought of as the result of a flow between an
ultraviolet CFT, which describes the theory at very high energies, and an infrared CFT
describing the theory at low energies. The key property of CFTs is that, in addition to
the usual Poincaré invariance, they also enjoy scale invariance. In most theories, the
latter is further enhanced to invariance under conformal transformations, that is the
group of transformations that leaves the metric unchanged up to a local multiplicative
factor.

In this section we will study conformal transformations and their group, starting
with their definition and derivation, followed by their characterization in general di-
mension and for d = 2, which has particular features.

Definition 2.15. A semi-Riemannian manifold is a pair (M , g) consisting of a
smooth manifold M of dimension d and a smooth tensor field g which assigns each
point a ∈M to a non-degenerate bilinear form on the tangent space TaM

ga : TaM × TaM → R (2.36)

Consider a chart ϕ : U → V with U ⊂M open and V ⊂ RD and the local coordinates
of the chart x1, x2, . . . , xd. Given two tangent vectors X = Xµ∂µ, Y = Y µ∂µ ∈ TaM
we can write, using the Einstein’s notation:

ga(X, Y) = gµν(a)X
µY ν (2.37)

where ∂µ = ∂
∂xµ

is the basis on the tangent space induced by chart ϕ.

The matrix gµν(a) is non-degenerate and symmetric for all a ∈ U and, since ga is
smooth, it is differentiable with respect to a and smooth in the local coordinates. The
only difference from Riemannian manifolds is that ga is not strictly positive definite.

For us, the most important example of a semi-Riemannian manifold is the space
Rp,q = (Rp+q, gp,q) where

gp,q(X, Y) =

p∑
i=1

X iY i −
p+q∑
i=p+1

X iY i (2.38)

For example, R1,3 (or R3,1) is the usual Minkowski space for space-time we have already
seen, used to describe relativity and quantum fields. R1,1 is the Minkowski plane and
R2,0 is the usual Euclidean plane.

We are ready to define conformal transformations:

18

2.2. Conformal Transformations

Definition 2.16. Let (M, g) and (M ′, g′) two semi-Riemannian manifolds of same
dimension n and let U ⊂M,V ⊂M ′ be open subsets. A conformal transformation
is a smooth mapping ϕ : U → V of maximum rank such that there exist a smooth
function Ω : U → R+ such that

ϕ∗g′ = Ω2g (2.39)

where ϕ∗g′(X, Y) = g′(Tϕ(X), Tϕ(Y)) is the pull-back of the bilinear form and Tϕ :
TU → TV is the tangent map of ϕ. Ω is called the conformal factor.

This definition means that conformal transformations are the transformations that
preserve the metric up to a local scale factor, which depends only on the point. In
local coordinates of M,M ′ the above definition becomes

(ϕ∗g′)µν(a) = g′αβ(ϕ(a))∂µϕ
α∂νϕ

β (2.40)

which leads to the fact that a transformation is conformal if and only if

(g′αβ ◦ ϕ)∂µϕα∂νϕβ = Ω2gµν (2.41)

Our next objective is to identify and classify conformal transformations between
two open subsets U,U ′ of the space Rp,q, p + q = d > 1. Recall that if X is a smooth
vector field we can define a differential equation for smooth curves γ given by γ̇ = X(γ).

Definition 2.17. The local one-parameter group (ϕXt)t∈R corresponding to X is
the solution to

d

dt
(ϕX(t, a)) = X(ϕX(t, a)) (2.42)

with initial condition ϕX(0, a) = a. For each point a ∈ U we will consider ϕX(t, a) as
the maximal solution to the above differential equation. For a fixed t, ϕXt (a) is a local
diffeomorphism.

A conformal transformation has max rank in the open set U and is therefore in-
vertible for each a ∈ U . By the inverse mapping theorem, conformal transformations
are always locally invertible but, in general, not globally!

From now, we will assume that the metric is ga = gp,qa on Rp,q, which does not
depend on the point a and is therefore constant.

Definition 2.18. A vector field X on U ⊂ Rp,q is called a conformal Killing vector
field if ϕXt is conformal for all t in a neighborhood of 0.

Theorem 2.1. Let U ⊂ Rp,q open, g = gp,q and X a conformal Killing field with
coordinates

X = (X1, . . . , Xn) = Xµ∂µ (2.43)

with respect to the cartesian coordinates of Rn. Then there exist a smooth function
κ : U → R such that

Xµ,ν +Xν,µ = κgµν (2.44)

with the notations f,ν = ∂νf and Xµ = gµνX
ν.

As for conformal transformation we also have a conformal Killing factor:

19

Chapter 2. Conformal Field Theories

Definition 2.19. A smooth function κ : U ⊂ Rp,q → R is called a conformal Killing
factor if there is a conformal Killing field such that

Xµ,ν +Xν,µ = κgµν (2.45)

Theorem 2.2. κ : U → R is a conformal Killing factor if and only if

(n− 2)κ,µν + gµν∇gκ = 0 (2.46)

where ∇g = gµν∂µ∂ν is the Laplace-Beltrami operator for g = gp,q.

2.2.1 Classification of conformal transformations

Starting from equation (2.46) one can derive all the possible conformal transformations
and classify the most simple ones. We will consider three cases in the discussion,
depending on the considered space.

Rp,q with p+ q = n > 2

From equation (2.46) one can derive that, in local coordinates x, there exist constants
αµ such that κ(x) = λ+ αµx

µ.
With some more calculations depending on the values of λ and the constants αµ

one can obtain the following

Theorem 2.3. Every conformal Killing vector field X on a connected open subset U
of Rp,q with p+ q > 2 is of the form

X(x) = 2⟨x, b⟩xµ − ⟨x, x⟩+ λx+ c+ ωx (2.47)

with b, c ∈ Rn, λ ∈ R and ω is a matrix such that ωTgp,q + gp,qω = 0. ⟨·, ·⟩ is the
bilinear form given by g, that is

⟨x, y⟩ = gµνx
µyν (2.48)

The conformal transformations in Rp,q with p + q > 2 can then be described as
follows

Theorem 2.4. Every conformal transformation ϕ : U → Rp,q with p + q = n > 2, on
a connected open subset U ⊂ Rp,q is a composition of

• a translation x 7→ x+ c with c ∈ Rn.

• an orthogonal transformation x 7→ Λx with Λ ∈ O(p, q) where

O(p, q) : ΛTgp,qΛ = gp,q} (2.49)

• a dilatation x 7→ eλx with λ ∈ R

• a special conformal transformation of the form

x 7→ x− ⟨x, x⟩b
1− 2⟨x, b⟩+ ⟨x, x⟩⟨b, b⟩

(2.50)

with b ∈ Rn.

20

2.2. Conformal Transformations

These transformations are clearly not defined everywhere but, taking the compact-
ification of Rp,q, we can extend them everywhere and obtain the group of conformal
transformations. A complete reference can be found in [Sch08] with the main result
being

Theorem 2.5. Let again our space be Rp,q. The group of conformal transformations
(on the conformal compactification of Rp,q) is isomorphic to O(p+1, q+1)/{±1}. The
connected component containing the identity in this group is called the Conformal group
Conf(Rp,q) and is isomorphic to SO(p+ 1, q + 1) or to SO(p+ 1, q + 1)/{±} if −1 is
in the connected component of the identity in O(p+ 1, q + 1), for example when p and
q are odd.

Euclidean plane R2,0

The Euclidean plane can be identified as the complex plane R2,0 ≃ C via the mapping
(x, y) ∈ R2,0 7→ z = x + iy. Using equation (2.41), a smooth map ϕ : U → C with
U ⊂ C open if conformal with conformal factor Ω if and only if

u2x + v2x = Ω2 = u2y + v2y ̸= 0, uxuy + vxvy = 0 (2.51)

where u = ℜ(ϕ), v = ℑ(ϕ), ux = ∂xu and the other definitions follow in a similar
way. It is immediate to see that holomorphic and anti-holomorphic functions satisfy
those relations because of the Cauchy-Riemann equations ux = vy, uy = −vx (or ux =
−vy, uy = vx for anti-holomorphic). We also have that detDϕ ̸= 0.

On the other hand, using (2.51), one can also show the other implication. This
means that

Theorem 2.6. Every holomorphic function

ϕ = u+ iv : U → R2,0 ≃ C (2.52)

on an open subset U ⊂ R2,0 with nowhere vanishing derivative is an orientation pre-
serving conformal mapping with conformal Killing factor Ω2 = u2x+u

2
y = detDϕ = |ϕ′|2.

Conversely, every conformal and orientation-preserving transformation ϕ : U → R2,0 ≃
C is a holomorphic function.

A symmetric result can be obtained for anti-holomorphic functions. Finally, the
group of conformal transformation on the compactification of R2,0 is isomorphic to
SO(3, 1). Additionally, one can also show that the conformal group is also isomorphic
to the group Möbius transformations

z 7→ az + b

cz + d
(2.53)

One very important remark to be made is that, since every holomorphic and
anti-holomorphic function is a local conformal transformation, there exists a much
larger algebra of transformations in the 2 dimensional case, which is actually infinite-
dimensional and is called Virasoro algebra. We will later see how this leads to the
fact that conformal symmetry in d = 2 is much more powerful and should be studied
separately. Notice that there is a big difference between the group of global conformal
transformations, which is isomorphic to SO(3, 1) and is therefore finitely generated,
and the algebra of local or infinitesimal conformal transformations, which is infinite-
dimensional.

21

Chapter 2. Conformal Field Theories

Minkowski plane R1,1

We can show the following

Theorem 2.7. A smooth map ϕ = (u, v) : U → R1,1 on a connected open subset
U ⊂ R1,1 is conformal if and only if

u2x > v2x, and ux = vy, uy = vx or ux = −vy, uy = −vx (2.54)

In this case, both the algebra of local conformal transformations and the group of
global conformal transformations are infinite dimensional, with the latter being

Theorem 2.8. The conformal group for the Minkowski plane R1,1 is isomorphic to

Conf(R1,1) ≡ Diff+(S)× Diff+(S) (2.55)

where Diff+(S) is the group of orientation preserving diffeomorphisms f : R→ R with
the topology of uniform convergence of f and its derivatives on compact subsets K ⊂ R.

To make a connection between this case and theorem 2.5, one can show that the
group SO(2, 2)/{±1} is actually a subgroup of Conf(R1,1).

2.3 Conformal Field Theories

In this section we will introduce the theories of our interest, following [Sch08], that is
the Conformal Field Theories (CFT). We will start by giving the axiomatic definition,
which is an extension of definition 2.13, then we will see how the conformal transfor-
mations act on states and operators. Finally, we will see the particularities of CFTs
concerning correlators and the operator product expansion, which is more powerful
than in general QFTs.

Conformal Field Theory is a special kind of Quantum Field Theory which, apart
from the usual invariance under the Poincaré group of transformations, is also invariant
under dilatations and special conformal transformations, making it invariant under the
action of the whole conformal group. To apply the axiomatic definition to it, we assume
to have a unitary representation of SO(2, d) extending (2.21)

U : SO(2, d)→ U(H), (q,Λ, b, λ) 7→ U(q,Λ, b, λ) (2.56)

where the generators (q,Λ, b, λ) refer to theorem 2.4. The Wightman axioms, especially
the first, are now extended to include covariance under such transformations, so that

U(q,Λ, b, λ)ϕa(f)U(q,Λ, b, λ)
† = ϕa((q,Λ, b, λ)f) (2.57)

Using the same abuse of notation as before, writing ϕa(f) as an operator-valued
function on the support of f , that is ϕa(x) = ϕa(f(x)), the third point of axiom Axiom
W1 (Covariance) now reads as

• For transformations in the Poincaré group, which are given by the unitary rep-
resentations U(q,Λ, 0, 0), the field must satisfy

U(q,Λ, 0, 0)ϕa(x)U(q,Λ, 0, 0)
† = ϕa(Λx+ q) (2.58)

22

2.3. Conformal Field Theories

• For the special conformal transformation given by

x 7→ xb =
x− ⟨x, x⟩b

1− 2⟨x, b⟩+ ⟨x, x⟩⟨b, b⟩
(2.59)

with unitary representation U(0, 1, b, 0) the field must satisfy

U(0, 1, b, 0)ϕa(x)U(0, 1, b, 0)
† = N(x, b)−haϕa(x

b) (2.60)

where N(x, b) = 1− 2⟨x, b⟩+ ⟨x, x⟩⟨b, b⟩ and ha is the Conformal weight of the
field ϕa.

• For dilatations
x 7→ xλ = eλx (2.61)

with unitary representation U(0, 1, 0, λ) the field must satisfy

U(0, 1, 0, λ)ϕa(x)U(0, 1, 0, λ)
† = eλdaϕa(x

λ) (2.62)

with the Scaling dimension da, which is strictly related to the conformal weight
just defined.

Similar definitions and extensions are defined for the 2 dimensional case but are not
presented here.

Having defined CFTs axiomatically, we are now ready to analyze the operators in
this theory, starting by looking at the action of infinitesimal conformal transformations
on operators or fields.

Every conformal transformation can be represented as a differential operator acting
on functions or fields. Given an infinitesimal transformation x → x′ = x′(x) we can
always write it in the form

x′
µ
= xµ + ωa

δxµ

δωa
(2.63)

where ωa is small and δxµ

δωa
indicates a variation in the coordinate with respect to a

variation in ωa. For example, in case of a translation, ωa is actually ων and δxµ

δων = δµν
so that x′µ = xµ + ωµ as expected.

Given any function ϕ(x), the generator Ga of the transformation is defined with the
following relation

iGaϕ(x) =
δxµ

δωa
∂µϕ(x) (2.64)

One can show (see [Qua15] for a complete reference), that

• Translations x′µ = xµ + aµ are generated by Pµ = −i∂µ

• Rigid rotations x′µ =Mµ
ν x

ν are generated by Lµν = i(xµ∂ν − xν∂µ).

• Dilatations x′µ = αxµ are generated by D = −ixµ∂µ.

• Special conformal transformations x′µ = xµ−bµ⟨x,x⟩
1−⟨b,x⟩+⟨b,b⟩⟨x,x⟩ are generated by Kµ =

−i(2xµxν∂ν − ⟨x, x⟩∂µ).

23

Chapter 2. Conformal Field Theories

Computing the commutators among these operators we obtain the conformal algebra:

[D,Pµ] = iPµ, [D,Kµ] = −iKµ, [Kµ, Pν] = 2i(gµνD − Lµν),
[Lµν , Pρ] = −i(gµρPν − gνρPµ), [Lµν , Kρ] = −i(gµρKν − gνρKµ),

[Lµν , Lρσ] = −i(Lµρgνσ − Lµσgνρ − Lνρgµσ + Lνσgµρ),

[D,Lµν] = 0, [Pµ, Pν] = 0, [Kµ, Kν] = 0, [D,D] = 0

(2.65)

An important observation is Lµν and Pµ form the Poincaré group, while it can be
seen that Lµν , Pµ and D form a subgroup as well. Therefore, conformal symmetry is
not implied by just Poincaré and dilatation transformations.

In d = 2 there also exists an infinite dimensional algebra of conformal transforma-
tions we will later study: the Virasoro algebra.

States, operators and quantization

We consider a multi-component operator ϕa(x) (there is more than one component if
the operator has non-zero spin), where components are indexed by a. Using the above
notation of infinitesimal generators, from the covariance axiom and the commutation
relations (2.65) on translations, we can write

e−ixPϕa(0)e
ixP = ϕa(x) (2.66)

where xP = xµPµ. If we take the partial derivative with respect to xµ we get

∂µϕa(x) = e−ixP (−iPµϕa(0) + ϕa(0)iPµ)e
ixP = −i[Pµ, ϕa(x)] (2.67)

where in the last equality we used the fact that Pµ and eixP commute. Hence, we
deduce the action of the generator Pµ on the field operator

[Pµ, ϕa(x)] = i∂µϕa(x) (2.68)

We declare the following actions on operators at the origin ϕa(0)

[D,ϕa(0)] = i∆ϕa(0)

[Lµν , ϕa(0)] = i(Sµν)
b
aϕb(0)

[Kµ, ϕa(0)] = 0

(2.69)

where ∆ is the scaling dimension and Sµν is a matrix that depends on the spin of the
field (if ϕa is multi-component) and is 0 for scalar fields.

These relations are very important since they define the primary operators

Definition 2.20. A primary operator of scaling dimension ∆ is an operator ϕa for
which the equations (2.69) are satisfied. Derivatives of primary operators are called
descendants.

Given these, one can derive the general relations for ϕa(x):

[Pµ, ϕa(x)] = i∂µϕa(x)

[D,ϕa(x)] = i(∆ + xµ∂µ)ϕa(x)

[Lµν , ϕa(x)] = −i(xµ∂ν − xν∂µ)ϕa(x)− i(Sµν)baϕb(x)
[Kµ, ϕa(x)] = 2ixµ∆ϕa(x) + i(2xµx

ν∂ν − x2∂µ)ϕa(x) + 2ixρ(Sρµ)
b
aϕb(x)

(2.70)

where, as usual, xµ = gµνx
ν and x2 = gµνx

µxν = xµx
µ.

24

2.3. Conformal Field Theories

Radial quantization

Recall that for Quantum Field Theories the natural foliation was

L(t0) = {x ∈ R1,3 : x0 = t0} ≃ R3 (2.71)

and each time slice had its own Hilbert space of states. In general, the best choice for
a foliation is given by the symmetries of the theory we are considering. In QFT time
foliation works very well with Poincaré invariance and the evolution of leaves is in the
P0 operator.

Consider now a Conformal Field Theory in the Euclidean space Rd. In this case,
it is more convenient to foliate the space by spheres R · Sd−1 with origin at the center.
Actually, we can center spheres around any point, provided that they are equivalent.
In this case, we may want to correlate operators inserted inside the sphere with others
inserted outside. This kind of slicing is called radial quantization. To move from
surface to surface we just need to apply the dilatation operator with its representation
U = eiD∆τ with τ = log r and r is the distance between the two radii.

In QFT, states are usually identified by their momentum which, recalling our discus-
sion on QM, is given by the operators Pµ so that Pµ |k⟩ = kµ |k⟩. This correspondence
is well defined since P0 commutes with every Pµ and we can characterize well the
correspondence between states on different time slices.

In CFT, it is common to classify operators according to the scale dimension and
their spin using the eigenvalues:

D |∆, l⟩ = i∆ |∆, l⟩
Lµν |∆, l⟩α = i(Sµν)

β
α |∆, l⟩β

(2.72)

Scalars will be often denoted simply as |∆⟩, using only their scaling dimension.
We will now analyze how insertions of operators work, starting from the vacuum

state that we now call |0⟩. The vacuum corresponds to no insertion at all and has
a 0 eigenvalue for dilatations and 0 spin. Recall that Axiom W4 (Uniqueness of the
Vacuum) means that the vacuum is invariant under conformal transformations.

Starting from |0⟩ we can insert a primary operator at the origin ϕ∆(0) and obtain
a state |∆⟩ = ϕ∆(0) |0⟩ which has indeed dilatation eigenvalue ∆:

D |∆⟩ = Dϕ∆(0) |0⟩ = [D,ϕ∆(0)] |0⟩+ ϕ∆(0) |0⟩ = i∆ϕ∆(0) |0⟩ = i∆ |∆⟩ (2.73)

We consider this as a primary state in the sense that the actions of the operators
P,K,L are similar to the ones for primary operators in (2.69). Actually, the action of
such operators on the state comes from the inserted operator, as we can see here:

K |∆⟩ = Kϕ∆(0) |0⟩ = [K,ϕ∆(0)] |∆⟩ = 0 (2.74)

where we have used K |0⟩ = 0.
For now, we have inserted an operator at the origin. If we insert an operator in a

generic point x, such as |ψ⟩ = ϕ∆(x) |0⟩, we can see that this is not an eigenstate of
the dilatation operator:

|ψ⟩ = ϕ∆(x) |0⟩ = e−ixPϕ∆(0)e
ixP = e−ixPϕ∆(0) |0⟩

= |∆⟩ − ix · P |∆⟩ − 1

2
(x · P)2 |∆⟩+ . . . =

∑
n≥0

1

n!
(ix · P)n |∆⟩ (2.75)

25

Chapter 2. Conformal Field Theories

Notice that the eigenvalue of the state Pµ |∆⟩ under dilatations is ∆+ 1:

DPµ |∆⟩ = ([D,Pµ] + PµD) |∆⟩ = i(∆ + 1)Pµ |∆⟩ (2.76)

since [D,Pµ] = iPµ. However, since Pµ is a derivative, the new state Pµ |∆⟩ is no more
a primary:

KνPµ |∆⟩ = ([Kν , Pµ] + PµKν)∆ = [Kν , Pµ]∆ ̸= 0 (2.77)

But this also means that |ψ⟩ can be written a linear combination of a primary |∆⟩ and
all its descendants! This will be fundamental for the Operator Product Expansion in
CFT.

As seen above, Pµ acting on a state |∆⟩ increases its scaling dimension by one unit.
This process can be repeated, obtaining

|∆⟩ Pµ−→ |∆+ 1⟩ Pν−→ |∆+ 2⟩ (2.78)

On the other hand, the operator Kµ actually lowers the dimension by one since

DKµ |∆+ n⟩ = ([D,Kµ] +KµD) |∆+ n⟩ = i(∆ + n− 1)Kµ |∆+ n⟩ (2.79)

since [D,Kµ] = −iKµ and, similarly, we have for example

0
Kµ←−− |∆⟩ Kν←− |∆+ 1⟩ Kρ←− |∆+ 2⟩ (2.80)

This is important since it also gives a formal reason for the introduction of primary
operators. Assuming that the dimensions are bounded from below, applying repeti-
tively Kµ eventually yields 0, which means we have obtained a primary operator. This
process shows us that starting from the insertion of a primary operator of energy ∆ at
the origin we obtain a state which gets annihilated by Kµ.

From a state-operator correspondence point of view, we have a procedure to obtain
the primary operator of some states. Given a state with dilatation eigenvalue ∆ which
gets annihilated by Kµ, we can construct a local primary operator of dimension ∆. For
such an operator, the correlator is given by

⟨ϕ(x1)ϕ(x2) · · ·ϕ∆(0)⟩ = ⟨0|ϕ(x1)ϕ(x2) · · · |∆⟩ (2.81)

We are now ready to study the action and the correlators for CFTs and, as we will
shortly see, conformal symmetry unlocks many powerful tools compared to standard
QFTs.

2.4 Correlators and the Operator Product Expansion

We will now study the fundamental quantities in QFT, that is correlators, in this
new and more powerful setting of Conformal Field Theory. We start by looking at
how correlators transform. Then, we will see how to exploit conformal symmetry to
calculate 2, 3 and 4-point functions.

Recall that the action of a Lagrangian L is defined as

S[ϕ] =

ˆ
dxdL(ϕ, ∂µϕ) (2.82)

26

2.4. Correlators and the Operator Product Expansion

where the Lagrangian is a function of a collection of fields and their derivatives.
Consider a conformal transformation x 7→ x′ = x′(x) and the field ϕ′(x′) such that
ϕ′(x′) = ϕ(x). From the above relations, one can compute that

ϕ′(x′) =

∣∣∣∣∂x′∂x

∣∣∣∣−∆
d

ϕ(x) (2.83)

and since the Jacobian of the transformation is a function of the conformal factor∣∣∣∣∂x′∂x

∣∣∣∣ = Λ(x)−
d
2 (2.84)

we finally have
ϕ′(x′) = Λ(x)

∆
2 ϕ(x) (2.85)

Defining the following transformation

x 7→ x′ = x′(x)

ϕ(x) 7→ ϕ′(x′) = F(ϕ(x))
(2.86)

we can calculate the transformed action

S[ϕ′] =

ˆ
dxdL(ϕ′(x), ∂µϕ

′(x))

=

ˆ
dx′dL(ϕ′(x′), ∂′µϕ

′(x′))

=

ˆ
dx′dL(F(ϕ(x)), ∂′µF(ϕ(x)))

=

ˆ
dxd

∣∣∣∣∂x′∂x

∣∣∣∣L(F(ϕ(x)), ∂xµ∂x′ν
∂νF(ϕ(x))

)
(2.87)

We are now going to consider only actions that are invariant under conformal trans-
formations, meaning that our theory has conformal symmetry. In particular, we will
assume that both the measure [dϕ] and the action S[ϕ] are invariant under conformal
transformations. Also, from now on we assume to be working with scalar field operators
so that ϕ(x) can be considered as a smooth function.

Consider now a general correlator and apply a transformation x 7→ x′. Since the
relations for descendants can be obtained by differentiating the ones on primaries, we
can work with only primary operators.

ˆ
[dϕ]ϕ(x′1) · · ·ϕ(x′n)e−S[ϕ] =

ˆ
[dϕ′]ϕ′(x′1) · · ·ϕ′(x′n)e

−S[ϕ′]

=

ˆ
[dϕ]F(ϕ(x1)) · · · F(ϕ(xn))e−S[ϕ]

(2.88)

where in the first equality we simply renamed the integration variable and in the second
we applied the transformation, remembering that the measure and the action are both
invariant. For the Poincaré group, we have that

F(ϕ(x)) = ϕ′(x+ a) = ϕ(x) a ∈ Rd

F(ϕ(x)) = ϕ′(Λx) = ϕ(x)
(2.89)

27

Chapter 2. Conformal Field Theories

since translations and rigid rotation have unit determinants. Therefore we can conclude

⟨ϕ(x1 + a) · · ·ϕ(xn + a)⟩ = ⟨ϕ(x1) · · ·ϕ(xn)⟩
⟨ϕ(Λx1) · · ·ϕ(Λxn)⟩ = ⟨ϕ(x1) · · ·ϕ(xn)⟩

(2.90)

On the other hand, for a general conformal transformation, the determinant is no more
one and the fields transform as (2.83). For example, dilatations have a determinant
of
∣∣∂x′
∂x

∣∣ = λd (or eλd, depending on the representation we are using). In general, the
relation is given by

⟨ϕ(x1) · · ·ϕ(xn)⟩ =
∣∣∣∣∂x′∂x

∣∣∣∣
∆1
d

x=x1

· · ·
∣∣∣∣∂x′∂x

∣∣∣∣∆n
d

x=xn

⟨ϕ(x′1) · · ·ϕ(x′n)⟩ (2.91)

As a final remark, notice that these correlators involve the same fields inserted at
different points in space.

Two-point functions of scalars

Let’s see how two-point functions ⟨ϕ1(x1)ϕ2(x2)⟩ are fixed through conformal transfor-
mations. Poincaré invariance implies that

⟨ϕ1(x1)ϕ2(x2)⟩ = ⟨ϕ1(0)ϕ2(x2 − x1)⟩
= ⟨ϕ1(0)ϕ2(Λ(x2 − x1))⟩ = ⟨ϕ1(Λ(x1 − x2))ϕ2(0)⟩

(2.92)

for any rigid rotation Λ. Two point functions are therefore radial ⟨ϕ1(x1)ϕ2(x2)⟩ =
f(|x1 − x2|) with f smooth. If we now apply a scale transformation x 7→ x′ = λx we
get

⟨ϕ1(x1)ϕ2(x2)⟩ = λ∆1+∆2⟨ϕ1(λx1)ϕ2(λx2)⟩ (2.93)

from which f(r) = λ∆1+∆2f(λr). Radial functions homogeneous with exponent α are
of the form C

rα
and hence

⟨ϕ1(x1)ϕ2(x2)⟩ =
C12

|x1 − x2|∆1+∆2
(2.94)

Now we focus on special conformal transformations, which have determinant∣∣∣∣∂x′∂x

∣∣∣∣ = 1

(1− 2b · x+ b2x2)d
(2.95)

where we have used the notation a · b = aµbνgµν and a2 = a ·a. With some calculations
and using the definition of special conformal transformation we can show

|x′1 − x′2| =
|x1 − x2|

γ
1
2
1 γ

1
2
2

(2.96)

where γi = 1− 2b · xi + b2x2i . If we apply the transformation to the two-point function
we have

⟨ϕ1(x1)ϕ2(x2)⟩ =
C12

|x1 − x2|∆1+∆2

=
1

γ∆1
1 γ∆2

2

C12

|x′1 − x′2|∆1+∆2

=
(γ1γ2)

∆1+∆2
2

γ∆1
1 γ∆2

2

C12

|x1 − x2|∆1+∆2

(2.97)

28

2.4. Correlators and the Operator Product Expansion

where in the second equality we applied the special conformal transformation on the
correlator and, in the third, we used (2.96). Since γ1 and γ2 are independent this can
be satisfied only if ∆1 = ∆2. We can finally conclude

Theorem 2.9. Two primary scalar fields are correlated only if they have the same
scaling dimension

⟨ϕ1(x1)ϕ2(x2)⟩ =

{
0 ∆1 ̸= ∆2

C12

|x1−x2|2∆ ∆1 = ∆2 = ∆
(2.98)

We now introduce the notation x12 = x1 − x2 to shorten the subsequent relations.

Three point functions of scalars

Following the steps in [Qua15], in a Poincaré invariant theory the three-point function
is of the form

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)⟩ =
C123

|x12|a|x23|b|x13|c
(2.99)

From scale invariance we get

C123

|x12|a|x23|b|x13|c
=
λ∆1+∆2+∆3

λa+b+c
C123

|x12|a|x23|b|x13|c
(2.100)

hence
a+ b+ c = ∆1 +∆2 +∆3 (2.101)

Using special conformal transformation we obtain

C123

|x12|a|x23|b|x13|c
=

(γ1γ2)
a
2 (γ2γ3)

b
2 (γ1γ3)

c
2

γ∆1
1 γ∆2

2 γ∆3
3

C123

|x12|a|x23|b|x13|c
(2.102)

Since we want again this to be true for every x1, x2, x3 and the γi are independent, we
get the final system

a+ b+ c = ∆1 +∆2 +∆3

a+ c = 2∆1

a+ b = 2∆2

b+ c = 2∆3

(2.103)

from which

a = ∆1 +∆2 −∆3

b = ∆2 +∆3 −∆1

c = ∆3 +∆1 −∆2

(2.104)

Finally, we have obtained the following:

Theorem 2.10. Three primary scalar fields are correlated with the following relation

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)⟩ =
C123

|x12|∆1+∆2−∆3|x23|∆2+∆3−∆1|x13|∆3+∆1−∆2
(2.105)

29

Chapter 2. Conformal Field Theories

Since we can normalize states and operators, Cij and Cijk do not both contain
relevant physical information. In particular, we could normalize one of them and the
value of the other gets locked by our choice. The most common choice is to put Cij = 1.
This means that the non-trivial physical information is contained in the value of Cijk
and the latter will depend on the specific theory we are studying.

In the end, both 2 and 3-point functions are written in terms of just the distance
between the points of insertion of operators, the scaling dimensions and the non-trivial
physical constants Cijk known as structure constants or OPE coefficients.

Four-point functions

When dealing with four-point functions the situation is very different and we no more
have a closed-form expression. We need to construct more complex objects and go
back to the theory of states and operators.

As a start, define the following quantities, which do not exist for less than 4 points
and are invariant to all conformal transformations

u =
x212x

2
34

x213x
2
24

, v =
x214x

2
23

x213x
2
24

(2.106)

These are called cross-ratios. It can be shown that the general form of a four-point
function is

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)⟩ =
F (u, v)∏
i<j |x2ij|δij

(2.107)

where
∑

j ̸=i δij = ∆i. F (u, v) could be any function of the cross-ratios, at least in
theory. In fact, we will show that it has indeed a particular form. This same method can
also be applied to correlators of more than 4 points. To obtain additional information on
this kind of correlator, we need to take a step back to the Operator Product Expansion
which, for CFT, is much more powerful.

Operator Product Expansion

Recall that, in QFT, the OPE let us write a product of two operators, inserted in
two points close to each other, as an asymptotic expansion: an infinite sum that for
each truncation converges to the same value as the original product, but just for a
single point near to the points of insertion. This is a limitation since the expansion is
therefore not convergent in general. In this case, conformal invariance together with
the states-operator correspondence imply an actual convergence.

Consider the insertion of two operators inside a sphere and the generated state

|ψ⟩ = ϕ1(x)ϕ2(0) |0⟩ (2.108)

Without loss of generality, we can assume one of them to be inserted at the origin. As
for QM, we can expand the state |ψ⟩ in a basis of eigenstates of the dilatation operator:

|ψ⟩ =
∑
n≥1

cn(x) |En⟩ (2.109)

where cn is in general a function of x. As shown before, each |En⟩ can be expressed as
a linear combination of primaries and their descendants yielding

ϕ1(x)ϕ2(0) |0⟩ =
∑

ϕ primaries

D∆(x, ∂)ϕ∆(0) |0⟩ (2.110)

30

2.4. Correlators and the Operator Product Expansion

where D∆(x, ∂) is a power series of partial derivatives (which produce the descendant
operators) depending on x.

Notice how the radial quantization, together with the concept of primary operators
and descendants, leads to an expansion that, it can be shown, is actually convergent.
For a proof of this fact we refer to [PRER12] and [Pol98] but, when dealing with a
correlator

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3) · · ·ϕn(xn)⟩, (2.111)

the expansion converges for every x2 ∈ Rd such that |x1−x2| < |x1−xk|, k = 3, . . . , n,
that is if ϕ2(x2) is the operator inserted closest to x1. We could also say that the radius
of convergence is given by min{|x1 − xk|, k = 3, . . . , n}.

Conformal invariance lets us also determine some properties of the terms C∆(x, ∂).
For example (see [Ryc17] for a review), one can show that

ϕ1(x)ϕ2(0) |0⟩ =
D

|x|k
[ϕ∆(0) + . . .] |0⟩+ contribution of other primaries (2.112)

where the exponent k is fixed by scaling invariance to k = ∆1 + ∆2 −∆. Expanding
the first descendant term leads to

ϕ1(x)ϕ2(0) |0⟩ =
D

|x|∆1+∆2−∆
(ϕ∆(0) + αxµ∂µϕ∆(0) + . . .) |0⟩+ . . . (2.113)

and the value of α gets also fixed by conformal invariance to the value

α =
∆1 −∆2 +∆

2∆
(2.114)

In fact, we could go ahead and determine all the coefficients! It has been proven that
conformal invariance fixes completely the functions D∆(x, ∂) up to an overall factor
C12∆, which is the same structure constant in 2.105 for three point functions. Note
finally that D∆(x, ∂) depends solely on the three scaling dimensions ∆1,∆2,∆.

We are now ready to go back to four-point functions. Consider four scalar primaries,
assumed to be identical for simplicity, with scaling dimension ∆E. As before, because
of conformal invariance, we start by writing

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ =
G(u, v)

|x12|2∆E |x34|2∆E
(2.115)

Then, we apply the OPE to

ϕ(x1)ϕ(x2) =
∑
∆

C∆D∆(x12, ∂y)ϕ∆(y)|y=x1+x2
2

ϕ(x3)ϕ(x4) =
∑
∆′

C∆′D∆′(x34, ∂z)ϕ∆′(z)|
z=

x3+x4
2

(2.116)

where the C∆ are called OPE coefficients and are the same as the C12∆ used above.
Hence we can rewrite the correlator as

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ =
∑
∆,∆′

C∆C∆′ [D∆(x12, ∂y)D∆′(x34, ∂z)⟨ϕ∆(y)ϕ∆′(z)⟩] (2.117)

31

Chapter 2. Conformal Field Theories

Given the above discussion on two-point functions, we can simplify this equation further
since the two-point correlator is not zero if and only if the two field operators have the
same scaling dimension ∆ = ∆′. We can therefore write

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ =
∑
∆

C2
∆[D∆(x12, ∂y)C∆(x34, ∂z)⟨ϕ∆(y)ϕ∆(z)⟩] (2.118)

where again y = x1+x2
2

and z = x3+x4
2

. Now recall that both the functions D∆(x12, ∂y)
and the two-point functions are fixed by conformal symmetry. This means that the
whole object inside the brackets is fixed:

[D∆(x12, ∂y)D∆(x34, ∂z)⟨ϕ∆(y)ϕ∆(z)⟩] =
G∆,l(u, v)

|x12|2∆E |x34|2∆E
(2.119)

where the functions G∆,l(u, v) are called conformal blocks which depend on the
scaling dimensions ∆E,∆ and the spin l we now reintroduce. Therefore the four-point
function has the following expansion

G(u, v) =
∑
∆,l

C2
∆,lG∆,l(u, v) (2.120)

The conformal blocks G∆,l(u, v) for 4 point functions of scalar operators are known
functions in general dimension and, in particular, are the eigenfunctions of a second
order differential operator called the Casimir operator. See [DO04] and [DO01] for
a reference.

As a final remark, notice how this process can be applied to higher-order correlators.
In conformal field theories, n-point functions can be written solely in terms of the
dimension of primaries, OPE coefficients and the structure of the Operator Product
Expansion itself.

2.4.1 Conformal invariance in the Euclidean plane

We now have a quick look at the case of the Euclidean plane R2,0. Recall that in 2
dimension the algebra of conformal transformations is infinite-dimensional. This, as
we will shortly see, can be used to exploit additional information and completely solve
some theories.

As before, we identify the euclidean plane R2,0 with the complex plane C with
the conformal transformations corresponding exactly to the holomorphic and anti-
holomorphic functions. Consider as notations for the complex derivatives

∂ = ∂z =
1

2
(∂0 − i∂1)

∂̄ = ∂z̄ =
1

2
(∂0 + i∂1)

(2.121)

We introduce the following generators for transformations

Definition 2.21. The generators for the holomorphic and anti-holomorphic transfor-
mations are given by

ln = −zn+1∂z, l̄n = −z̄n+1∂z̄ (2.122)

32

2.4. Correlators and the Operator Product Expansion

These generators have the algebra given by

[lm, ln] = (m− n)lm+n

[l̄m, l̄n] = (m− n)l̄m+n

[lm, l̄n] = 0

(2.123)

The conformal algebra is then a direct sum of two infinite dimensional algebras, called
Witt algebras. Unfortunately, not all the generators are well defined on the compact-
ification of C, the whole Riemann sphere S2 = C ∪∞. The only ones to be globally
defined are

{l−1, l0, l1} ∪ {l̄−1, l̄0, l̄1} (2.124)

which form the global conformal algebra. We can recover the usual conformal trans-
formations discussed in previous chapters by identifying

• l−1, l̄−1 as the generators for translations.

• l0 + l̄0 as the generator of dilatations.

• i(l0 − l̄0) as the generator of rotations.

• l1, l̄1 as generators of special conformal transformations.

It is also convenient to work with a basis of eigenstates of l0 and l̄0 with eigenvalues
h and h̄, called the conformal weights of the state. The usual scaling dimension ∆
and spin s of a state are then given by

∆ =
h+ h̄

2
, s =

h− h̄
2

. (2.125)

Fields in two-dimensional CFTs can be expressed as functions of z, z̄ and written
as ϕ(z, z̄). We now introduce a categorization of fields similar to the one adopted for
general CFT.

Definition 2.22. A conformal field ϕ(z) is called a primary field of conformal weights
(h, h̄) if under conformal transformations z 7→ z′ = f(z) transforms as

ϕ′(z′, z̄′) =

(
∂f

∂z

)−h(
∂f̄

∂z̄

)−h̄

ϕ(z, z̄) (2.126)

A conformal field with this property being satisfied only for global conformal transfor-
mations generated by (2.124) is called quasi-primary.

A general n-point correlator of n primary fields of conformal weights (hi, h̄i) trans-
forms as

⟨ϕ1(z
′
1, z̄

′
1) · · ·ϕn(z′n, z̄′n)⟩ =

n∏
i=1

(
∂f

∂z

)−hi

z=zi

(
∂f̄

∂z̄

)−h̄i

z=zi

⟨ϕ1(z1, z̄1) · · ·ϕn(zn, z̄n)⟩ (2.127)

As before, two-point and three-point functions are fixed by global conformal invariance.
For two-point functions, the correlator is non-null if and only if h1 = h2 = h and

h̄1 = h̄2 = h̄, giving the relation

⟨ϕ1(z1, z̄1)ϕ2(z2, z̄2)⟩ =
C12

z2h12 z̄
2h̄
12

(2.128)

33

Chapter 2. Conformal Field Theories

Three-point functions are indeed given by

⟨ϕ1(z1, z̄1)ϕ2(z2, z̄2)ϕ3(z3, z̄3)⟩ =

=
C123

zh1+h2−h312 zh2+h3−h123 zh1+h3−h213 z̄h̄1+h̄2−h̄312 z̄h̄2+h̄3−h̄123 z̄h̄1+h̄3−h̄213

(2.129)

As before, we aim to determine the four-point function. In this case, we only have one
relevant cross-ratio given by

η =
z12z34
z13z24

(2.130)

The fact that we only need one cross-ratio is explained by the fact that conformal
transformations can map any four points of the Riemann sphere (z1, z2, z3, z4) into
(0, 1, η,∞). This also gives an intuitive idea of how two and three-point functions are
completely fixed.

Without going in-depth with the actual quantization applied on the Euclidean plane
CFT we define a new algebra of operators similar to (2.123), called the Virasoro algebra

Definition 2.23. The Virasoro algebra with central charge (c, c̄) is given by

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[Ln, L̄m] = 0

[L̄n, L̄m] = (n−m)L̄n+m +
c̄

12
n(n2 − 1)δn+m,0

(2.131)

Note how the commutation relations for L±1, L0 and the anti-holomorphic counter-
parts do not depend on the central charge and agree with the relations for l0, l±1 within
the Witt algebra, generating the global conformal transformations. One can show that
the state obtained by the insertion of a primary ϕh,h̄(0, 0) at the origin satisfies

L0 |h, h̄⟩ = h |h, h̄⟩ , L̄0 |h, h̄⟩ = h̄ |h, h̄⟩ ,
Ln |h, h̄⟩ = 0, L̄n |h, h̄⟩ = 0 for n > 0

(2.132)

We have not put any restriction on the possible values for the central charge c and
the values of the conformal weights (h, h̄). An important physical constraint we can
impose is that states should always have a positive norm. This is often referred as
unitarity and is very important for the probabilistic interpretation of QM. Unitarity
also imposes that the squared OPE coefficients are real and positive [RRTV08]. Given
a primary state |h⟩, consider L−n |h⟩.

⟨h|LnL−n|h⟩ = ⟨h|
(
L−nLn + 2nL0 +

1

12
cn(n2 − 1)

)
|h⟩

=

(
2nh+

1

12
cn(n2 − 1)

)
⟨h|h⟩

(2.133)

Letting n be arbitrarily large we obtain c > 0 as a requirement for unitarity, while from
using n = 1 we get h ≥ 0. Further considerations can add more restrictions on possible
values of the central charge and conformal weights. In particular, having c > 1 and
h > 0 always ensures to have unitarity, while for 0 < c < 1 we have that

34

2.5. Conformal Bootstrap

• The central charge has to be of the form

c(m) = 1− 6

m(m+ 1)
m = 2, 3, 4, . . . (2.134)

• For each m there is only a finite number of primaries leading to a unitary repre-
sentation. Such primaries have dimension

hr,s(m) =
((m+ 1)r −ms)2 − 1

4m(m+ 1)
, (2.135)

where 1 ≤ r ≤ m− 1 and 1 ≤ s ≤ r.

These quantities define the so-called minimal models which were completely solved
using just the constraints provided by Virasoro symmetry [BPZ84]. For CFTs in more
than 2 dimensions, we need to take advantage of other symmetries and ideas to gain
additional information on the scaling dimensions and OPE coefficients.

2.5 Conformal Bootstrap

What we have obtained in the previous section is an expansion of the four-point function
in terms of the squared OPE coefficients and the conformal blocks, written as a function
of the cross ratios u, v. Another important fact is that the latter can be expressed as
functions of new variables z, z̄ which, in the Euclidean CFT case, are conjugate values
in the complex plane, while in Lorentzian signature they obey to z, z̄ ∈ (0, 1).

u = zz̄ =
x212x

2
34

x213x
2
24

, v = (1− z)(1− z̄) = x214x
2
23

x213x
2
24

(2.136)

or, equivalently,

z, z̄ =
1

2
=
(
u− v + 1±

√
(u− v + 1)2 − 4u

)
. (2.137)

With these new coordinates the operator product expansion still converges exponen-
tially in ∆ [PRER12], [Pol98] for all complex points z, z̄ except for the half-lines on
the real axis (−∞, 0] and [1,∞).

However, in the previous expansion, we have chosen to expand the fields inserted at
specific points by coupling ϕ(x1) with ϕ(x2) and ϕ(x3) with ϕ(x4). This is sometimes
referred as the s-channel expansion.

This choice is indeed arbitrary, although as we will see not all the pairings are
useful. If we instead decide to expand, using the OPE, the products ϕ(x1)ϕ(x4) and
ϕ(x2)ϕ(x3), the final correlator has to be the same function! Looking closely, this new
way of expanding the four-point function is just the equivalent of switching the cross
rations u↔ v or the points x1 ↔ x3. This is often called as the t-channel expansion.
Since the four-point correlator must not change, the two four-point expansions must
yield the same result

G(u, v)

x
2∆ϕ

12 x
2∆ϕ

34

=
G(v, u)

x
2∆ϕ

23 x
2∆ϕ

14

(2.138)

35

Chapter 2. Conformal Field Theories

which leads to

v∆ϕ

(∑
∆,l

C2
∆,lG∆,l(u, v)

)
= u∆ϕ

(∑
∆,l

C2
∆,lG∆,l(v, u)

)
(2.139)

Therefore, we have shown that the conformal blocks and the OPE coefficients must
respect the following∑

∆,l

C2
∆,l

(
v∆ϕG∆,l(u, v)− u∆ϕG∆,l(v, u)

)
= 0 (2.140)

which is referred as the Conformal bootstrap equation. This is a fundamental
result in CFT since imposing this equation for any u, v or z, z̄ we have an additional
constraint on the OPE coefficient and the spectrum of the operators.

An interesting question is what happens if we use the last possibility of coupling
together ϕ(x1) with ϕ(x3) and ϕ(x2) with ϕ(x4). One could impose the above equality
for this channel as well, although it can be proven that there is no further information
on the coefficients and conformal blocks that can be obtained from this.

2.5.1 Historical approaches and success

Initial studies on the representations of the conformal group and the Operator Product
Expansion in the CFT framework, where it has a finite radius of convergence, can be
found in [FGG73]. Soon thereafter, the crossing equation has been studied by Polyakov
[Pol74] as a way to extract additional and useful equations without the Lagrangian
formalism. This is indeed a fundamental result for the theory since often the Lagrangian
is unknown or the coupling constant is too big to rely on perturbation theory, one of
the few approaches available for computations in QFT.

This approach lead to a successful and complete classification of the so-called min-
imal models by Polyakov, Belavin and Zamolodchikov in [BPZ84] as we discussed
above. The main idea is to exploit the additional symmetries given by the Virasoro al-
gebra in 2 dimensions obtaining particular restrictions on theories with a central charge
0 < c < 1.

Given their complexity, the first attempts to bootstrap higher dimensional CFTs
only came in 2008 with the work [RRTV08], where it was shown that CFTs must have
a scalar operator with scaling dimension ∆min ≤ f(d) where f(d) is a function of the
space-time dimension with f(1) = 2. If we write the conformal bootstrap equation in
the form ∑

∆,l

C2
∆,lFd,∆,l(z, z̄) = 0, (2.141)

the unitarity condition guarantees that the coefficients C2
∆,l are real and positive

[RRTV08], which is crucial for the following approach. Focusing on the line z = z̄
with 0 ≤ z ≤ 1 for even values of the spin l, one can study numerically the conformal
bootstrap equation to put further constraints on the admissible values of the scaling
dimensions ∆ and the OPE coefficients. Further results and reviews of the studies on
these topics can be found in [SD16,PRV19], but the main procedure can be stated as
follows:

• Make a hypothesis on the scaling dimensions and spins ∆, l appearing in the
Operator Product Expansion of our interests.

36

2.5. Conformal Bootstrap

• Search for a non-negative linear functional α acting on the functions Fd,∆,l, being
strictly positive on at least one of them. A good choice is to consider the action
of the functional as

α(F) =
∑

m+n≤Λ

αmn∂
n
z ∂

m
z̄ F (z, z̄)|z=z̄= 1

2
(2.142)

where the particular point z = z̄ = 1
2

is chosen for convergence reasons.

• If such α exists, then the hypothesis is wrong by applying the functional to both
sides of equation (2.141), recalling that α is strictly positive for at least one of
the conformal blocks.

The main problem remains to find the functional α and the fact that we are dealing
with continuous values for ∆ and the OPE coefficients.

Possible solutions are to take only discrete values of the scaling dimensions up to
a cutoff ∆max or to approximate the derivatives of the conformal blocks with polyno-
mials. To run the search for the functional the two main approaches are semidefinite
programming [SD15] or the navigator bootstrap presented in [RRSD+21].

One very interesting result within this framework comes from [KPSD14], where a
particular set of allowed 3 dimensional CFTs was restricted in a small island around
the 3D Ising model, possibly claiming that this is the only theory allowed in this region
of the plane in figure 2.1

Figure 2.1: Allowed region for a particular set of 3 dimensional CFTs, taken from
[KPSD14]

The above methods are mostly numerical, studying approximating values of the
conformal blocks to exclude regions for allowed theories.

Recently, researchers began to develop alternative approaches to the traditional
conformal bootstrap such as Montecarlo [LVS22] and Machine Learning methods. In
this thesis we focus on the particular application of Reinforcement Learning to CFTs
as in [KPN22a,KPN22b,KNPR23].

37

Chapter 2. Conformal Field Theories

38

Chapter 3

Reinforcement Learning Generalities

The increased computational power of modern computers and the technological progress
in the past decades led to increased interest and research in Machine Learning (ML).
ML techniques found application in a large variety of topics due to their flexibility and
adaptability. Neural Networks, for example, can approximate up to arbitrary precision
any function from the interval [0, 1] to itself [HSW89,Cyb89]. Any real problem that
can be reformulated into a regression task of this kind could be solved using an ML
algorithm.

This power comes with consequences, as Neural Networks are known for the very
hard optimization problem of finding the optimal weights, as well as the risk of con-
structing a model that performs very well on the training set without being able to
generalize on unseen data. Therefore, ML often requires finding the sweet spot between
a complex model, which can learn perfectly the data we feed, and a simpler one, able
to perform better on the test set.

Reinforcement Learning is a particular ML technique involving two components:
an agent and the environment. At each step, the agent performs an action and receives
from the environment a reward, as well as some kind of information. RL algorithms aim
to find the optimal strategy for the agent that can maximize the expected cumulative
reward from a whole interaction. Although a greedy solution may be tempting, in
some problems we could have early choices leading to a greater initial reward but
worst results in the long run.

RL techniques often involve creating a model representing the agent-environment
interaction or finding a link between the actions taken, the information and the rewards
obtained. As we will see, Neural Networks fit well for this particular task.

In this chapter we study the main concepts around ML and RL, starting from the
basic training algorithms and building up towards the algorithm of our interest: Soft
Actor-Critic.

3.1 Machine Learning

In this first section, we introduce the main concepts around Machine Learning following
the discussion of [GBC16]. We start with the most general definitions related to all
ML algorithms, followed by an in-depth discussion on Feedforward Neural Networks
with their optimization and training techniques.

39

Chapter 3. Reinforcement Learning Generalities

3.1.1 Motivations and main concepts

Machine Learning is a very wide realm containing many different topics and concepts. A
good summary of the most general idea of ML is the definition by Tom Mitchell [Mit97]:

Definition 3.1. An algorithm or computer program is said to learn from experience
E with respect to some class of task T and performance measure P , if its performance
at task T , as measured by P , improves with experience E.

We will soon give a clear example of how this definition can be interpreted in
mathematical terms.

Recently, ML algorithms grew in diffusion and found large usage in many different
tasks including translation, summarization and question answering (Natural Language
Processing [OMK19]), autonomous driving (Computer Vision [YLCT20]), protein fold-
ing prediction (biochemistry [JEP+21]), as well as medicine and games. Common tasks
of ML can mainly be divided into two categories:

• Supervised learning: supervised learning usually involves data with an input x
and an output y. The algorithm learns a function f̂(x) which, with respect to the
performance measure, must be as close as possible to the true target f(x) = y.

• Unsupervised learning: in unsupervised learning we are given only input data
x. The algorithm learns the properties of given data or even how to generate new
synthetic samples with the same properties. For example, if we suppose that the
given samples x are generated by an underlying distribution P(x), unsupervised
learning is used to distinguish real samples generated by P(x) from false examples
from another distribution. Furthermore, we can use the input data x to also
generate new synthetic samples coming from a learned distribution as close as
possible to the original one.

Example 3.2. Although being solved much before the introduction of ML, a very
simple and common example of an ML task is linear regression. Linear regression is
useful both for a complete understanding of definition 3.1 and because it constitutes the
basis for more complex models such as neural networks. We are given some input data
points x(i) ∈ Rn and each one of them has an output value y(i) ∈ R, for i = 1, 2, . . . ,m
where m is the number of available samples. We construct the set of linear functions
y = wTx + b with parameters w ∈ Rn, b ∈ R. We aim to find the best parameters
with respect to the mean squared error between the true outputs y(i) = f(x(i)) and our
linear estimate ŷ(i) = wTx(i) + b. Our minimization problem has then the form

MSE =
1

m

m∑
i=1

∥ŷ(i) − y(i)∥22. (3.1)

This problem has an actual explicit solution: for b the best value corresponds to the
mean of the true outputs yi. We can assume without loss of generality that the outputs
have 0 mean. We write the data matrix as X ∈ Rm×n, where the i-th row of the matrix
is the i-th input data point. We finally have

w = (XTX)−1XTY, (3.2)

where Y is the column vector of outputs Y = (y(1), . . . , y(m)).

40

3.1. Machine Learning

However, our algorithm should not only perform accurately on known data but it
should also be able to generalize well on unseen samples, as we could just memorize
the data we trained it on. To model this situation, we suppose that the training set,
the set of samples used to train the algorithm, as well as the validation and test sets,
which are used to simulate the performance of the model on unseen data, are generated
from a distribution over datasets pdata with the following assumptions:

• For each dataset all samples are independent from each other.

• All the datasets are generated from the same distribution pdata.

Assume that the input and output data are related through a function with noise
y = f(x) + ϵ. We will consider ϵ to have a normal distribution N (0, σ2) and to be
independent of the data samples and the data distribution. The ML model consists of
a set of functions, the hypothesis space H, and an algorithm that has to select the
best estimator f̂ from the hypothesis space, based on the available data. In the case
of a regression task, one of the most common error metrics is the mean squared error
E
[
(y − f̂(x))2

]
, where the expectation is taken with respect to the data distribution

and ϵ.
From a probabilistic and statistical point of view, a point estimate f̂(x) is a random

variable and a function of training data D, f̂(x,D), although for simplicity we will keep
the notation f̂(x). The choice of this estimate is dependent on the training data, which
is supposed to be generated through pdata. As a consequence, we can calculate the
mean, the variance and other statistical quantities for f̂(x) with the data distribution
ED

[
f̂(x)

]
.

The mean squared error ED,ϵ
[
(f(x)− f̂(x))2

]
, with x ∼ D, decomposes as

MSE = ED,ϵ,x

[
(y − f̂(x))2

]
= σ2 + Ex

[
(f(x)− ED[f̂(x)])2

]
+ ED,x

[
(ED[f̂(x)]− f̂(x))2

]
= σ2 + Bias(f̂) + Variance(f̂)

(3.3)

Hence, the error is made of 3 components:

• The variance of noise σ2, also called standard error: this is a kind of error we
cannot avoid and sets a lower bound for how precise our model can be.

• The bias term ED,x

[
(f(x)− ED[f̂])2

]
: it is the error between the true value and

the average of our point estimation. It can be regarded as an error due to our
assumptions about the problem and the hypothesis class we are considering. If
we are limited to the use of a restricted set of functions, this term increases.
This is often related to the concept of underfitting: the model lacks enough
complexity to estimate the objective function.

• The variance term ED,x

[
(ED[f̂]− f̂(x))2

]
: it is indeed the variance of our esti-

mator being a random variable and function of the data. It tells us how much
our point estimate varies with different training sets and experiences. High vari-
ance is often related to overfitting, where the estimator adapts too well to the
training set without being able to generalize well.

41

Chapter 3. Reinforcement Learning Generalities

In reality, since the data distribution pdata is unknown, the empirical risk is used in
practical applications as an estimator of the mean squared error

1

N

∑
training set

∥y − ŷ∥22, (3.4)

which assumes equal weights for all independent samples in the training set.

3.1.2 Deep Feedforward Networks

Deep Feedforward Networks, also called Feedforward Neural Networks or Mul-
tilayer Perceptrons are the fundamental models in modern deep learning. Neu-
ral Networks represent a function f(x), with the term feedforward used to indicate
that the computations needed to calculate f are done in a sequential forward man-
ner, without any feedback to previous operations. The name "Networks", on the
other hand, comes from the different intermediate functions that compose f(x) =
f (k)(f (k−1)(. . . (f (1)(x)))) and from their visual representation.

Figure 3.1: Graphical representation of a Feedforward Neural Network. The circles
represent the units while the arrows represent the connections. The direction of the
arrows indicates the direction of the calculations and the flow of information during
inference. Data flows from the input layer (red) through the hidden layers (blue) and
finally the output layer (green). Note that there are no connections between units of
the same layer.

The intermediate functions f (i) are called the layers of the network and the whole
length of the chain of computation is the depth. The first layer is usually called the
input layer, the intermediate ones are hidden layers and the last one is the output layer.
Each layer is actually constituted by units, also called neurons, which act parallel to
each other and perform the same kind of computation.

Each unit performs a scalar product between the input values it receives from all
neurons from the previous layer and a set of weights w, a non-linear function is then
applied to obtain the final output or activation of the unit. We now analyze in depth
all the procedures and the calculations of the output of a neural network.

42

3.1. Machine Learning

Input layer

The input layer is the first component of the neural network and it is composed of a
number of neurons equal to the dimension of the input. There are no calculations at
this level, the units are placeholders for the input data. Therefore we indicate the units
of the input layer with the components of the input vector (x1, x2, . . . , xn).

Hidden layers

In hidden layers, each unit receives as input the activations of neurons from the pre-
vious layer and calculates its activation by a scalar product and a non-linear function.
Mathematically, let kl be the number of units for layer l and let the activations of
neurons from layer l − 1 be indicated as (al−1

1 , . . . , al−1
kl−1

). Let the weights of unit i
in layer l be wli1, wli2, . . . , wlikl−1

. As equivalent notations, we will write the vector of
activations from the previous layer as al−1 = (al−1

1 , . . . , al−1
kl−1

), the weights of unit i in
layer l as wl

i = (wl1, . . . , w
l
kl−1

) and the entire set of weights of layer l with W l where
W l
ij is the weight of unit i for the activation al−1

j . Let also bl = (bl1, . . . , b
l
kl
) be the

biases of neurons of layer l. The activation of unit i is then ali = g(wl
i · al−1 + bli)

which is a linear combination of previous activations followed by a function g which is
non-linear. We can also write the activations of layer l as al = g(W lal + bl) where g
is applied element-wise in this notation.

The activation function g plays a fundamental role since it adds a non-linear com-
ponent to the network. If we choose not to use it, the output of layer l can be written
as al = W lW l−1W l−2 · · ·W 1x = Wequivx where we have suppressed the biases for
simplicity. This means that if no activation is used then the neural network is a linear
regressor and its output is a linear combination of the inputs.

The choice of the activation function is really important since it determines the non-
linearity of the network. Common choices at initial stages of neural network research
were the hyperbolic tangent function tanh(x) = ex+e−x

ex−e−x and the sigmoid function σ(x) =
1

1+e−x . Although they are bounded and differentiable everywhere, they present an issue
often called saturation. Since these functions have finite limits for x → ±∞, all
inputs sufficiently distant from 0 produce very similar outputs and, during the training
phase, gradients close to 0.

A huge improvement was made with the introduction of the ReLU activation func-
tion [Fuk69, NH10]. The ReLU function is defined as g(x) = max{0, x} and brings
three main advantages:

• It induces sparsity since all negative inputs are mapped into 0, acting as a regu-
larization.

• It is differentiable almost everywhere and the derivative is easy to compute. It
avoids the introduction of second-order effects in gradient which increases the
speed of learning.

• For positive inputs there is no plateau effect and the gradient does not approach
zero.

On the other hand, the ReLU function is not differentiable at x = 0 and we could
argue that mapping any negative input into 0 could hugely affect the performance of
the model by losing information. Although true, these two issues seem to have a minor

43

Chapter 3. Reinforcement Learning Generalities

effect compared to the actual advantages it brings and the ReLU function is the most
used activation function for hidden layers.

Output layer

The output layer is the final step of the calculation and the value we obtain is the output
of the neural network. The number of units corresponds to the dimension of the space
where our target values live, at least for regression tasks. The calculations for each
unit are the same as for the hidden layer neurons although, in this case, it is sometimes
better to use limited activation functions. The sigmoid function, for example, is often
used in case we want outputs with values in (0, 1), such as for probabilities and images.

When dealing with classification tasks, on the other hand, we want to find the
correct label among d values. In these cases, the output layer is constituted by d units,
each representing the probability of the input being in the corresponding class. For this
kind of task, the most common activation function for the output layer is the softmax
and it has a particularity: instead of taking as input a single real value from another,
it operates on vectors, ensuring as well that all the components sum up to 1.

softmax(x1, x2, . . . , xd) =
(

ex1∑
i e
xi
,
ex2∑
i e
xi
, . . . ,

exd∑
i e
xi

)
(3.5)

One of the biggest problems with Feedforward Neural Networks is deciding how
many layers it should have and how many units should each layer contain, which defines
the hypothesis space for this model. Deeper networks are often able to generalize well
even with fewer units but require many subsequent computations, especially for the
training procedure. On the other hand, adding too many parameters can lead to
overfitting with the model practically memorizing the training samples. A common
procedure to find the best parameters is model selection. While training the model
with a set of parameters on the training set, the validation set is unbiased to validate
and simulate its performance on unseen data. We select the parameters that bring the
best accuracy and the final model is selected and tested on the test set.

3.1.3 Training

When building a neural network, the initial weights and biases of the units are chosen
randomly since finding the optimal values in advance is a complex and costly process.
Instead, the main paradigm of ML consists in selecting randomly the weights and
adjusting them as we gain information and experience with the data we feed the model.
This translates into a complex optimization problem which is also not independent
from the initialization of parameters as we will see later. Luckily there are ways to
mitigate those problems although the main task of the training procedure is the weight
adjustment.

As described above, when the neural network receives an input x the information
flows in the network in a forward way through all of its layers, producing the output
estimate ŷ. This procedure is called forward propagation and, during the training
phase, it produces a scalar cost as a function of the current parameters J(θ), where
θ = (W , b). In general, the choice of the cost function is very important and depends
on the objective and the outputs:

44

3.1. Machine Learning

• For regression tasks where a real output value is produced, usual choices are the
mean squared error (MSE) 1

N

∑
training set ∥y − ŷ∥22 or the mean absolute error

(MAE) 1
N

∑
training set ∥y − ŷ∥1.

• For classification tasks where we need to identify a label from C categories for each
input, a good choice is the log-likelihood. The network outputs the probabilities
of being in each category and the loss for a single training sample is calculated
as
∑C

c=1 δy=c log pc(x) where pc(x) is the output probability of being in category
c.

Backpropagation

In order to optimize the parameters of the Feedforward Neural Network we will use a
gradient method: given the training loss, we calculate the gradient of the cost function
with respect to the parameters and modify the weights and biases to reduce the error,
following the gradient. Computing the gradient analytically is not complex but com-
puting it for each unit individually has a huge computational cost as the number of
units increases. Therefore, we need a way to compute gradients in a fast and reliable
manner.

The main algorithm for gradient computation in neural networks is backpropa-
gation [RHW86]. Its name is inspired by the idea of information on the error flowing
back from the output layer, where the empirical risk is calculated, to the individual
weights in the units of previous layers. Backpropagation is a very general algorithm
and applies not only to feedforward networks but also to more complex ML models.

To fully understand it, we start by computing the gradient of the cost function with
respect to a single weight in a unit. Consider a multilayer neural network with L total
layers and layer l has kl units. As above, the activation of unit i in layer l is given by
ali = g(wl

i · al−1 + bli) where g is any activation function of our choice with the only
requirement of it being differentiable. For simplicity, we call the quantity wl

i ·al−1 + bli
as zli, the preactivation of unit i in layer l. Recall wlij is the weight of neuron i in layer
l applied to the activation of neuron j in the previous layer and bli is the bias of neuron
i in layer l. The relations in matrix form are al+1 = g(W l+1al+bl+1) where W l

ij = wlij
and g is applied component by component on vectors.

Consider the case of a network producing outputs ŷ ∈ Rd, actually being the
activations of the last layer ŷ = aL = o(wL · aL−1 + bL) where o is the activation
function of the output layer, although we will consider with abuse of notation g = o.
To have the most general setting possible, we consider a general loss function L(y, ŷ)
between the true target and the output of the network. Since the cost function is the
average of single errors on samples, we just need to compute it analytically on a single
sample. We start by taking the partial derivative vector of the loss with respect to the

45

Chapter 3. Reinforcement Learning Generalities

activations of layer l, al.
∂L(y, ŷ)

∂al
=
∂L(y, ŷ)

∂aL
· ∂a

L

∂al

=
∂L(y, ŷ)

∂aL

L−1∏
h=l+1

∂ah+1

∂ah
· ∂a

l+1

∂al

=
∂L(y, ŷ)

∂aL

L−1∏
h=l+1

∂ah+1

∂zh+1

∂zh+1

∂ah
· ∂a

l+1

∂zl+1

∂zl+1

∂al

=
∂L(y, ŷ)

∂aL

L−1∏
h=l+1

(g′)|zh+1 W
h+1 · (g′)|zl+1 W

l+1

(3.6)

where (g′)|zh+1 is the diagonal matrix with elements (g′)ii|zh+1 = (g′) (zh+1
i), while the

quantities ∂ah+1

∂ah indicate the jacobian matrices. This is indeed a row vector as the
first element on the left of the product is a row vector, while all the other elements
are matrices. Note that the information flows left to right from the last layer to the
previous layers, just like the order of row vector-matrix multiplication.

We are now ready to differentiate with respect to the actual weights and bias of
unit i in layer l obtaining

∂L(y, ŷ)

∂wlij
=
∂L(y, ŷ)

∂aL
· ∂a

L

∂al
∂al

∂wlij

=
∂L(y, ŷ)

∂aL

L−1∏
h=l+1

(g′)|zh+1 W
h+1 · (g′)|zl+1 W

l+1 · ∂a
l

∂zl
∂zl

∂wlij

=
∂L(y, ŷ)

∂aL

L−1∏
h=l+1

(g′)|zh+1 W
h+1 · (g′)|zl+1 W

l+1 · (g′)·i|zl · al−1
j

∂L(y, ŷ)

∂bli
=
∂L(y, ŷ)

∂aL
· ∂a

L

∂al
∂al

∂bli

=
∂L(y, ŷ)

∂aL

L−1∏
h=l+1

(g′)|zh+1 W
h+1 · (g′)|zl+1 W

l+1 · ∂a
l

∂zl
∂zl

∂blij

=
∂L(y, ŷ)

∂aL

L−1∏
h=l+1

(g′)|zh+1 W
h+1 · (g′)|zl+1 W

l+1 · (g′)·i|zl

(3.7)

where (g′)·i|zl indicates the i-th column vector of the diagonal matrix, which con-
sists of (0, . . . , (g′)|zli , . . . , 0)

T . Those quantities are indeed real values and are the
components of the gradient with respect to single weights and biases of units. To bet-
ter see the recursive procedure of backpropagation consider the gradient of the loss
function with respect to activations of layer l as

δl = ∇alL(y, ŷ) =
∂L(y, ŷ)

∂aL
· ∂a

L

∂al

= ∇alaL∇aLL(y, ŷ)

=
(
W l+1

)T · (g′)|zl+1 ·
L−1∏
h=l+1

(
W h+1

)T
(g′)|zh+1 ∇aLL(y, ŷ)

=
(
W l+1

)T · (g′)|zl+1 δ
l+1

(3.8)

46

3.1. Machine Learning

with δL = ∇aLL(y, ŷ). As we can see the computation of gradients in hidden layers
has a very convenient recursive form. Furthermore, the fact that the recursion has a
backward procedure in which the gradients of layer l can be computed from subsequent
layers justifies the name of the process.

Backpropagation lets us save calculations from computing each partial derivative
separately when propagating the error through the network. Gradients for layer l can
be obtained by multiplying gradients from layer l+1 with the W l+1 weight matrix and
the derivative of the activation function, applied on the preactivations of layer l + 1.

The full training step of a feedforward neural network can then be summarized as
in algorithm 1:

Algorithm 1 Training step for the backpropagation algorithm
Initialize parameters θ = (W , b).
for each input-output couple (x, y) do

Compute the neural network output ŷ.
Save all the intermediate preactivations and activations of the hidden layers zl,al.
Calculate the error with respect to the true target L(y, ŷ).
Compute the gradient of the error w.r.t. the output ∇ŷL(y, ŷ) = ∇aLL(y.ŷ).
for each each layer l from L− 1 to 1 do

Compute the gradient of the loss w.r.t. the activation with the formula

δl =
(
W l+1

)T · (g′)|zl+1 δ
l+1 (3.9)

with base case δL = ∇aLL(y, ŷ).
Compute the gradients w.r.t. the weights and biases of the single units as

∂L(y, ŷ)

∂wlij
= (g′)·i|zl a

l−1
j · δl

∂L(y, ŷ)

∂bli
= (g′)·i|zl · δl

(3.10)

end for
end for

3.1.4 Optimization

There is a fundamental difference between optimization theory and ML theory: the
former aims to minimize a cost function J(θ) directly, while the latter optimizes a per-
formance measure while operating on a cost function, which may be different. Mathe-
matically, we can think of the true cost as the average loss with respect to the true data
generating distribution, also called risk J∗(θ) = E(x,y)∼pdata [L(f(x;θ), y)], while the
function we optimize is the average loss on the finite training set, that is the empirical
risk J(θ) = 1

N

∑N
i=1 L(f(x

(i);θ), y(i)). If we knew the true data-generating distribu-
tion, the risk minimization problem would become an optimization problem. Instead,
we can only optimize the empirical risk on the training set, hoping that it will reduce
the true objective as well.

Another important aspect of ML is that updating the parameters using gradient
descent can be very costly: the loss is an average of the errors on each sample and, if

47

Chapter 3. Reinforcement Learning Generalities

the training set is large, calculating the gradient and backpropagating it through the
network takes time and resources. Estimating the gradient update from just a subset
of the training samples is not only faster but may also solve the problem of redundant
or unbalanced training sets. These methods are called batch methods if updates are
calculated on the whole training set and minibatch methods if we only use a subset
of it. While it may seem obvious that batch methods are more accurate in estimating
the true gradient, minibatch learning can also act as a regularizer by adding noise to
the gradient, while also being much faster in convergence [WM04].

One important aspect for minibatch learning to be effective is that the subsets of
examples we calculate the gradient at each step (called minibatches) are independent
of each other and their data samples are selected randomly and independently. If these
conditions are met, by sampling a minibatch of data {x(1), . . . ,x(m)} we obtain an
unbiased estimator of the exact gradient for the generalization error as

ĝ =
1

m
∇θ

m∑
i=1

L(f(x(i);θ), y(i)) (3.11)

Neural network optimization provides a variety of challenges to be faced and is
indeed an extremely difficult task:

• Even if the objective function is convex, second-order effects caused by large
eigenvalues in the Hessian matrix of the cost function may lead to poor optimiza-
tion.

• Neural networks are, for the most part, non-convex problems to optimize and
they suffer from a usual problem for non-convex functions: local minimums and
flat regions. In practice, neural network models present a huge number of local
minima. Nevertheless, there is a tendency for large networks to have even more
saddle points and plateaus in addition to the local minimum [DPG+14] with the
landscape of the cost as a function of the weights and biases of the neural network
being complex [SMG14].

• Neural networks with a large number of hidden layers involve many multipli-
cations of weights, which may produce very steep or very flat regions in the
landscape of the cost function. Solutions for these problems include gradient
clipping, which controls the maximum magnitude of the gradient.

• Minibatch methods produce a gradient estimate which is unbiased but can still
be inexact producing wrong update directions.

• Network initialization plays a really important role: if the initial parameters are
in a region of the landscape far from the optimal ones it can be challenging to
move them away by using gradients that push parameters only towards local
minima near the initialization.

Neural network optimization is a flourishing area of research due to its challenges
and importance but theoretical results are still hard to find and prove due to all the
problems and the large number of parameters that modern neural networks present.

48

3.1. Machine Learning

Algorithms for neural network optimization

In order to face the many challenges of neural network optimization a series of algo-
rithms have been developed. Since we are dealing with a differentiable function, the
most common ideas involve gradient descent. The most used algorithms in ML, par-
ticularly for deep learning, are a modification of gradient descent called Stochastic
Gradient Descent (SGD) and its variants [RM51], [BCN18]. SGD is a gradient
descent based on minibatch learning: at each step, we sample m data points from the
training set and average their gradient of the loss function. This produces an unbiased
estimator of the true gradient which will be used as the direction for parameter update.
A really important feature of SGD is that the scale of the step, also called learning
rate, is not a fixed value ϵ but varies with time ϵk, where k is the time step. In par-
ticular, it is common to take a decreasing learning rate ϵk+1 < ϵk. The main reason
behind a varying learning rate is that SGD introduces noise by sampling a small subset
of the training samples and this effect never vanishes, even when the true gradient is
approximately 0 at a local minima.

To ensure convergence of the SGD it is sufficient to use a schedule of the learning
rate such that:

∞∑
k=1

ϵk =∞,
∞∑
k=1

ϵ2k <∞ (3.12)

Many theoretical results have been proven for the convergence of stochastic gradient
descent under such a hypothesis. In particular, depending on the convexity of the
cost and estimating function we have convergence in expectation to a local or global
minimum (convex case) [BCN18], [RM51], [Bot91]. The learning rate regulates the
speed of convergence: in some cases, if the initial learning rate is too small, there can
be no learning at all, leaving the model stuck with a high-cost function. A common
choice for the learning rate schedule is to take ϵk ∼ 1√

k
.

To further accelerate learning, many variations of stochastic gradient descent have
been discussed in the literature and are now commonly used when training large neural
networks. When dealing with noisy or small gradients a good choice is to update the
parameters with a momentum, either in the Polyak variant [Pol64] or in its Nesterov
variant [Nes83]. The momentum helps the parameters keep moving in the direction
of past gradients, reducing the effects of noise in the last step and following the main
direction of improvement. To increase efficiency even more and solve the problem of
hyperparameter selection, adaptive learning rate algorithms have been introduced such
as AdaGrad [DHS11] and RMSProp, both of which try to limit the effect of gradients
accumulating and progressively increasing in value.

The most important and most used algorithm for neural network optimization is
Adam [KB15] and is a combination of the previously seen methods of momentum and
RMSProp, with some particularities. Adam includes both first-order and second-order
exponentially decaying momentums and adds a bias correction on those terms. Adam
is now widely used in neural network training and is the algorithm we will use. The
pseudocode for the Adam algorithm is presented in algorithm 2.

49

Chapter 3. Reinforcement Learning Generalities

Algorithm 2 Pseudocode for the Adam optimization algorithm
Initialize step size ϵ, decay rates for moment estimates ρ1, ρ2, numerical stability
constant δ = 10−8.
Initialize parameters θ, first and second moment variables s, r, initial time step
t = 0.
while stopping criterion not met do

Sample a minibatch of m samples {x(1), . . . ,x(m)} with targets {y(i)}.
Compute gradient: g ← 1

m
∇θ̃

∑
i L(f(x

(i);θ), y(i)).
t← t+ 1
Update biased first moment estimate: s← ρ1s+ (1− ρ1)g.
Update biased second moment estimate: r ← ρ2r + (1− ρ2)g ⊙ g.
Correct bias in first moment: ŝ← s

1−ρt1
.

Correct bias in second moment r̂ ← r
1−ρt2

.
Compute update: ∆θ = −ϵ ŝ√

r̂+δ
.

Apply update: θ ← θ +∆θ.
end while

Usually ϵ ∈ [0.0001, 0.001] while ρ1, ρ2 ∈ [0, 1), with defaults set respectively at 0.9
and 0.999.

3.2 Reinforcement Learning

Reinforcement Learning (RL) is a different paradigm of modern ML which involves
two components: the agent and the environment. The agent has to learn how to pick
actions in the environment to maximize a numerical reward signal. To do so, the agent
explores the environment with a trial-and-error strategy looking for the best long-term
strategy, or policy. Actions in the early stages of the interactions affect not only
immediate rewards but also subsequent actions and reward signals.

Some of the most powerful algorithms for RL involve neural networks and other ML
models to evaluate the state of the interaction between the agent or the environment
or to select the next action. The data to train those models is continuously obtained
through the exploration of the environment.

We now give a mathematical formalization of all the concepts and components of
Reinforcement Learning by introducing the finite Markov decision processes. We will
be following the book [SB18].

3.2.1 Finite Markov Decision Processes

Markov decision processes (MDP) best represent this interactive framework between
the agent and the environment. We consider the two main components:

• Agent: it is the explorer, decision maker and learner of the RL framework.

• Environment: it represents everything outside the agent and gets explored by
interacting with it.

We now define the main concepts of RL.

50

3.2. Reinforcement Learning

Definition 3.3. A state S ∈ S is a representation of the current situation of the
environment. S is the set of all possible states.

Definition 3.4. An action A ∈ A(S) is a possible behavior of the agent and it depends
on the current state. A(S) is the set of all possible actions given the current state S.

Definition 3.5. An observation O ∈ O is the response from the environment to the
agent after an action. O is the set of all observations.

Definition 3.6. A reward R ∈ R ⊂ R is a numerical signal the agent receives after
an action and represents how well the agent performed with the last action.

In the case of a finite MDP the sets A,O,S,R are all finite.
We then consider a sequence of discrete time steps, usually the integer line 0, 1, 2,

At each time step t the agent has an internal state St ∈ S and decides an action
At ∈ A(St) based on the current state and its understanding of the environment.
At step t + 1 the agent receives a reward Rt+1 ∈ R and an observation Ot+1 ∈ O.
Given these, the agent produces a new current state St+1 and the process gets repeated
iteratively.

Definition 3.7. A trajectory is a possibly infinite sequence of elements obtained by
the process above in the form

S0, A0, R1, O1, S1, A1, R2, O2, S2, A2, . . . (3.13)

Definition 3.8. We call the history up to time t the current trajectory up to time t:
Ht = S0, A0, R1, O1, S1, A1, . . . Rt, Ot.

In general, the internal state of the agent at time t is a function of the history up
to time t and it represents the current belief about the environment by the agent. It is
the main information, coupled with the experience and strategy, that the agent uses to
select the next action. In this sense, the state is a function of the history St = f(Ht).

Since the sets are all finite the following distributions are well-defined:

Definition 3.9. The transition probability distribution p : S × S ×A → [0, 1] is
the conditional probability for the new state given the past state and the action of the
agent:

p(s′|s, a) = P[St+1 = s′|St = s, At = a] (3.14)

Definition 3.10. The dynamics distribution p : R × S × S × A → [0, 1] of the
MDP is the joint probability distribution of the reward and next state given by the
past state and the action taken by the agent:

pd(r, s
′|s, a) = P[Rt+1, St+1 = s′|St = s, At = a] (3.15)

It is clear that p(s′|s, a) =
∑

r∈R pd(s
′, r|s, a).

With an abuse of notation, we will indicate both functions with p. It will be clear
from time to time which one is being used since the number of arguments is different.

Before giving the formal definition of a MDP we recall some important concepts
for probability distribution related to Markov processes and stochastic processes

51

Chapter 3. Reinforcement Learning Generalities

Definition 3.11. Let (Ω,F ,P) be a probability space. A filtration Ft with t ∈ R is
a set of sub-σ-algebras of F satisfying the property

Fk ⊆ Fl if k ≤ l (3.16)

Definition 3.12. Let (Ω,F ,P) be a probability space with a filtration Ft. Let (Ω′,G)
a measurable space. A Ω′ valued stochastic process X = {Xt : Ω→ Ω′}t∈R adapted to
the filtration (that is Xt is F ′ measurable) satisfies the Markov property if for each
F ∈ G and each s, t ∈ R with s < t

P(Xt ∈ F |Fs) = P (Xt ∈ F |Xs) (3.17)

If Ω′ is discrete with the discrete σ-algebra and t ∈ N, we can reformulate the property
as

P(Xn = xn|Xn−1 = xn−1, . . . , X0 = x0) = P(Xn = xn|Xn−1 = xn−1) (3.18)

Intuitively, for the discrete case, the last observation of the stochastic process con-
tains all the available information at the time of the next step, it is indeed sufficient.
The process has no memory, meaning that adding past observations does not add
information.

All the above quantities and definitions are the fundamental concepts for a Markov
decision process and give a mathematical and formal representation of the reinforce-
ment learning framework we described: given the action taken, the internal state for
the agent satisfies the Markov property. We are ready to give the formal definition of
an MDP:

Definition 3.13. A Markov Decision Process is a tuple (S,A,R, pd), where pd
is a probability distribution representing the dynamics of the MDP. Given an action
a ∈ A, the states have the Markov property, meaning that the past state is sufficient
information for the next state.

3.2.2 Returns and Episodes

The interaction between the agent and the environment may end when a task is com-
pleted (the agent reaches a terminal state) or could last for infinite time steps. In this
case, we talk about continuing tasks.

Definition 3.14. We call an episode a sequence of interactions described above be-
tween the agent and the environment. An episode has an initial time step (usually 0)
and a final time step T , which may be infinite.

When trying to maximize the rewards we have to keep in mind that immediate
actions may influence future rewards, even after many time steps. To better address
this problem we introduce the following quantity:

Definition 3.15. The discounted return at time t is defined as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =
∞∑
k=0

γkRt+k+1 (3.19)

where γ is the discount factor, the importance of future rewards at current time
steps.

52

3.2. Reinforcement Learning

The discount factor is fundamental when dealing with infinite episodes, as the
quantity in (3.19) is not well defined for γ = 1 and T =∞. For example, if the reward
is 1 at all time steps the series is divergent, while if γ < 1 we are sure that the overall
return is bounded: Gt ≤ max(R)

∑∞
k=0 γ

k = max(R) 1
1−γ . (recall that here R is finite).

The discount factor also represents the importance we are giving to future rewards
compared to more immediate ones. Using γ = 1 means that future rewards are as
important as immediate ones while using γ = 0 means we are more myopic.

As a final remark, note that the final return of an episode depends on the transition
and reward distributions and, most importantly for our analysis, on the policy of the
agent.

3.2.3 Policies and Value functions

All Reinforcement Learning algorithms involve estimating and maximizing functions
of states that indicate how good is for the agent to be in a state or to reach a state.
Since future states and rewards depend on the actions the agent takes, these expected
returns and rewards depend on the agent’s policy.

Definition 3.16. A policy π is a mapping from the states space S to the space of
probability distributions over A. We indicate π(a|s) = P[At = a|St = s].

Policies can be deterministic, meaning that for each state only one action is taken,
or stochastic if, for each state, actions have an associated probability distribution.

Policies are the main strategy of an agent and are the main objective of learning.
Agents explore the environment and by processing their interactions with it find the
best policy to use. At the beginning of the exploration, policies are usually more
randomized to gain knowledge about the environment but later become much more
deterministic, once we exploit which actions are best to take in certain situations.

Now we need to define the targets to maximize during the learning process: these
are policy-dependent quantities and involve the returns discussed above.

Definition 3.17. The state-value function vπ(s) of a state s under a policy π is the
expected return when starting from state s and following the policy π

vπ(s) = Eπ[Gt|St = s] = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]
(3.20)

where Eπ means that we are considering subsequent actions taken with probabilities
given by policy π.

Definition 3.18. The action-value function qπ(s, a) of a state-action couple (s, a)
under a policy π is the expected return when starting from state s, taking immediate
action a and following the policy π afterward.

qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s, At = a

]
(3.21)

where Eπ means that we are considering subsequent actions taken with probabilities
given by policy π.

53

Chapter 3. Reinforcement Learning Generalities

Example 3.19. A possible way for evaluating the state value and action-value function
is given by Monte Carlo methods: the agent is free to explore the environment using
policy π for k episodes. Then, the state value function of state s is estimated by the
average of the returns from every time step that s is visited. Let Ti be the total time
steps of episode i and G(i)

t the return of episode i for time step t, then:

N(s) =
k∑
i=1

Ti∑
t=0

1{S(i)
t =s}

v̂π(s) =

∑k
i=1

∑Ti
t=0 1{S(i)

t =s}G
(i)
t

N(s)

(3.22)

Similarly, for action value functions:

N(s, a) =
k∑
i=1

Ti∑
t=0

1{S(i)
t =s,A

(i)
t =a}

q̂π(s, a) =

∑k
i=1

∑Ti
t=0 1{S(i)

t =s,A
(i)
t =a}G

(i)
t

N(s)

(3.23)

We now present the Bellman equations which give us relations between the action
value and state value functions, as well as recursive expressions for both of them.

Proposition 3.1 (Bellman equations). The following recursive relations apply:

vπ(s) =
∑
a∈A(s)

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)]

vπ(s) =
∑
a∈A(s)

π(a|s)qπ(s, a)

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)

r + γ
∑

a′∈A(s′)

π(a′|s′)qπ(s′, a′)

qπ(s, a) =

∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)]

(3.24)

Intuitively, the state-value function of state s is given by the weighted average of
action-value functions of (s, a) for the policy used. This quantity can be decomposed
into the sum of immediate reward r and the discounted state value function of the
successive state s′, averaged over the MDP dynamics which determine the transition
to the next step. The same reasoning applies similarly to qπ.

Proof. We will show the first two, the others are similar.

vπ(s) = Eπ[Gt|St = s]

=
∑
a∈A(s)

π(a|s)Eπ[Gt|St = s, At = a]

=
∑
a∈A(s)

π(a|s)qπ(s, a)

(3.25)

54

3.2. Reinforcement Learning

which gives us the second relation. Expanding one step further

vπ(s) = Eπ[Rt+1 + γGt+1|St = s]

=
∑
a∈A(s)

π(a|s)Eπ[Rt+1 + γGt+1|St = s, At = a]

=
∑
a∈A(s)

π(a|s)
∑
r,s′

p(r, s′|s, a)[r + γEπGt+1|St+1=s′]

=
∑
a∈A(s)

π(a|s)
∑
r,s′

p(r, s′|s, a)[r + γvπ(s
′)]

(3.26)

This is important since it is possible to apply recursive methods to find the solution
and verify the optimality of the policy. Solving an MDP means finding the best policy
that achieves the best state-function value for states.

We can define a partial ordering on policies:

Definition 3.20. Given policies π, π′ we say that π ≥ π′ if and only if, for all states
s ∈ S, we have vπ(s) ≥ vπ′(s).

Definition 3.21. We call a policy π∗ optimal if vπ∗ ≥ vπ for all policies π.

There can be more than one optimal policy but from the definition it follows that
all optimal policies have the same state-value and action-value functions:

Definition 3.22. The optimal state-value function is given by

v∗(s) = max
π

vπ(s) (3.27)

The optimal action-value function is given by

q∗(s, a) = max
π

qπ(s, a) (3.28)

If we write the definition of the latter we can see that
q∗(s, a) = max

π
Eπ[Rt+1 + γGt+1|St = s, At = a]

= max
π

(Eπ[Rt+1|St = s, At = a] + γEπ[Gt+1|St = s, At = a])

= E[Rt+1|St = s, At = a] + γmax
π
Eπ[Gt+1|St = s, At = a]

= E[Rt+1 + γv∗(St+1)|St = s, At = a],

(3.29)

where the expected value is taken with respect to MDP’s dynamics. What we have
just shown is one of the Bellman optimality equations for Markov Decision Processes.
Results on the existence of an optimal policy, as well as a complete reformulation of
these concepts in terms of normed spaces can be found in [Sze10].

Once the values for qπ(s, a) and vπ(s) are known it is straightforward to obtain an
optimal policy. We simply need to act greedily: given state s, let a∗ ∈ argmaxa q∗(s, a)
and set π(a∗|s) = 1 and π(a|s) = 0 otherwise. This policy is optimal as, at each step,
we are taking the best possible action from the optimal action-value function, which
considers future interactions as well.

Reinforcement Learning tasks involve two main problems: the evaluation of a policy
π, which is finding the values for vπ(s) and qπ(s, a) for everything state and action and
finding the best policy possible. These problems are sometimes addressed as evaluation
and control respectively.

55

Chapter 3. Reinforcement Learning Generalities

3.3 Model-free and Off-policy RL

In the last section, we analyzed Markov Decision Processes for Reinforcement Learning.
In case the underlying MDP of the agent-environment interaction is known, we talk
about model-based RL. In this case, the task can be completely solved with various
techniques such as dynamic programming, since all the parameters and information on
the process are known. Unfortunately, we don’t always have access to all information
needed to model the problem this way.

Constructing an MDP model and estimating its components using the agent’s ex-
perience is possible, although the performance of the agent is limited by how accurate
is the estimated model in representing the true underlying MDP. Model-based meth-
ods suffer also from the curse of dimensionality: a large number of states and actions
implies lots of possibilities to be checked and a high computational load.

To solve these problems, model-free and approximation methods avoid direct mod-
eling of the agent-environment interaction and instead try to learn an approximate
mapping from the states to the state-value and action-value functions, which will be
our main focus.

Definition 3.23. A state-value function approximation is a function of states
which depends on some parameters w that approximates the true state-value function
v̂(s,w) ≈ vπ(s).

State-value function approximations can be of many kinds e.g. linear functions
v̂(s;w) = wT s or more complex mappings such as deep learning models. This approach
is also useful to generalize between similar states, now represented by vectors and not
by isolated components of the MDP.

The main error function to optimize is the mean square value error V E(w) =∑
s∈S µ(s) [vπ(s)− v̂(s;w)]2, where µ(s) is a measure over states, sometimes the frac-

tion of time spent in the state. Recall we want to approximate vπ, which is policy
dependent. Many algorithms solve this optimization problem with gradient descent
techniques: we gather episodes of experience by exploring the environment, collect
transitions in batches and update the parameters

wt+1 = wt + α [vπ(St)− v̂(St,wt)]∇v̂(St,wt) (3.30)

Notice that vπ(St) is our ideal target but it is not available and needs to be replaced
with a feasible objective function. Here are the two main examples:

• Monte Carlo Estimation: the agent explores the environment following the
policy π, we collect the transitions and rewards, we calculate the returns Gt

for each time step and we set as objective Gt. We are approximating the value
function by full episodic experiences. For this to work all episodes must terminate
in a finite number of time steps.

• Temporal Difference Estimation TD(n): the agent explores the environment
following the policy π, we collect the transitions and rewards, the objective is set
as Rt+

∑n
k=1 γ

kRt+k+v̂(St+n;w). We are approximating the value function with a
mixture of experience and our current belief on the value function approximation.

The method we use influences a lot the convergence of our approximation as we will
see later.

56

3.3. Model-free and Off-policy RL

Monte Carlo estimation has a low bias but high variance, since our actual target
error RE(w) = E

[
(Gt − v̂(St;w))2

]
= E

[
(Gt − vπ(St))2

]
+ V E(w) and the first term

is a variance term due to stochastic exploration we cannot avoid. Temporal difference
estimation reduces this variance by using our estimation, which is non-path-dependent,
as part of the target. This has the cost of introducing bias since the target indeed
depends on our current belief for v̂(St,w).

The same concepts apply action-value function approximation: in this case
we want a function q̂(s, a;w) ≈ qπ(s, a). The only difference is that updates of the
parameters are in this case action dependent. The objective function for the estimation
of TD(n) has to be chosen wisely: the next action has to be selected with respect to
the policy we are estimating and not on the path the agent has taken during the
exploration.

An example is the SARSA method [RN94], where the policy we follow is called
ϵ-greedy:

πϵ(a|s) =

{
1− ϵ if a = argmaxa′ q̂(s, a

′;w)
ϵ

m−1
otherwise

(3.31)

where m is the number of possible actions from s. In this case, the target function for
the parameter update is Rt + γq̂(St+1, A

′;w) where A′ is sampled using the same ϵ-
greedy policy described above. This technique of using the same policy for exploration
and parameter update is called on-policy RL.

We refer to off-policy RL whenever we update the action-value and state-value
functions relative to a policy π while using another policy b(a|s) for exploration. This
way we can evaluate greedy policies which, for discrete and finite environments, always
follow the best action at each time step but cannot be used for exploration, which is
usually performed with an ϵ-greedy policy.

Most off-policy Reinforcement Learning algorithms with temporal difference learn-
ing use a replay buffer, a set containing all previous experience of the agent interacting
with the environment in the form of transitions St, At, Rt+1, St+1. Choosing samples of
experience uniformly from the replay buffer improves learning performance [MKS+15]
as opposed to using consecutive actions and experience, which introduces high correla-
tions between the samples. Another advantage is that the algorithms have an increased
number of samples that can be used to improve the action and state value function
approximations instead of using every transition once. The replay buffer usually has
a maximum size: if this value is reached, the earliest transitions are removed to make
space for the newer ones.

We have seen the evaluation of a policy π both with a model-based and a model-free
approach. If we alternate the evaluation of a policy and the subsequent calculation of
the greedy policy we obtain the policy evaluation methods. With the right hypoth-
esis, one can show that the greedy policy converges to the optimal one (e.g. [SJLS00]).
Unfortunately, the combination of action-value approximation, off-policy RL and TD-
learning is an example of a policy iteration method that not always converges to the
optimal policy.

3.3.1 Policy Gradient Methods

Previously shown methods are all considered as action-value methods since they
learn the value function and determine the best deterministic policy following a greedy
approach. In this section, we introduce methods that parametrize the policy, called

57

Chapter 3. Reinforcement Learning Generalities

policy gradient methods, that can be used coupled with an action-value function
or as a standalone.

We indicate the policy parameters as θ ∈ Rd′ , so that we can express the policy
as π(a|s, θ) = P[At = a|St = s, θt = θ]. To learn the optimal θ we need an objective
function that measures the performance of the policy. This function is usually indicated
as J(θ). Policy optimization is done by approximate gradient methods, updating the
parameters as θt+1 = θt + α ˆ∇J(θt), where the last term is a stochastic approximation
of the true gradient evaluated at current parameters.

Parametrized policies can be deterministic or stochastic, even though to ensure
exploration we require them not to be deterministic at least at the beginning of training.
They are also very flexible and can be applied in continuous action and state spaces,
with the only true requirement being for the policy to be differentiable with a finite
gradient.

An example of policy approximation with finite a finite action space is the softmax
policy π(a|s, θ) = eh(s,a,θ)∑

b e
h(s,b,θ) where h(s, a, θ) is a function that represents action prefer-

ences: the greater h(s, a, θ) with respect to a, the greater is the probability to chose
this action. These action preferences can be represented by the action-value function
or any differentiable function such as linear functions or Neural Networks. In the later
stages of the learning procedure close to convergence, we can switch to a more deter-
ministic policy to maximize the rewards. For example, we can let ϵ→ 0 in an ϵ-greedy
policy.

A widely used performance function is the state-value function of the initial state
J(θ) = vπθ(S0), where vπθ(s) is the true state-value function of the policy. The gra-
dient of J(θ) depends on both the policy itself and the dynamics of the environment.
However, theorem 3.2 provides an analytic expression for these quantities.

Theorem 3.2 (Policy Gradient Theorem [Wil92]). Assume that the action and state
spaces and trajectories are finite, let µ(s) be the marginal distribution of being in a state
s following the policy πθ. Assume also that γ = 1 Then, the gradient of the performance
function J(θ) = vπθ(s) is proportional to:

∇J(θ) ∝
∑
s∈S

µ(s)
∑
a∈A

qπθ(s, a)∇π(a|s, θ) (3.32)

Proof. We start by calculating the gradient of the state value function for a particular

58

3.3. Model-free and Off-policy RL

state s

∇vπθ(s) = ∇

[∑
a

πθ(a|s)qπθ(s, a)

]
=
∑
a

[∇πθ(a|s)qπθ(s, a) + πθ(a|s)∇qπθ(s, a)]

=
∑
a

[
∇πθ(a|s)qπθ(s, a) + πθ(a|s)∇

∑
s′,r

p(s′, r|s, a)(r + γvπθ(s
′))

]

=
∑
a

[
∇πθ(a|s)qπθ(s, a) + πθ(a|s)γ

∑
s′

p(s′|s, a)∇vπθ(s′)

]

=
∑
a

[
∇πθ(a|s)qπθ(s, a) + πθ(a|s)γ

∑
s′

p(s′|s, a)

+
∑
a′

[
∇πθ(a′|s′)qπθ(s′, a′) + πθ(a

′|s′)
∑
s′′

p(s′′|s′, a′)∇vπθ(s′′)

]]

(3.33)

Define Pr[s→ x, k, πθ] as the probability of being in state x after k steps starting from
s and following πθ. The above expression is then

∇vπθ(s) =
∑
x∈S

∞∑
k=0

Pr[s→ x, k, πθ]
∑
a

∇πθ(a|x)qπθ(x, a) (3.34)

Hence,

∇J(θ) = ∇vπθ(S0)

=
∑
s

(
∞∑
k=0

Pr[S0 → s, k, πθ]

)∑
a

∇πθ(a|s)qπθ(s, a)

=
∑
s

ν(s)
∑
a

∇πθ(a|s)qπθ(s, a)

=
∑
s′

ν(s′)
∑
s

ν(s)∑
s′ ν(s

′)

∑
a

∇πθ(a|s)qπθ(s, a)

=
∑
s′

ν(s′)
∑
s

µ(s)
∑
a

∇πθ(a|s)qπθ(s, a)

∝
∑
s

µ(s)
∑
a

∇πθ(a|s)qπθ(s, a)

(3.35)

An example of a policy gradient method is REINFORCE [Wil92]. To obtain its

59

Chapter 3. Reinforcement Learning Generalities

update, we start from the gradient formula we have just obtained

∇J(θ) =
∑
s

µ(s)
∑
a

qπθ(s, a)∇πθ(a|s)

= Eπθ

[∑
a

qπθ(St, a)∇πθ(a|St)

]

= Eπθ

[∑
a

πθ(a|St)qπθ(St, a)
∇πθ(a|St)
πθ(a|St)

]

= Eπθ

[
qπθ(St, At)

∇πθ(At|St)
πθ(At|St)

]
with At ∼ πθ

= Eπθ

[
Gt
∇πθ(At|St)
πθ(At|St)

]
for the definition of qπθ

(3.36)

Given this, we define

θt+1 = θt + αγtGt
∇πθ(At|St)
πθ(At|St)

(3.37)

Intuitively, the gradient follows the direction which favors the repetition of action
At being in state St normalized to the current probability of selecting that action, to
prevent the most selected ones from having an advantage. The update in that direction
is also proportional to the return, so the most promising actions are preferred.

Since REINFORCE is a Monte Carlo method it tends to have high variance. To
avoid this problem we can introduce a baseline function b(s) to reduce the variance at
the cost of some bias.

∇J(θ) ∝
∑
s

µ(s)
∑
a

(qπθ(s, a)− b(s))∇πθ(a|s) (3.38)

with update equation

θt+1 = θt + αγt(Gt − b(St))
∇πθ(At|St)
πθ(At|St)

(3.39)

The above formula for the gradient is correct although we have introduced the baseline
term since if we isolate it we obtain∑

a

b(s)∇πθ(a|s) = b(s)∇
∑
a

πθ(a|s) = b(s)∇1 = 0 (3.40)

One natural choice for the baseline is to use the state-value function b(s) = vπθ(s) or,
more practically, an estimate of it. The update of the parameter is proportional to the
gain for an action with respect to the current belief on the state-value function. Fur-
thermore, the baseline helps reduce the norm of the gradient, acting as a regularization
while introducing a bias.

3.3.2 Actor-Critic methods

In the REINFORCE algorithm, the baseline function is used to assess just the first
state of the transition. The update involves the complete return, making it an offline

60

3.4. Soft Actor-Critic

method and not computationally efficient in general. As before, we introduce the
Temporal Difference update in this framework obtaining the following update rule

θt+1 = θt + α(Gt:t+1 − vπθ(St))
∇πθ(At|St)
πθ(At|St)

= θt + α(Rt+1 + γvπθ(St+1)− vπθ(St))
∇πθ(At|St)
πθ(At|St)

(3.41)

These models are called Actor-Critic methods since the update for the parameters
is assessed by the state-value function which plays the role of a critic.

Actor-Critic methods with temporal difference updates can be efficiently performed
in an online manner with a state-value function approximation v̂(s, w) as baseline
function. The full procedure is described in algorithm 3

Algorithm 3 One step Actor-Critic algorithm
Initialize parameters θ, w
for each each episode do

Initialize I = 1, initial state S0

for each environmental step do
At ∼ πθ(At|St)
St+1 ∼ p(St+1|St, At)
δt ← Rt+1 + γv̂(St+1, w)− v̂(St, w)
w ← w + αwδ∇v̂(St, w)
θ ← θ + αθIδ∇∇πθ(At|St)

πθ(At|St)

I ← γI
end for

end for

3.4 Soft Actor-Critic

In this section, we present the main method which will serve as a basic model for the
main algorithm used to solve the CFT bootstrapping problem.

In addition to all the previous notions about Markov decision processes, we denote
with ρπ(St) and ρπ(St, At) respectively the state and state-action marginals of the
distribution over trajectory, as induced by the policy π(At|St).

Definition 3.24. Let X be a discrete random variable that takes values in X . Let p(x)
the distribution of X, meaning that p(x) = P[X = x]. The entropy of X is defined as

H(X) = −
∑
x∈X

p(x) log p(x) (3.42)

The same definition applies to conditional distributions and any distribution p(x) in
general with the notation H(p).

Definition 3.25. Let X be a random variable on a measurable space X with values
in R. Let PX be its probability distribution and assume it has a density f(x). The
entropy of X is defined as:

H(X) = −
ˆ
Rd

f(x) log f(x)dx (3.43)

61

Chapter 3. Reinforcement Learning Generalities

The definition also applies to any distribution density in general.

Entropy is the most important concept in information theory, introduced years ago
by Shannon in [Sha48], widely used in many applications such as telecommunication,
coding, ML and probability. Entropy represents the uncertainty of sampling a random
variable or distribution: a low value means we are almost certain of the outcome of
our process while a higher entropy value is a sign of maximum uncertainty. In fact, for
discrete and finite spaces the maximum entropy distribution is the uniform one. We
refer to [CT12] for a general discussion on entropy, its properties and applications.

We assume the reward is bounded in [rmin, rmax] and it is a deterministic function of
the current state and action taken r(St, At), which will be the case in our formulation
of the problem, sometimes abbreviated as rt = r(St, At).

While standard Reinforcement Learning techniques aim to maximize the expected
return, in our case, we use a more general objective involving entropy as well:

J(π) =
∞∑
t=0

E(St,At)∼ρπ

[
∞∑
l=t

γl−tESl∼pd,Al∼π [r(Sl, Al) + αH(π(·|Sl))|St, At]

]
(3.44)

We want to maximize the expected return and entropy of our policy, averaged over
the state-action marginal of the trajectory distribution. This new objective function
improves exploration [HTAL17a, SAC17] and, in some cases, the speed of learning
[HZAL18]. The α parameter is a temperature parameter that determines the relative
importance of the entropy against the reward. This controls the stochasticity of our
policy and the objective is to incentivize exploration while avoiding poor rewards. We
can assume α = 1: this parameter can be integrated into the reward by scaling it with
a factor α−1 as the solution to the objective above remains the same (simply group by
a factor α).

3.4.1 Soft Policy Iteration

For now, we adopt the same MDP setting as before, assuming the sets of states and
actions are finite to prove some results. Soon, we will generalize this approach to
continuous spaces and policies. We also assume γ < 1.

To understand the soft actor-critic method we need to introduce soft value func-
tions and energy-based models [HTAL17b], in which policies take the form π(At|St) =
exp(−E(St, At)), where E(A, S) is an energy function. These models were introduced
to build and develop a general framework for stochastic policies.

Call π∗
maxEnt the solution to the maximization problem of 3.44.

Definition 3.26. The soft Q-function is defined as

Qπ
soft(St, At) = rt + ESt+1,...∼ρπ

[
∞∑
l=1

γl(rt+l +H(π(·|St+l)))

]
(3.45)

The soft value-function is defined as

V π
soft(St) = EAt∼π [Q

π
soft(St, At)− log π(At|St)] (3.46)

Define also V ∗
soft(·) and Q∗

soft(·, ·) as the soft functions for the π∗
maxEnt policy.

62

3.4. Soft Actor-Critic

The soft policy iteration step is given by the following operator (soft Bellman op-
erator) on functions Q : S ×A → R.

T πQ(St, At) ≜ r(St, At) + γESt+1∼p[V (St+1)] (3.47)

where V is defined as the soft value function for the function Q.

Theorem 3.3 (Soft Policy Evaluation [HTAL17b]). Given any function Q0 : S×A →
R, define the sequence Qk+1 = T πQk. Then, Qk converges to the soft Q-function of π
Qπ

soft as k →∞, provided that γ < 1.

Proof. First, we show that the soft Q-function for π is a fixed point for the soft Bellman
operator for π.

T πQπ
soft(St, At) = rt + γESt+1∼p,At+1∼π

[
rt+1 + Eρπ

[
∞∑
l=2

γl(rt+l +H(π(·|St+1)))

]]

= rt + γESt+1,At+1,...∼ρπ

[
∞∑
l=2

γl(rt+l +H(π(·|St+1)))

]
= Qπ

soft(St, At)

(3.48)

On the space of functions Q : S ×A → R consider the norm ∥Q∥ = maxs,a |Q(s, a)|. It
suffices to show that the Bellman operator is a contraction. Let Q1, Q2 any functions
as above, ϵ = ∥Q1 −Q2∥. Then

∥T πQ1 − T πQ2∥ = rt + γEρπ [Q2(St+1, At+1)− log π(At+1|St+1)]

− rt − γEρπ [Q2(St+1, At+1)− log π(At+1|St+1)]

= γESt+1∼p,At+1∼π [Q1(St+1, At+1)−Q2(St+1, At+1)]

≤ γESt+1∼p,At+1∼π [∥Q1 −Q2∥]
= γ∥Q1 −Q2∥ = γϵ

(3.49)

which is smaller than 1 provided that γ < 1.

Once the soft Q-function is obtained we need to improve the policy itself. To
improve future tractability we restrict to a class of stochastic policies Π (for example,
later we will use Gaussians). This requires us to project at each step the improved
policy on this set. This is done using the Kullback-Leibler divergence:

Definition 3.27. Let p(x), q(x) be two distributions over a discrete set X . The
Kullback-Leibler divergence is defined as

DKL(p∥q) =
∑
x∈X

p(x) log
p(x)

q(x)
(3.50)

Definition 3.28. Let f(x), g(x) be any probability density functions on a measurable
space X . The Kullback-Leibler divergence is defined as

DKL(f∥g) =
ˆ
X
f(x) log

f(x)

g(x)
dx (3.51)

63

Chapter 3. Reinforcement Learning Generalities

The updated policy is then given by

πnew = argmin
π′∈Π

DKL

(
π′(·|St)

∥∥∥∥exp(Qπold
soft (St, ·))

Zπold(St)

)
(3.52)

where Zπold is a partition function to normalize. Although this is not tractable in
general this term does not contribute to the gradient for the new policy and will be
ignored afterward.

Let’s show that the policy is indeed improving.

Theorem 3.4 (Soft policy Improvement [HTAL17b]). Let πold ∈ Π and let πnew ∈ Π
given by equation (3.52). Then Qπnew

soft (St, At) ≥ Qπold
soft (St, At) for all (St, At) ∈ S × A

provided that |A| <∞.

Proof. Consider

πnew(·|St) = argmin
π′∈Π

DKL(π
′(·|St)| exp(Qπold

soft (St, ·)− logZπold(St)))

= argmin
π′∈Π

Iπold(π
′(·|St))

(3.53)

We have surely that Iπold(πnew) ≤ Iπold(πold). From the definition of the KL-divergence,
we have that

Eπnew [log πnew(At|St)−Qπold
soft (St, At) + logZπold(St)] ≤ (3.54)

≤ Eπold [log πold(At|St)−Qπold
soft (St, At) + logZπold(St)] (3.55)

Since the partition function doesn’t depend on the policy, the term vanishes on both
sides giving us

Eπnew [Q
πold
soft (St, At)− log πnew(At|St)] ≥ V πold

soft (St) (3.56)

From Bellman’s equation, we have that

Qπold
soft (St, At) = rt + γESt+1∼p[V

πold
soft (St)]

≤ rt + γESt+1∼p[Eπnew [Q
πold
soft (St+1, At+1)− log πnew(At+1|St+1)]]

= rt + γEp[Eπnew [− log πnew(At+1|St+1) + rt+1 + ESt+2∼p[V
πold
soft (St+2)]]]

...

≤ rt + Eρπnew

∞∑
l=1

γl(rt+l +H(πnew(·|St+l))) = Qπnew
soft (St, At)

(3.57)

The main algorithm for soft policy iteration repeatedly alternates between soft
policy evaluation and improvement, until it convergence to the optimal policy in the
set Π.

Theorem 3.5 (Soft policy convergence [HTAL17b]). Starting from any π′ ∈ Π, the
algorithm that alternates soft policy evaluation and improvement converges to a policy
π∗ such that Q∗

soft(St, At) ≥ Qπ
soft(St, At) for any π ∈ Π and any (St, At) ∈ S × A,

provided that |A| <∞.

64

3.4. Soft Actor-Critic

Proof. Let πi the policy at iteration i of the algorithm, by theorem 3.4 the sequence
Qsoftπi is monotonically increasing. Since we are assuming bounded rewards and the
entropy is bounded (|A| <∞), the sequence converges to π∗. We have to show that π∗

is optimal. Since at each step we are minimizing Iπ as in the theorem above, we have
that at convergence Iπ∗ ≤ Iπ for all π ∈ Π. Using the same iterative argument as the
last theorem, we have Q∗

soft(St, At) ≥ Qπ
soft(St, At) for all (St, At) ∈ S × A. Since this

is valid for any π ∈ Π the policy π∗ is optimal in Π.

3.4.2 Soft Actor-Critic

Soft Actor-Critic [HZAL18] considers continuous action and state spaces. We cannot
apply the same techniques described above, since the majority of those methods work
in a tabular setting, where variables are discrete.

To operate in this setting we need to use state and action value functions approx-
imations and gradient methods. The fundamental idea is to adopt Neural Networks
as function approximations since they can learn complex functions while also being
very flexible and differentiable. In any case, the following discussion applies to any
differentiable function approximation method.

Consider the soft state value function, now written in a simple way as Vψ(St), and
its parameters ψ (for example the weights and biases of a deep neural network), the soft
Q-value function Qθ(St, At) with parameters θ and a policy πϕ(At|St) with parameters
ϕ. We also require the policy πϕ ∈ Π to be tractable, taking for example a Gaussian
with mean and variance given by the outputs of a neural network.

In theory, there is no need to have both a soft value function and a soft Q-function
as they are related through equation 3.46. In practice, introducing this additional bias
can improve the stability of the training procedure [HZAL18].

The objective to be minimized by the soft value approximation is

JV (ψ) = ESt∼D

[
1

2

(
Vψ(St)− EAt∼πϕ [Qθ(St, At)− log πϕ(At|St)]

)2] (3.58)

where D is a distribution over previously sampled states. Soft Actor-Critic uses a
replay buffer to store samples of experience.

To calculate the gradient of equation (3.58) we use the following estimator:

∇̂ψJV (ψ) = ∇ψVψ(St)(Vψ(St)−Qθ(St, At) + log πϕ(At|St)) (3.59)

but instead of using the distribution over experience or the replay buffer, At is now
sampled from the current policy to follow the actual behavior of the agent.

For the soft Q-function, the main objective is to match the soft Bellman residual
update

JQ(θ) = E(St,At)∼D

[
1

2

(
Qθ(St, At)− Q̂(St, At)

)2]
Q̂(St, At) = r(St, At) + γESt+1∼p[Vψ̄(St)]

(3.60)

where in this case the stochastic gradient is given by

∇̂θJQ(θ) = ∇θQθ(St, At)(Qθ(St, At)− r(St, At)− γVψ̄(St+1)) (3.61)

65

Chapter 3. Reinforcement Learning Generalities

We are not using the current value of the parameters ψ in the calculation of the
soft Q-function gradient, instead ψ̄ is a weighted moving average of the ψ parameter.
This improves the stability of training [MKS+15], as a continuous change in the ψ
parameters leads to the gradient following an objective that continuously varies. The
idea comes from the Deep Q-Network algorithm [MKS+15], where the objective to
match for the soft Q-function is obtained by older θ parameters.

For the policy parameters, we recall we want to minimize the KL divergence as

Jπ(ϕ) = ESt∼D

[
DKL

(
πϕ(·|St)

∥∥∥∥exp(Qθ(St, ·))
Zθ(St)

)]
(3.62)

Minimizing this quantity with a general stochastic policy for gradient policy methods
can be complex and is usually done via likelihood gradient estimators [Wil92]. Since
our policy is given by the soft Q-function and the latter is represented by a neural
network we can directly differentiate and backpropagate easily.

We still need to apply the so-called Reparametrization trick: the action is given
by At = fϕ(ϵt, St), where ϵt is a noise vector, usually sampled from a spherical Gaussian.
A common choice for f is fϕ(ϵt, St) = µϕ(St) + ϵtσϕ(St). This has two advantages: we
can model any Gaussian by sampling from a single distribution and the components
that need to be differentiated are purely deterministic. µϕ(St), σϕ(St) are represented
by a neural network.

Indeed, now the objective (3.62) can be written as

Jπ(ϕ) = ESt∼D,ϵt∼N [log πϕ(fϕ(ϵ, St)|St)−Qθ(St, fϕ(ϵt, St))] (3.63)

where we have omitted the partition function since it depends only on θ. The gradient
is approximated as

∇̂ϕJπ(ϕ) = ∇ϕ log πϕ(At|St) + (∇At log πϕ(At|St)−∇AtQ(St, At))∇ϕfϕ(ϵt, St) (3.64)

where At is evaluated at fϕ(ϵt, St). This is a generalization of the Deep Deterministic
Policy Gradient algorithm (DDPG [LHP+16]) that applies also for stochastic policies.

Double Q-Networks

As shown in [FvHM18], Q-learning methods suffer from the so-called positive bias.
Our soft Q-function is just an approximation of the true function and, even a 0-mean
error in this estimation can lead to consistent overestimation in bias. For the following
discussion we will use the policy gradient update from the DDPG method, the policy
is then deterministic At = πϕ(St).

Give current policy parameters π, let ϕapprox be the updated parameters induced
by the maximization of the approximate critic Qθ(s, a).

ϕapprox = ϕ+
α

Z1

Es∼ρπ [∇ϕπϕ(s)∇aQθ(s, a)|a = ϕ(s)] (3.65)

Define also ϕtrue as the new parameters from the purely theoretical actor update based
on the true Q-function Qπ(s, a).

ϕtrue = ϕ+
α

Z2

Es∼ρπ [∇ϕπϕ(s)∇aQ
π(s, a)|a = ϕ(s)] (3.66)

66

3.4. Soft Actor-Critic

where Z1 and Z2 are normalizations of the expected values. Define πtrue, πapprox as the
policies given by those parameters. Since these follow the gradient of their respective
Q-functions, we have that for ϵ1 sufficiently small, ∀α ≤ ϵ1

Es∼ρπ [Qθ(s, πapprox(s))] ≥ Es∼ρπ [Qθ(s, πtrue(s))] (3.67)

and, on the other hand, we can find ϵ2 sufficiently small such that ∀α ≤ ϵ2

Es∼ρπ [Q
π(s, πtrue(s))] ≥ Es∼ρπ [Qπ(s, πapprox(s))] (3.68)

Furthermore, if Es∼ρπ [Qθ(s, πtrue(s))] ≥ Es∼ρπ [Qπ(s, πtrue(s))], the two equations imply
that

Es∼ρπ [Qθ(s, πapprox(s))] ≥ Es∼ρπ [Qπ(s, πapprox(s))] (3.69)

for any value of α ≤ min(ϵ1, ϵ2). This means that our critic is in reality an overes-
timation of the true Q-function. This error may propagate even more through some
iteration and lead to poor policy updates.

The proposed solution to this issue is to use two soft Q-functions instead of one
Qθ1 , Qθ2 [FvHM18], trained independently to optimize the two objectives JQ(θ1), JQ(θ2).
Then, the Bellman update given by rt + γQθ(s, πϕ(s)) is substituted by its final form

rt + γ min
j=1,2

Qθj(s, πϕ(s)). (3.70)

These additional features improve again the stability and the learning speed of the
algorithm [FvHM18].

SAC algorithm

The complete pseudocode for SAC can be found in algorithm 4.

Algorithm 4 Soft Actor-Critic algorithm
1: Initialize parameters ψ, ψ̄, θj, ϕ
2: for each each iteration do
3: for each environmental step do
4: At ∼ πϕ(At|St)
5: St+1 ∼ p(St+1|St, At)
6: D ← D ∪ {(St, At, r(St, At), St+1)}
7: end for
8: for each gradient step do
9: ψ ← ψ − λV ∇̂ψJV (ψ)

10: θj ← θj − λQ∇̂θjJQ(θi) for j = 1, 2

11: ϕ← ϕ− λπ∇̂ϕJπ(ϕ)
12: ψ̄ ← τψ + (1− τ)ψ̄
13: end for
14: end for

The algorithm alternates exploration and exploitation following the processes de-
scribed previously. The agent explores the environment for a step (lines 4 and 5) and
the transition gets stored in the replay buffer (6). Then, we improve the performance
of all the neural networks involved as approximators: the value network (line 9), both

67

Chapter 3. Reinforcement Learning Generalities

Q-networks (line 10) and the actor network (line 11). Optimization of such networks
is performed by some gradient steps on samples extracted from the replay buffer.

Each set of parameters for the neural networks is updated using possibly different
learning rates: λV , λQ, λπ. The ψ parameter, related to the value network, is also
exponentially smoothed with an update factor τ . The actual parameters for the neural
network update are calculated as ψ̄ ← τψ+ (1− τ)ψ̄ (line 12) to improve the stability
of the estimated value function.

68

Chapter 4

Bootstrap Stochastic Optimization
with SAC

In this Chapter, we will focus on developing an RL-based approach for conformal
bootstrap, as well as presenting the two models we will apply this framework to: the
2D Ising model and the 1D defect CFT defined on the 1

2
-BPS Wilson line in the N = 4

super Yang-Mills theory.
The specific RL algorithm used is a modification of Soft Actor-Critic, first presented

in [KPN22a], [KPN22b] and then updated in [KNPR23] to improve efficiency and
precision, as well as automate some subtasks previously done manually.

The 2D Ising model will be used to validate this approach since an analytical
solution to the crossing equation is known, while the one-dimensional model represents
the innovative result of this thesis. In fact, no applications of RL to this model exist
before this. To do so, we need to adapt the algorithm to the one-dimensional CFT by
defining a new RL environment. This is an additional difficulty since it is known that
applying the same RL algorithm to different problems is not straightforward.

Furthermore, this new model has two additional constraints on the 4-point function
[CGJP22a] which can be used to increase the precision in the estimates of the unknowns
in the CFT. We search for ways to implement these constraints into the framework with
some reward engineering. Finally, we show previous results that were able to find the
values for the scaling dimension of the first 10 operators for the one-dimensional CFT
with arbitrary precision, which can be used as input to reduce the complexity of the
problem.

The 2D Ising model is again a useful tool to test the possibility of including known
values as input.

4.1 Reinforcement learning approach for Conformal
Bootstrap

In this section, we present the main algorithm for the stochastic optimization of the
conformal bootstrap using SAC. The original implementation comes from [KNPR23]
while we adapted this algorithm to the two models studied as well as automating the
experiment with an increasing number of scaling dimensions fixed.

Our main objectives are the four-point functions and, in particular, the conformal
bootstrap equation in (2.140). Using the z, z̄ coordinates in the complex plane we

69

Chapter 4. Bootstrap Stochastic Optimization with SAC

rewrite this equation as ∑
i

C2
i F∆i,si(z, z̄) = 0 (4.1)

where C2
i is the squared OPE coefficient and the sum runs over the spectrum of local

operators of the theory, labeled by their scaling dimensions ∆i and spins si ∈ N.
Note that since the group of rotation is trivial on a line, there is no spin for the one
dimensional case. Our set of unknowns is given by the CFT data {C2

i ,∆i, si}. This
set is infinite and it is therefore infeasible to search for all the values if no analytical
solution is available.

A remarkable feature of CFT is that the operator product expansion converges
exponentially in ∆ [PRER12, Pol98]. Hence, we do not search for an exact solution
to the problem, involving an infinite number of variables, but we instead truncate the
expansion at a cutoff ∆max, searching for the values of C2

i ,∆i such that ∆i ≤ ∆max.
The exponential convergence ensures that the above equation (4.1) will not be solved
exactly but up to an exponentially small factor:∑

i:∆i≤∆max

C2
i F∆i,si(z, z̄) = O(e−∆max) (4.2)

To apply reinforcement learning to the bootstrap equation we need to define all the
components of the general framework:

The environment

Every reinforcement learning algorithm requires an environment that guides the learn-
ing of the agent to predict the CFT data and is therefore the most important part of
the framework. The environment in which the actor moves is constituted by the space
of the parameters

(s1, s2, . . . , sn,∆1,∆2, . . . ,∆n, C
2
1 , C

2
2 , . . . , C

2
n) ∈ [0, smax]× [0,∆max]

n × [0,∞)n (4.3)

With this being the most general setting we can think of for the approach, it is useful
to make some particular remarks on the implementation we actually need:

• The models we are working with, being the 2D Ising model and the 1D defect
CFT considered, let us drastically simplify the environment for what concerns
the spins si. In particular, there is no spin at all for a one-dimensional space and
the situation is therefore trivial for the 1D CFT case. Since an analytical solution
is known, we also decided to fix the spin values for the Ising model beforehand.
This reduces the search space and makes the problem more similar to the 1D
CFT, which is the main focus and innovative part of this thesis.

• A consequence of the unitarity of the models is not only that the squared OPE
coefficients are both real and positive [RRTV08] but also that the scaling di-
mensions of the spectrum operators are bounded from below with a function of
the spin and the dimension of the space ∆i ≥ f(si, d). For the Ising model we
assume ∆i ≥ si, while for the 1D CFT we will make the situation even simpler
by applying previous results in the literature.

• We will assume that the squared OPE coefficients C2
i have values in the interval

[0, 1]. This is true for the Ising model and is true for the first three squared OPE
coefficients in the one-dimensional model as well [CGJP22a]

70

4.1. Reinforcement learning approach for Conformal Bootstrap

Finally, the environment representing our unknowns of the Ising 2D model is

(∆1,∆2, . . . ,∆n, C
2
1 , C

2
2 , . . . , C

2
n) ∈ [s1,∆max]× . . .× [sn,∆max]× [0,∞)n (4.4)

Notice that we have considered a limited number of operators n. This value has to be
defined in advance since it is the number of unknowns we will calculate being careful
that the number of operators with ∆i ≤ ∆max has to be greater or equal to n in order
to ensure the search space is correct.

Recall that the crossing equation (4.1) involves the variables z, z̄, which have con-
tinuous values, and that the equation must be satisfied by any value of such variables.
The main approach to solve this issue is presented in [EvHS16] and consists in evalu-
ating the (truncated) crossing equation only on a finite set of values for z, z̄. This is
an additional approximation we make on the problem and, as we will see later, may
produce biased results.

For this to work the only requirement is to have enough points to determine all
the parameters, which translates into having more evaluation points than unknowns
Nz > 2n.

With this specification, we have reduced the original problem to a set of Nz equa-
tions that must all be satisfied with the CFT data (∆⃗, C⃗2). These equations form a
set of constraints, one for each value of zk, z̄k∑

i:∆i≤∆max

C2
i F∆i

(z1, z̄1) = 0

. . .∑
i:∆i≤∆max

C2
i F∆i

(zk, z̄k) = 0

. . .∑
i:∆i≤∆max

C2
i F∆i

(zNz , z̄Nz) = 0

(4.5)

that we will indicate simply as E⃗(∆⃗, C⃗2) = 0.
At each step, the agent chooses an action that corresponds to selecting a couple of

CFT parameters At = (∆j, C
2
j) where 1 ≤ j ≤ n and it does so by cycling through

the values of j, starting from 1. In other terms, the agent chooses the parameters
corresponding to operator j at every time step t = kn+ j with reminder j modulo n.

The state of the agent consists of the values last selected for the CFT data St =
(∆⃗, C⃗2) of which the last selected ones are those corresponding to the index j =
t mod n.

The values of the crossing equations are E⃗(∆⃗, C⃗2) are then calculated and, since
we made some approximations, we do not expect to solve the equations (4.5) exactly
but we aim to minimize the numerical error and to have reminders as close as possible
to zero. These reminders E⃗(∆⃗, C⃗2) form the observation Ot of the agent. In case the
values are complex we use as observations just the real parts of the components of the
vector.

The last quantity to be calculated from the environment is the reward Rt which will
guide the agent’s learning. Two different choices were available and used in literature
[KPN22b], [KNPR23]. Consider the euclidean norm of the crossing equation vector
∥E⃗t(∆⃗, C⃗2)∥. We want this to be as close as possible to 0, while the reward is a quantity
that we aim to maximize. To fit into this framework the two proposed solutions are:

71

Chapter 4. Bootstrap Stochastic Optimization with SAC

• Rt = −∥E⃗t(∆⃗, C⃗2)∥ as in [KPN22b].

• Rt =
1

∥E⃗t(∆⃗,C⃗2)∥
as in [KNPR23].

Both options come from the same authors, with the work [KPN22b] being a refinement
and extension of [KPN22b]. In this work both solutions were tried again, with the
second leading to consistently better performance in terms of matching analytically
known results for both models. As we will see, the reciprocal of the crossing equations
norm is easier to integrate with additional constraints that we will discuss in the one-
dimensional CFT. Therefore, the reward used to produce the final results is Rt =

1

∥E⃗t(∆⃗,C⃗2)∥
.

One final feature of the environment is deciding how an episode is terminated. The
termination flag is triggered when the agent receives a reward that is greater than the
previous best reward obtained. In this case, the best value is overwritten by the current
reward and a new episode starts. In the algorithm, we will also see that an episode
can be terminated also when the search is not improving for too many steps and the
limit is defined with a threshold, called faff_max.

In table 4.1 we summarize the main concepts for the application of RL to conformal
bootstrap as discussed.

RL CFT Bootstrap stochastic optimization
Environment Implementation of the conformal bootstrap equation

State Current configuration of CFT data (∆⃗, C⃗2)
Action Generate a couple of CFT data (∆i, C

2
i)

Observation
Evaluation of conformal bootstrap equation

on current CFT data E⃗(∆⃗, C⃗2)

Reward R = −∥E⃗(∆⃗, C⃗2)∥ or R = 1

∥E⃗(∆⃗,C⃗2)∥

State transition Deterministic, unknowns generated sequentially
always in the same order

Step Sample one action

Episode Ends with faff_max number of steps of no improvement
or when improvement wrt best reward

Policy,
action value function,

critic(s)
Neural Networks

Table 4.1: Summary of the main concepts of RL applied to conformal bootstrap

4.1.1 The algorithm

The RL algorithm used is the SAC described in section 3.4.2. This choice is due to
the capabilities of SAC and the necessity of operating in continuous action and state
spaces. The huge complexity of the problems we are dealing with actually requires a
more complex application of the SAC algorithm involving re-initializations of the agent
and a search space that gets increasingly narrowed around the best promising values.

72

4.1. Reinforcement learning approach for Conformal Bootstrap

Reinforcement learning tasks usually involve a number of parameters and values to
be identified much lower than what we are working with here. In this case, the CFT
data we aim to identify will be of around 10 − 25 values leading to a very complex
optimization problem also involving functions with high complexity.

When a run is initiated the agent moves in the environment continuously updating
the memory buffer and optimizing all the neural networks involved in a common SAC
algorithm: the value network, the two critic networks and the stochastic policy network.
All these networks take as input the observation Ot which, as we have seen, is a function
of the current state St and give as output respectively the evaluation of the current
state, the soft Q-functions and the next action to be performed.

After some iterations, the reward stops improving. This is due to the fact that
the agent is pursuing a policy that may not be optimal and is no more exploring all
the state space. To overcome this problem the networks are re-initialized and the
memory buffer is flushed leading to a completely new exploration by the agent. There
is evidence that this approach leads to almost immediate improvement [KNPR23]. The
parameters controlling the maximum number of iterations before this re-initialization
is faff_max.

After some resets, there is no room for great improvements in the solution and it
is necessary to increase the precision of parameters and the results by restricting the
search window. The maximum number of re-initialized runs without improvements is
set with the parameter called pc_max. Once this value is reached, the search windows
are reduced by some percentage controlled by the window_rate parameter.

The new and narrowed search windows are centered around the CFT data values
of the best reward obtained within the last search window. If the initial search is done
in the whole space

[0,∆max]
n × [0, 1]n (4.6)

After the first window reduction, the search space becomes

[
∆1 −

A

2
,∆1 +

A

2

]
× . . .×

[
∆n −

A

2
,∆1 +

A

2

]
×[

C2
1 −

B

2
, C2

1 +
B

2

]
× . . .×

[
C2
n −

B

2
, C2

n +
B

2

] (4.7)

where A = window_rate ·∆max and B = window_rate ·1. At each subsequent quench-
ing, the windows get reduced by additional factors window_rate. For each window size
the same procedure above is repeated. The total number of window size reductions is
defined by the parameter max_windows_exp.

At this point, the final results are the CFT data values that led to the maximum
reward overall. This algorithm is presented in [KNPR23] and is fully automated in
terms of re-initializations and window size decreases. The original implementation
of [KPN22b] required more user inputs and initializations.

The full description of the algorithm can be found in algorithm 6.

73

Chapter 4. Bootstrap Stochastic Optimization with SAC

Algorithm 6 Bootstrap Stochastic Optimization algorithm
Initialize parameters, best reward R∗ = 0
while number of windows reductions less than max_windows_exp do

while number of re-initializations less than pc_max do
Initialize neural networks, agent and reset memory buffer.
for Each time step t do

Agent selects action (∆j, C
2
j) with j = t mod n.

Update the state St = (∆⃗, C⃗2).
Calculate conformal blocks and crossing equations Ot = E⃗t(∆⃗, C⃗2).
Calculate reward Rt =

1

∥E⃗t(∆⃗,C⃗2)∥
.

Agent receives observation Ot and reward Rt.
Update memory buffer with the last transition.
Update/learn parameters according to the main SAC algorithm
if Rt > R∗ then

Overwrite previous best reward R∗ and agent restart episode, t = 0.
end if
if number of steps without improving reaches faff_max then

Exit For loop and reinitialize
end if

end for
end while
Reduce search windows size by a factor of window_rate centered around the

state correspondent to R∗.
end while

4.2 Additional remarks on the SAC implementation

Given the complexity of the optimization problem, it is in some cases useful to force
some analytically or numerically known values in the search in order to reduce the
overall number of variables in the search. To implement this two vectors of booleans
are created:

• guessing_run_list_deltas for which the False values indicate fixed delta val-
ues.

• guessing_run_list_opes for which the False values indicate fixed squared OPE
coefficient C2 values.

Since the implementation of SAC uses the crossing equations as network inputs this
operation, in some sense, does not break the differentiability of the network objective,
although we are forcing some values into the states.

The initial sizes of the search windows are specified in the vectors of real components
guess_sizes_deltas and guess_sizes_opes. Known and fixed values we want to
force into the search will have a window size of 0, while unknown parameters have the
corresponding size defined by our approximation [0,∆max] or, in case of a non-zero spin
si, [si,∆max] with size ∆i − si due to the constraint ∆i ≥ si.

The lower bounds of the search are contained in the vectors shifts_deltas and
shifts_opes. Within this framework the base value for these is 0 for unknown CFT

74

4.2. Additional remarks on the SAC implementation

data and the forced value for known CFT data.
Lastly, two particular parameters control how the same spin operator values are

treated:

• same_spin_hierarchy: if true, the operators with the same spin are ordered
in such a way that, in each iteration and calculation, the scaling dimensions
are increasing. This reordering does not break the differentiability of the neural
networks’ targets since, as noted previously, these are based on the rewards and
the observations Ot which are independent of the order of the operators in the
state St.

• dyn_shift: it is defined as the minimum difference between the scaling dimen-
sions of operators with the same spin. At each time step we modify the cur-
rent state St by imposing that, if operators i, i + 1 have the same spin and
∆i+1 < ∆i+dyn_shift the value of ∆i+t is set to ∆i+dyn_shift. This appears
in [KNPR23], although in some cases we avoided using this feature since it forces
a different value for a scaling dimension from the one suggested by the policy,
while the above approach of reordering states does not modify the actual values
given by the policy.

Values for z, z̄

The fact that the crossing equations are evaluated in specific points of the complex
plane z, z̄ gives the additional problem of selecting these points optimally. Following
[KNPR23], these points are chosen to have more stability and numerical precision in the
calculations of the hypergeometric functions in the conformal blocks of both models.
Common Python implementations of these functions give more accurate results in
particular regions of the complex plane on which we focus.

In reality, a set of Nz = 180 couple of points is selected based on the latter fact
and is kept fixed in all of the parallel runs. These values are given from the authors
of [KNPR23].

Speed-up techiques

The calculation conformal blocks F∆i
(zk, z̄k) are, by far, the slowest individual part

of the whole process and a technique to significantly decrease computational time has
been developed by sacrificing some numerical accuracy. First, notice how conformal
blocks depend only on ∆i and zk, z̄k with the latter being known and fixed. The main
idea is to calculate the values of the conformal blocks beforehand for some values of
∆i and approximate the needed calculations with the pre-determined values obtained:

• In case of forced ∆i values there is no approximation needed: the final conformal
blocks are calculated and saved for later use. The values are exact and there is no
difference in terms of accuracy, while we save time in the agent’s learning phases.

• In case of unknown values of ∆i we select a grid of points in [0,∆max] equally
spaced with a difference between consecutive points as low as possible, selected
to be 0.0005 or 0.00005. The values of the conformal blocks are precalculated
for these specific values of ∆ and, in the learning phase, instead of doing the
exact calculation for ∆i, we round this CFT data value to the closest ∆gridi

≤

75

Chapter 4. Bootstrap Stochastic Optimization with SAC

∆i in the point grid. The result will not be exact but this is just a minor
approximation compared to the others we introduced above and will not affect the
final calculation hugely. On the other hand, the almost 10 times speed increase in
calculation enables us to do many more runs trying to find the optimal solution.

In the next sections, we present the two main models we will be applying the algorithm
to.

4.3 2D Ising model

The 2D Ising model represents the interaction of magnetic spins in a plane and has
been largely studied both from a statistical mechanics and a conformal field theory
point of view. In the statistical mechanics’ framework, we can imagine having a square
lattice of N points with periodic conditions at the boundaries, effectively giving a torus
structure. In each point i lies a magnetic spin σi taking values in {−1, 1} representing
magnets with two possible orientations. These lattice sites interact with each other
with a coupling factor Jij for a couple of points (i, j) and possibly with an external
magnetic field for which the interaction with point j is given by hj. The Hamiltonian
governing the system is then given by

H = exp

(
−
∑
i

hiσi −
∑
i ̸=j

Jijσiσj

)
(4.8)

Although seemingly easy, the 2D Ising model can show interactions between spins and
unstable configurations such as the regular triangle, where every possible assignment
of σ1, σ2, σ3 leads to a non equilibrium. On the other hand, the Conformal field theory
of the Ising 2D model has been widely studied and has an analytical solution we will
use as a benchmark of the procedure.

The critical Ising 2D model is one of the simplest CFTs in the Euclidean space. It
contains a total of three fields, the identity I, the energy density operator ϵ(z, z̄) with
conformal weights

(
1
2
, 1
2

)
and the spin operator σ(z, z̄) with conformal weights

(
1
16
, 1
16

)
.

The four-point functions take the form

⟨σ(z1, z̄1)σ(z2, z̄2)σ(z3, z̄3)σ(z4, z̄4)⟩ =
1

|z12|
1
4 |z34|

1
4

Gσ(z, z̄)

⟨ϵ(z1, z̄1)ϵ(z2, z̄2)ϵ(z3, z̄3)ϵ(z4, z̄4)⟩ =
1

|z12|2|z34|2
Gϵ(z, z̄)

(4.9)

for which we know the true analytical solutions

Gσ(z, z̄) =
1

2[(1− z)(1− z̄)] 18

[√
(1 +

√
z)(1 +

√
z̄) +

√
(1−

√
z)(1−

√
z̄)

]
,

Gϵ(z, z̄) =
1− z + z2

1− z
1− zz̄ + z̄2

1− z̄

(4.10)

Expanding the correlators in blocks one can obtain the spectrum and the OPE coeffi-
cients for this theory. In fact, this is used as a toy model to validate the approach and
the algorithm presented above.

76

4.3. 2D Ising model

Consider for now the ⟨σσσσ⟩ correlator. The OPE results in

Gσ(z, z̄) = 1 +
∑
h≥h̄

C2
h,h̄g

(2D)

h,h̄
(z, z̄) (4.11)

where C2
h,h̄

= C2
σσϕh,h̄

is the usual squared OPE coefficient and the conformal weighs
h, h̄ are related to the spin and scaling dimension of the operator with the relations

∆ =
h+ h̄

2
, s =

h− h̄
2

. (4.12)

The conformal blocks can be written as

g
(2D)

h,h̄
(z, z̄) =

1

1 + δh,ℏ

(
g
(1D)
h (z)g

(1D)

h̄
(z̄) + g

(1D)
h (z̄)g

(1D)

h̄
(z)
)

(4.13)

where we have introduced the 1D conformal blocks. To understand their structure we
give the following definition.

Definition 4.1. The hypergeometric function 2F1(a, b, c; z) is the solution to the
Euler’s hypergeometric differential equation

z(1− z)d
2f

dz2
+ [c− (a+ b+ 1)z]

df

dz
− abf = 0 (4.14)

and can be expressed as a series

2F1(a, b, c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
(4.15)

where we have introduced the symbol (q)n as

(q)n =

{
1, n = 0,

q(q + 1) · · · (q + n− 1), n > 0
(4.16)

The 1D conformal block is then given by

g
(1D)
h (z) = zh 2F1(h, h, 2h; z) (4.17)

Recall that the main object we want to solve is the Conformal Bootstrap equation
(2.140) which in this case takes the form

((1− z)(1− z̄))
1
8 − (zz̄)

1
8+

+
∑
h,h̄

C2
h,h̄

[
((1− z)(1− z̄))

1
8 g

(2D)

h,h̄
(z, z̄)− (zz̄)

1
8 g

(2D)

h,h̄
(1− z, 1− z̄)

]
= 0 (4.18)

The ⟨ϵϵϵϵ⟩ correlator has a very similar structure and, with the same steps, the
conformal bootstrap equation can be found to be

((1− z)(1− z̄))− (zz̄)+

+
∑
h,h̄

C2
h,h̄

[
((1− z)(1− z̄)) g(2D)

h,h̄
(z, z̄)− (zz̄)g

(2D)

h,h̄
(1− z, 1− z̄)

]
= 0 (4.19)

Our final unknowns of the problem are the scaling dimensions ∆ = h+h̄
2

and the squared
OPE coefficients C2

h,h̄
, since we simplified the original problem by fixing the spin values

which, as a remark, are all even in this theory. The procedure to determine the set of
unknowns is the following:

77

Chapter 4. Bootstrap Stochastic Optimization with SAC

• We choose a value for ∆max, in this case 10, as the cutoff. This also limits the
possible spin values of the operators to be si ≤ ∆i.

• For the values of the admissible spins, we select all operators such that ∆i ≤
∆max. This is the final spectrum of operators for which the scaling dimension
and squared OPE coefficient has to be found by the algorithm. Recall that for
the Ising 2D model conformal invariance implies that the values for the spins si
are always even [RRTV08].

4.4 1D defect CFT on the Half-BPS Wilson line

While the study of the 2D Ising model is mainly a review of existing results in the
literature, we now turn to the main focus of this thesis, which contains our original
results: the study of the 1D defect CFT defined by a straight 1

2
-BPS Wilson line in

4D N = 4 super Yang-Mills theory [Mal98,DK06b,GRT17].
The 1D defect CFT we consider lives in a 4 dimensional space but is indeed 1

dimensional. It is invariant under the 1D conformal group SO(1, 2) but not under
the 4 dimensional conformal group. The theory has a fundamental parameter g: for
small values g → 0 of it we talk about weak coupling and, vice versa, for higher values
we talk about strong coupling. Both the scaling dimension and the OPE coefficients,
as well as other quantities, depend on g. There exist analytical tools that let us
study with perturbation theory the CFT data only for small g [CGJP22a], [GGJ20] or
large g [FM21], [LMM18], while for intermediate values of the coupling constant only
numerical methods are available. The objective of this work is to study how the CFT
data varies as a function of the parameter g and fill in the gaps left.

The most important operator in the theory is a scalar of dimension ∆ = 1, which
we call ϕ1

⊥. Following [CGJP22b], [CGJP22a], its 4-point correlator can be written as

⟨ϕ1
⊥(x1)ϕ

1
⊥(x2)ϕ

1
⊥(x3)ϕ

1
⊥(x4)⟩ =

G(x)

x212x
2
34

. (4.20)

Notice that since we are in a one-dimensional setting there exists only one cross ratio
z = z̄ = x = x12x34

x13x24
. As before, we work with values of x in the complex plane C except

for the lines on the real axis (−∞, 0] and [1,∞). The crossing equation can be written
as

x2G(1− x)− (1− x)2G(x) = 0 (4.21)

A physical symmetry known as supersymmetry poses constraints on G(x) [LMM18]
which, following [CGJP22a], can be solved by

G(x) = Fx2 +

(
2

x
− 1

)
f(x)− (x2 − x+ 1)f ′(x) (4.22)

where F = F(g) is a constant and the function f(x) satisfies the crossing equation

x2f(1− x) + (1− x)2f(x) = 0 (4.23)

We now consider the OPE for the function f(x), written as

f(x) = FI(x) + C2
BPSFB2(x) +

∞∑
n=1

C2
nF∆n(x) (4.24)

78

4.4. 1D defect CFT on the Half-BPS Wilson line

with the conformal blocks given by the formulas

FI(x) = x

FB2(x) = x− x 2F1(1, 2, 4;x)

F∆(x) =
x∆+1

1−∆
2F1(∆ + 1,∆+ 2, 2∆ + 4; x)

(4.25)

Recall that, in the one-dimensional case, there is no spin and operators are parametrized
only by their scaling dimension ∆n and have an associated squared OPE coefficient C2

n,
where n ∈ N is an index.

Although no analytical results are available in the literature, previous studies
showed that it is possible to obtain precise numerical values for the scaling dimen-
sions of the operators in the OPE, as well as bounds on some of the OPE coefficients.
In particular, the numerical values of the scaling dimensions ∆n for 1 ≤ n ≤ 10 can
be obtained from a series expansion as a function of the coupling g [GGJ20], which
can be used to produce their numerical values with arbitrary precision. This is quite
helpful for us since we can fix those values in the algorithm beforehand and simplify
the search for the remaining CFT data. The availability of these results is also the
main reason we experiment on the 2D Ising model by fixing an increasing number of
scaling dimensions to further validate the approach.

The values of ∆n for the first 10 operators can be found in [CGJP22a, GGJ20].
From these articles, we also inherit the ordering and indexing of these operators from
weak coupling. In particular, the 10 operators considered are the ones with the lowest
scaling dimension for g = 0, ordering them by their ∆ values sto that ∆n < ∆n+1 at
g = 0. We stress that this ordering on operators is kept the same throughout all values
of the coupling constant, even if for large g it may happen that ∆n > ∆n+1 (see also
figure 4.1 below).

Figure 4.1, taken from [CGJP22a], shows the scaling dimensions of the first 10
operators as a function of g. We remark on the fact that ∆ values for different operators
can approach the same numbers.

Figure 4.1: Values for the scaling dimension ∆n for the first 10 operators of the OPE
as a function of the coupling dimension g, ref. [CGJP22a]

79

Chapter 4. Bootstrap Stochastic Optimization with SAC

In order to express the constants used in equations (4.22) and (4.25) we define a
particular class of functions

Definition 4.2. The (modified) Bessel functions of the first kind Iα is one the
solutions of the following differential equation, also called Bessel’s equation

x2
d2f

dx2
+ x

df

dx
+ (x2 − α2) = 0 (4.26)

where α ∈ C. In particular, the Bessel functions of the first kind satisfy particular
constraints on the boundary and can be written as a series expansion

Iα(x) =
∞∑
m=0

1

m!Γ(m+ α + 1)

(x
2

)2m+α

(4.27)

With this in mind, we can finally define the constants F(g) and C2
BPS as

F(g) =
3I1(4πg)((2π

2g2 + 1)I1(4πg)− 2gπI0(4πg))

2g2π2I2(4πg)2

C2
BPS(g) = F(g)− 1

(4.28)

4.4.1 Integral constraints and the bounds on OPE coefficients

The 1D CFT we are studying has two additional constraints we can impose on its
4-point function, as shown in [CGJP22a]. To be more specific, they are integral con-
straints that involve integrals of the conformal blocks. To write them we need to first
define two constants (dependent on the coupling g), the Bremsstrahlung function B(g)
given by [CGJP22a]

B(g) =
g

π

I2(4πg)

I1(4πg)
(4.29)

and the curvature C(g). The latter has a complex definition that requires the intro-
duction of many concepts. For simplicity, we instead write the Taylor expansion of if
for weak coupling g → 0 and strong coupling g →∞ being respectively [CGJP22a]

C(g) = 4g4 −
(
24ζ3 +

16π2

3

)
g6 +

(
64π2ζ3

3
+ 360ζ5 +

64π4

9

)
g8

−
(
112π4ζ3

5
+ 272π2ζ5 + 4816ζ7 +

416π6

45

)
g10

+

(
3488π6ζ3

135
+

2192π4ζ5
9

+
9184π2ζ7

3
+ 63504ζ9 +

176π8

15

)
g12 +O(g14)

(4.30)

and

C(g) =
(2π2 − 3)g

6π3
+
−24ζ3 + 5− 4π2

31π4
+

11 + 2π2

256π5g
+

96ζ3 + 75 + 8π2

4096π6g2

+
3(408ζ3 − 240ζ5 + 213 + 14π2)

65536π7g3
+

3(315ζ3 − 240ζ5 + 149 + 6π2)

65536π8g4
+O

(
1

g5

)
(4.31)

where ζn is the Riemann zeta function ζn =
∑∞

k=1
1
kn

.

80

4.4. 1D defect CFT on the Half-BPS Wilson line

We are now ready to define the integral constraints [CGJP22a] which will play a
fundamental role in the discussion about OPE coefficients and in the experimental
results:

Constraint 1:
ˆ 1

0

δG(x)
1 + log x

x2
dx =

3C(g)−B(g)
8B(g)2

Constraint 2:
ˆ 1

0

δf(x)

x
dx =

C(g)

4B(g)2
+ F(g)− 3

(4.32)

where δG(x) = G(x) − G(0)
weak(x), δf(x) = f(x) − f (0)

weak(x), and G
(0)
weak(x), f

(0)
weak(x) are

the zero coupling values

G
(0)
weak(x) =

2(x− 1)x+ 1

(x− 1)2

f
(0)
weak(x) = 2x+

x

x− 1

(4.33)

To include these constraints into our algorithm, we write them in a simpler way involv-
ing the CFT data, using the results in [CGJP22a] which are obtained by applying the
OPE expansion and the crossing equation to (4.32). Define the integral functions as

Int1[F∆n] = −
ˆ 1

2

0

(x− 1− x2)F∆n

x2
∂x log(x(1− x))dx

Int2[F∆n] =

ˆ 1
2

0

F∆n(2x− 1)

x2
dx

(4.34)

and the numerical constraints as

RHS1 =
B(g)− 3C(g)

8B(g)2
+

(
7 log 2− 41

8

)
(F(g)− 1) + log 2

RHS2 =
1− F(g)

6
+ (2− F(g)) log 2 + 1− C(g)

4B(g)2

(4.35)

With these equations in mind the integral constraints in (4.32) become

Constraint 1:
∑
n

C2
nInt1[F∆n] + RHS1 = 0,

Constraint 2:
∑
n

C2
nInt2[F∆n] + RHS2 = 0,

(4.36)

These integral constraints were used to limit the possible values of the OPE coefficients
in [CGJP22a]. In particular, the authors showed a considerable decrease in width for
the region of admissible values of the squared OPE coefficients, especially C2

2 and C2
3 .

Figure 4.2, taken from [CGJP22a], shows the numerical bounds for the first 3 squared
OPE coefficients without implementing any integral constraint into the algorithm used
by the authors of the work.

81

Chapter 4. Bootstrap Stochastic Optimization with SAC

Figure 4.2: Bound regions for the first 3 squared OPE coefficients as a function of g.
Ref. [CGJP22a]

From this first figure we can notice that, while the bounds for C2
1 are small for all

values of the coupling constant, the relative errors on C2
2 and C2

3 are high and increase
as g → 0. By including one of the integral constraints into the procedure the results
dramatically improve [CGJP22a]:

• The width of the bounds on C2
1 decreases by at least a factor of 10 for all coupling

constants and even more for larger values of g, with the first integral constraints
giving the best results.

• Looking at C2
2 and C2

3 , for both coefficients and for either constraint applied, the
region shrinks by a factor of 2 starting at g = 0.3 and a factor of 9 at strong
coupling.

Figure 4.3 shows graphically the improvement we described.

Figure 4.3: Bound regions for the first 3 squared OPE coefficients as a function of
g, first integral constraint applied (hard lines) or second integral constraint applied
(dashed lines). Ref. [CGJP22a]

82

4.4. 1D defect CFT on the Half-BPS Wilson line

Although better, the relative error on C2
2 and C2

3 is still not satisfactory and the
precision is still lost at small coupling. The best results are obtained by applying both
integral constraints into the framework [CGJP22a]:

• For C2
1 the width decreases by at least 103 on all coupling values.

• For C2
2 and C2

2 the bound reduces monotonically with the coupling, for g = 0.3
by at least a factor of 10, which becomes 102 at g ∼ 1.5 and almost 200 at strong
coupling.

Figure 4.4, taken from [CGJP22a] as well, shows this clearly.

Figure 4.4: Bound regions for the first 3 squared OPE coefficients as a function of g,
both integral constraints applied. Ref. [CGJP22a]

The values for the second and third OPE coefficients are now very precise for g
large enough and, as we further discuss later, can be added as an input to simplify the
problem even more. At small coupling, on the other hand, the precision is still lost,
although remarkably better, and we may use the bounds to validate the approach to
find new CFT data.

Finally, the same approach could be applied to further operators but the results are
less precise and only a non-trivial upper bound is found [CGJP22a].

4.4.2 Final remarks on the implementation

Before going into the experimental setup and results, there are some final remarks to
be made for the implementation of the 1D defect CFT we study. Our objective is to
give numerical estimations of the unknown CFT data for the first 10 operators and
study them as a function of the coupling constant g.

No analytical results are available for this model although, as we discussed earlier,
we know the scaling dimensions ∆n for 1 ≤ n ≤ 10 with arbitrary high precision
[CGJP22a], [GGJ20]. This is still a good advantage compared to no information at all,
which is the case for most theories. These values are given as input to the algorithm
to reduce the dimensionality of the problem and to produce more accurate results.

83

Chapter 4. Bootstrap Stochastic Optimization with SAC

If we want to simplify the problem even more, we could take advantage of the
bounds on C2

n for n = 1, 2, 3 found in [CGJP22a]. The relative error on the first
squared OPE coefficient is very small for all the values of g between 0 and 4, with
a precision of minimum 10−7. Hence, in some experiments, we may give a value in
this range as an input to the algorithm. Unfortunately, the bounds for C2

2 and C2
3 are

wide for g < 1 and lose precision for small coupling g ≤ 0.5, even with two integral
constraints applied. This can be clearly seen from figure 4.4. For large coupling, on the
other hand, the allowed region is small enough to fix values beforehand in the algorithm
to reduce complexity even more.

For these squared OPE coefficients, we only have an upper and a lower bound
and hence we need to decide which numerical value we give as input. Given the
discussion above, we use this additional information only when the allowed region is
small enough, with the input value being fixed to the mean of the upper and the lower
bound. In reality, when the bounds are close enough, any value within the range could
be considered, as there would not be a significant difference in the results.

The last issue we need to tackle is how to include the integral constraints into
our framework without further increasing the complexity of the procedure. Recalling
equation (4.5), we can reformulate the entire task with the following Nz + 2 equations

E⃗(∆⃗, C⃗2) = 0

I1 =
∑
n

C2
nInt1[F∆n] + RHS1 = 0

I2 =
∑
n

C2
nInt2[F∆n] + RHS2 = 0

(4.37)

Note that all of them involve the same CFT data and our goal is to have the left-hand
sides of these equations as close as possible to 0. One could consider the same reward
as before Rt =

1

∥E⃗t(∆⃗,C⃗2)∥
while I1 and I2 as pure constraints in a constrained problem.

Unfortunately, the soft Actor-Critic algorithm does not have an efficient way to include
such constraints without considerable effort.

Our solution is to include the integral constraints into the reward in the same way
we are using the crossing equation. The structure and the data needed are the same
so this procedure is indeed straightforward. We will try two possible forms of rewards:

R1 =
1

∥E⃗t(∆⃗, C⃗2)∥
+ w1

1

|I1|
+ w2

1

|I2|

R2 =
1

∥E⃗t(∆⃗, C⃗2)∥+ w1|I1|+ w2|I2|

(4.38)

where w1 and w2 are weights to be determined and kept fixed afterward.
Both possibilities come from the same idea: the closer our equations are to zero,

the greater the reward the agent gets, and the better the results. The main difference
lies in how we treat each constraint compared to the others:

• In the first case, each constraint contribution to the reward is completely indepen-
dent from the others. If we suppose without loss of generality that the optimal
weights are w1 = w2 = 1, a total reward of order 1000 can be obtained with
∥E⃗t(∆⃗, C⃗2)∥ ≃ 10−3, I1 ≃ 1, I2 ≃ 1 as well as ∥E⃗t(∆⃗, C⃗2)∥ ≃ 1, I1 ≃ 10−3, I2 ≃ 1

and ∥E⃗t(∆⃗, C⃗2)∥ ≃ 1, I1 ≃ 1, I2 ≃ 10−3.

84

4.4. 1D defect CFT on the Half-BPS Wilson line

• In the second case, the contributions of the three constraints are much more
related. In fact, to have a reward of order 1000 all three quantities must be close
to zero, at least each one being ≃ 10−3. This guarantees that if an optimal policy
is found, all our requests are greatly satisfied.

We will see that R2 produces results that are more satisfactory and controllable but
we will analyze both for a complete discussion.

4.4.3 Previous approaches in literature

We are now going to review recent numerical approaches in the literature for this
model based on concepts such as integrability [GKP98,BAA+11,DKN+19,Lip94,FK95,
MZ03] and the formalism of Quantum Spectral Curve (QSC) [GKLV14,GKLV15] to
put further constraints on correlators. These are the main ideas behind the numerical
exploration of the spectrum of the first 10 operators mentioned above.

The set of bounds for the first three squared OPE coefficients was obtained in
[CGJP22a,CGJP22b] using methodologies that were modifications of the original nu-
merical bootstrap [RRTV08,KPSD14] we presented in section 2.5.1. They search for
a functional of the form

α[F (x)] =

Ndet/2∑
n=0

An∂
2n
x F (x)|x= 1

2
(4.39)

which, applied to the conformal bootstrap equation gives∑
n

C2
nα[G∆n(x)] + α[Gsimple(g, x)] = 0 (4.40)

where Gsimple(g, x) and G∆n(x) contain the crossing equations respectively for the first
two conformal blocks in (4.24) and the conformal blocks of the first 10 operators of the
spectrum.

Equation (4.40) can be rewritten as∑
n

C2
nα[A⃗ · V⃗∆n] + α[A⃗ · V⃗simple] = 0 (4.41)

where A⃗ = (A0, A1, . . . , ANder/2) and V⃗∆n , V⃗simple are respectively the vectors of deriva-
tives of G∆n ,Gsimple at x = 1

2
. The positivity condition of A⃗ · V⃗∆ ≥ 0 for ∆ ≥ ∆∗ implies

the condition at the base of the following algorithms:∑
∆n<∆∗

C2
nα[A⃗ · V⃗∆n] + α[A⃗ · V⃗simple] ≤ 0 (4.42)

For example, fixing ∆∗ = ∆2 we can search for A⃗up such that (A⃗up · V⃗∆1) = 1 and
(A⃗up · V⃗simple) is maximal, obtaining un upper bound C2

1 ≤ −(A⃗up · V⃗simple). A lower
bound can be found analogously changing the signs. This is now formulated as a
problem of Numerical Conformal Bootstrap that can be solved as before by using
polynomial approximation and semi-definite programming.

The algorithm can be further improved by including information on the rest of
the spectrum ∆1, . . . ,∆N . The positivity condition becomes (A⃗ · V⃗∆) ≥ 0, ∀∆ ≥ ∆N

85

Chapter 4. Bootstrap Stochastic Optimization with SAC

together with the discrete constraints (A⃗ · V⃗∆n) ≥ 0 for n = 1, . . . , N − 1. We are now
dealing with a bigger space of functionals since (A⃗ · V⃗∆) can be negative in the intervals
between the values of the spectrum.

For each m = 1, . . . , N − 1 we can now impose the above positivity conditions for
n ̸= m and look for A⃗up,m, A⃗low,m such that

• (A⃗up,m · V⃗∆m) = 1.

• (A⃗up,m · V⃗simple) is maximal.

• (A⃗low,m · V⃗∆m) = −1.

• (A⃗low,m · V⃗simple) is maximal.

obtaining the bounds

(A⃗low,m · V⃗simple) ≤ C2
m ≤ −(A⃗up,m · V⃗simple) (4.43)

The algorithm can be improved again by adding information on previously found
bounds when increasing m, although the best improvement in the results comes from
introducing into the framework the integral constraints (4.32). The integration is
indeed very easy since equation (4.36) has a very similar form to (4.41). The final
equation, from which the procedure is the same as the algorithms described above, is

∑
n

C2
n

Nder/2∑
k=0

bk∂
2k
x G∆n|x= 1

2
+ b−1Int1[F∆n] + b−2Int2[F∆n]

+

Nder/2∑
k=0

bk∂
2n
x Gsimple|x= 1

2
+ b−1RHS1 + b−2RHS2 = 0

(4.44)

The images shown before highlight the importance of such integrated constraints
on the first three squared OPE coefficients, with the bounds reducing by a factor
of 30 for weak coupling values and 80 for strong couplings. Unfortunately, as stated
in [CGJP22a], the bounds obtained on C2

i , i = 4, . . . , 10 are not precise and satisfactory.
We will see as, in some cases, our approach can identify values for these coefficients
with some degree of precision, particularly for couplings that are neither too big nor
too small.

86

Chapter 5

Results

In this Chapter, we present the experimental results of our study described in chapter
4. Ultimately we are interested in the 1D defect CFT defined on the 1

2
-BPS Wilson

line in the 4D N = 4 super Yang-Mills theory, where no prior application of RL exists
in literature and no complete solutions to the crossing equation ((4.23) and (4.24)) is
available. As discussed, we focus on finding the squared OPE coefficients C2

i and use
the numerical values of the scaling dimensions ∆i as input.

We start by describing the experimental setup and the preliminary results to find the
parameters that perform the best. Then, we follow the literature on the RL approach
to CFT [KPN22a], [KPN22b], using the 2D Ising as a toy model in section 5.2. Initially,
the search is kept free with unknowns given by the whole CFT data (∆⃗, C⃗2) and then
we fix an increasing number of scaling dimensions in order to see if results improve
when the values of ∆ are given as input.

Finally, we show the results from the experiments on the one-dimensional CFT.
The first objective is to determine the best formula for the reward between the two
available in (4.38). Then, we analyze the squared OPE coefficient found as a function
of the coupling constant g, making a distinction between weak coupling g < 1 and
strong coupling g ≥ 1.

5.1 Experimental Setup

All the following experiments were conducted using a modified version of the code
shared by the authors of [KNPR23] available on the BootSTOP GitHub page1. The
particular code used in this work can be found on the BootSTOP CFT GitHub page2

by Alessandro Trenta. The main structure has been maintained to have consistency
for the modified SAC algorithm. The key difference stands in the implementation
of our models of interest, the Ising 2D model and the Half-BPS Wilson line defect
CFT, as well as the integration with the additional integral constraints (4.36) of the
latter model. The code was run on Python 3.8.13, while the neural networks were
implemented using the library Pytorch [PGM+19] at version 1.12.0 which handled also
their optimization.

To obtain statistically relevant results, for each experiment we set up from 500
to 2000 parallel runs depending on the experiment, with each one taking between 2

1https://github.com/vniarchos/BootSTOP
2https://github.com/AlexThirty/BootSTOP_CFT

87

https://github.com/vniarchos/BootSTOP
https://github.com/AlexThirty/BootSTOP_CFT

Chapter 5. Results

and 3 days. Each run has a different random seed so that we can assume them to be
independent to calculate the mean and standard deviation. This was possible thanks
to a cluster at the University of Pisa, consisting of 16 nodes with 96 CPUs each. The
scaling of the parallel runs on the cluster was handled by the Ray library [MNW+18]
(version 1.13 and 2.2) and SLURM.

While the majority of the parameters described in chapter 4 were optimized using
a grid search, we chose to fix some of them to values found by the original authors
to avoid having a very large search space. In particular, the neural networks used in
Soft Actor-Critic are all Fully Connected Neural Networks with 2 hidden layers and an
output layer of 1 unit, except for the actor network which has 2 outputs as it needs to
calculate the mean and variance of the distribution generating the action µϕ(St), σϕ(St).

The other parameters defining the networks can be found in table 5.1.

Parameter Value
Layer 1 units 256
Layer 2 units 256

Activation function layer 1 ReLU
Activation function layer 2 ReLU
Batch size 256

Table 5.1: Values for Neural Networks specific parameters. These are fixed for all the
experiments in this thesis.

5.2 The benchmark model: Ising 2D

The Ising 2D model described in section 4.3 has been widely studied in literature and
has a well-known analytical solution of the CFT data (∆⃗, C⃗2), both for the ⟨σσσσ⟩
and the ⟨ϵϵϵϵ⟩ correlator. Ising 2D has also been used as a toy model in [KPN22b],
with a method similar but prior to the Bootstrap Stochastic Optimization with Soft
Actor-Critic, showing the power of this framework. We reproduced the results of the
original article, this time with the approach described in [KNPR23] and in the chapter
4, which features the automation in the window reduction, not present in the first
version.

In all the following discussions and experiments the maximum value for ∆ was set
to 10.5. We also used the second speedup technique described in the previous chapter
by precalculating the values for the conformal blocks for conformal dimensions of the
form ∆ = k × 0.0005, until 10.5. The grid of ∆ values has then a width of 0.0005.

Before the main experiments, a grid search was performed on some parameters of
the algorithm to find the values that maximize the reward obtained by the agent. In
this phase, we analyze the results in a completely agnostic way from the underlying
model: our aim is to purely maximize the reward at some time step in the process,
without checking that the CFT data found (∆⃗, C⃗2) is close to the known analytical
solution. In fact, maximizing the reward is the same as minimizing the norm of the
crossing equation vector E⃗(∆⃗, C⃗2) which, at least theoretically, corresponds to finding
the CFT data describing the model.

Recall that operators in the Ising 2D model have an (always even [RRTV08]) spin
associated. This requires us to set the value of the dyn_shift parameter, which is the
minimum distance between scaling dimensions of operators with same spin. Although

88

5.2. The benchmark model: Ising 2D

this parameter was initially included in the grid search, we decided not to use it to
apply less forcing on CFT data and let the agent more freely explore the environment.
On the other hand same_spin_hierarchy was applied since it involves just a visual
reordering of the scaling dimension of operators with the same spin. The window
reduction factor, window_rate, was set to 0.7 following [KNPR23] as well as to not
shrink the search too early, leaving some chance to explore more.

In table 5.2 we present the parameters involved in the search with the corresponding
values tried and the final choice.

Parameter Set of values Final choice
faff_max {100, 500, 1000, 5000, 10000} 10000
pc_max {5, 10, 15, 20, 25} 10
max_windows_exp {5, 10.15, 20, 25} 25
τ {0.05, 0.005, 0.0005} 0.0005
α {0.0001, 0.0005, 0.001, 0.005} 0.0005
β {0.0001, 0.0005, 0.001, 0.005} 0.0005
reward scale (α−1) {0.001, 0.01, 0.1, 1, 10} 0.001

Table 5.2: Grid search summary for parameters of the algorithm: 2D Ising model

The term τ is the exponential smoothing parameter of the value network, α is
the learning rate for the actor network and β is the learning rate for the rest of the
networks. The discount rate γ is set to the value of 0.99 to improve the search of
basins of attraction. Since the crossing equation is continuous in the CFT data, a high
discount value should help push the agent toward finding the right path to the solution.
The reward scale corresponds to the inverse of the α factor in the maximum entropy
objective for SAC 3.44.

The final values found by the grid search can be used to analyze the overall behavior
of the algorithm. In particular

• The value of faff_max is indeed very important. It regulates how many time
steps an episode can last without improvement and, in general, the higher the
better. This is due to the fact that the agent is free to explore for much more
time before the networks are initialized again.

• pc_max was set to 10 since higher values didn’t improve much the reward. This
parameter corresponds to the maximum number of initializations before reduc-
ing the search and thus adding precision. After 10 iterations the reward rarely
improved, basically wasting computational time.

• max_windows_exp is the number of window reductions and therefore is linked to
the final numerical precision of the CFT data. Intuitively, the higher this value
the better the final result and this was also proven experimentally. The final
window size, with a window reduction rate of 0.7 as above, is 0.0001 which is also
less than the approximation we are using for the grid of ∆ for the precalculated
conformal blocks.

• τ, α, β did not have much influence on the final rewards. Therefore we used the
same values by the original authors.

89

Chapter 5. Results

• The reward scale seemed not to have a high influence on the final results. Since a
higher reward scale is linked to a lower α in equation 3.44 which implies less ex-
ploration, we chose to take a low reward scale in order to favor a less conservative
agent.

The above parameters will be used in all the experiments involving the Ising 2D
model.

5.2.1 Free search experiments

In this section we try to reproduce the results of [KPN22b] using the new and improved
methodology by [KNPR23]. The objective is to test the framework by trying to find
the analytical values defining the two correlators of the 2D Ising model.

⟨ϵϵϵϵ⟩ correlator

Table 5.3 contains the theoretical values and the experimental CFT data found for
the ⟨ϵϵϵϵ⟩ correlator with ∆max = 10.5 on the single run with the best reward. The
experimental CFT data shown in table 5.3 corresponds to the values that the agent
was using as CFT at the single time step it obtained his maximum reward possible.

Spin Analytic ∆ RL ∆ Analytic C RL C
0 4 2.93519 1 1.27600
0 8 5.20440 0.01 0.23713
2 2 2.36300 1 0.43162
2 6 5.27179 0.01 0.17654
2 10 7.08422 7.9365× 10−4 4.78596× 10−3

4 4 5.32145 0.1 0.0428243
4 8 7.88979 7.9365× 10−3 4.84263× 10−3

6 6 6.57830 7.9365× 10−3 1.29584× 10−3

6 10 8.12713 5.8275× 10−4 2.18920× 10−3

8 8 9.60932 5.8275× 10−4 2.56530× 10−4

10 10 10.14738 4.1135× 10−5 3.01555× 10−5

Table 5.3: Theoretical and experimental values for the ⟨ϵϵϵϵ⟩ correlator in the Ising 2D
model. The table contains only the results for the run with the best overall reward.

As we can see the results are not satisfactory and different from the theoreti-
cal ones. Furthermore, putting the theoretical CFT data in the crossing equations
E⃗(∆⃗true, C⃗2

true) on the selected points in the complex plane gives a reward of 2586.0985,
while the reward obtained using the above values is 3814.1957. This is a very inter-
esting fact since the experimental reward is higher than the one obtained with the
theoretical true values. This could be explained by two facts:

• We are considering a truncated version of the crossing equation (4.1). The theo-
retical values for this correlator may not solve this equation exactly, while there
may exist other values of ∆ and C, close to the one we obtained, which solve the
truncated equation but not the original one.

• We are not solving the crossing equation on the whole complex plane (except
where it is not defined), but we are just finding the best fit for the 180 points we
selected to evaluate it.

90

5.2. The benchmark model: Ising 2D

This is an important remark to make and we will later see that fixing theoretical values
in the algorithm can help the model to find the correct values instead of a particular
solution unrelated to the analytical one.

In order to have a more complete understanding of the stability of the method and
the statistical relevance of the results found, in table 5.4 we include the averages of the
CFT data for the 25 runs that obtained the best rewards out of all the 450 parallel
tries.

Spin Analytic ∆ RL ∆ Analytic C RL C
0 4 2.98961 1 1.01143
0 8 6.09123 0.01 0.37989
2 2 2.40974 1 0.59418
2 6 4.39658 0.01 9.83291× 10−2

2 10 6.93158 7.9365× 10−4 7.09948× 10−2

4 4 5.17865 0.1 5.34511× 10−2

4 8 8.31381 7.9365× 10−3 6.16930× 10−3

6 6 6.85276 7.9365× 10−3 3.71636× 10−3

6 10 8.70140 5.8275× 10−4 1.12237× 10−3

8 8 9.05906 5.8275× 10−4 3.40398× 10−4

10 10 10.30735 4.1135× 10−5 4.69906× 10−5

Table 5.4: Theoretical and experimental values for the ⟨ϵϵϵϵ⟩ correlator in the Ising 2D
model. The table contains the average values for the 25 runs with the best rewards.

We also included a graphical representation of the values for the CFT data found by
the best 25 runs, their experimental means and the theoretical values. As we can see in
figures 5.1 and 5.2 the results are very spread out, meaning that they lack consistency
with a high relative error for all the CFT data. This can also be acknowledged by
the fact that the average reward for the runs considered is 1990.8672 with a standard
deviation of 519.1846: results are inconsistent between the best-performing runs.

Figure 5.1: Results for the scaling dimensions ∆i of the operators in the ⟨ϵϵϵϵ⟩ correlator
of the Ising 2D model. Red points represent the theoretical values and blue points
represent experimental values for the 25 runs with the best reward, together with their
average.

91

Chapter 5. Results

Figure 5.2: Results for the squared OPE coefficients C2
i of the operators in the ⟨ϵϵϵϵ⟩

correlator of the Ising 2D model. Red points represent the theoretical values and blue
points represent experimental values for the 25 runs with the best reward, together
with their average.

We remark that this kind of problem is indeed very complex. We are trying to solve
an equation with 22 variables and non-linear relations, where the usual Reinforcement
Learning tasks involve from 1 to 3 outputs at a time. Our next objective will be to
see how fixing some known values can help the search both by reducing the number of
unknowns and the complexity of the problem in general.

We performed the same experiment for the ⟨σσσσ⟩ correlator obtaining worse re-
sults. In this case, the problem is even more complex with a total of 32 unknowns. We
refer to the appendix A.1 for the specific results for this correlator.

5.2.2 Constrained search experiments

For now, we only consider the ⟨ϵϵϵϵ⟩ correlator.
In this particular set of experiments, we aim to see how performance improves when

giving as input to the algorithm some (and possibly all) the known scaling dimension
values for the operators. We introduce this approach since, in the 1D CFT we will
analyze later in this chapter, we fixed the known ∆ values to obtain statistically relevant
results on the unknown OPE coefficient values.

In theory, we should expect that the more values we fix, the closer the remaining
values are to the analytical ones. This is due to the two following facts:

• The search space becomes smaller and smaller as we fix values. When all ∆’s are
fixed, only the 11 OPE coefficient of the ⟨ϵϵϵϵ⟩ remain unknown.

• The more values we fix, the simpler the landscape of the crossing equation be-
comes with respect to the remaining unknowns. Intuitively, there will be less
relevant minima of the norm of the crossing equations and, for the agent, it will
be easier to find the optimal solution.

92

5.2. The benchmark model: Ising 2D

In this experiment, we began by fixing the scaling dimension values starting from
the ones that have a more significant impact on the results, namely the smallest ∆’s.
We can think that the relevance or magnitude of an operator in the crossing equation as
being proportional to e−∆ due to equation (4.2). To distinguish between operators with
the same scaling dimension, we started with the ones with a lower spin value. Recall
that for a single spin value, there can only be just one operator with a particular ∆
value, meaning that the order of fixing scaling dimensions is unique.

Table 5.5 summarizes the conformal blocks in the model and the way we ordered
them for fixing their values. In total, we fix from 0 to 11 values of scaling dimensions,

Operator number Spin ∆ Sequential order
1 0 4 2
2 0 8 6
3 2 2 1
4 2 6 4
5 2 10 7
6 4 4 3
7 4 8 9
8 6 6 5
9 6 10 10
10 8 8 8
11 10 10 11

Table 5.5: Sequential order for giving as input the values of the operators in the 2D
Ising model for the ⟨ϵϵϵϵ⟩ correlator

that is 12 different experiments. The number of individual runs per experiment was
50 for a total of 600 parallel runs.

We start our analysis by looking at the rewards. Figure 5.3 shows the individual
reward from the best performing run, colored in green, and the average reward for
the top 10 runs per experiment, colored in blue, with a lighter area representing a 1
standard deviation zone for those runs.

Figure 5.3: Best and averaged values for the reward in the constrained search experi-
ment as a function of the number of ∆’s given as input. ⟨ϵϵϵϵ⟩ correlator in the Ising
2D model. Only the 10 runs with the best reward are considered.

93

Chapter 5. Results

We can see that, as expected, the reward generally improves as we fix more scal-
ing dimension values. The number of attempts per experiment is not very high and
therefore a large uncertainty on the average reward or a non-monotonical behavior is
expected.

What we are really interested in is the relative error on the OPE coefficients with
respect to their theoretical value, in relation to the number of ∆ values fixed, as in
the 1D CFT model the formers will be the only unknowns. In Figure 5.4 we can see
how the relative error of the experimental OPE coefficient for each operator changes
as more and more scaling dimensions are fixed. For this plot, we only considered the
best run for each experiment.

Figure 5.4: Relative error on the squared OPE coefficients C2
i as a function of the

number of scaling dimensions ∆i given as input. ⟨ϵϵϵϵ⟩ correlator in the 2D Ising
model. Only the best run for each case is considered.

Let us make some comments on the results:

• It can be clearly seen that results improve almost monotonically as the number
of fixed scaling dimensions increases. The results are therefore promising and
encourage us to perform this experiment on the 1D CFT model, where every ∆
is known numerically and used as input.

• It is not only the relative error for each operator that gets better but the stability
of the obtained values improves as well, as it can be seen from figures 5.5. The
standard deviation in the squared OPE coefficient found is smaller when more
scaling dimensions are fixed. This suggests that simplifying the problem by re-
ducing the number of unknowns also reduces the complexity of the landscape of
the function, leading to more stable results from the SAC agent.

• Notice how in figure 5.4 there are 3 operators with a big relative error when only
a few ∆’s are fixed, followed by a significant drop in this error. These operators
are in fact some of the highest dimensional ones with spectrums of s = 0,∆ = 8,
s = 2,∆ = 10 and s = 6,∆ = 10. As we expect, the highest dimensional

94

5.2. The benchmark model: Ising 2D

operators close to the cutoff are the hardest ones to find since they might be also
compensating for the approximation made.

As a final remark, the same analysis and experiments were performed on the ⟨σσσσ⟩
correlator. In this case the increased complexity of the problem, starting from 32
unknowns to 16 in total, made the search o for the CFT data very hard and the results
are unsatisfactory. However, even for this correlator, the relative error on the squared
OPE coefficients decreases as we give more ∆’s as input. For the specific results we
refer to the appendix A.1.

95

Chapter 5. Results

(a) 0 scaling dimension fixed (b) 1 scaling dimension fixed (c) 2 scaling dimension fixed

(d) 3 scaling dimension fixed (e) 4 scaling dimension fixed (f) 5 scaling dimension fixed

(g) 6 scaling dimension fixed (h) 7 scaling dimension fixed (i) 8 scaling dimension fixed

(j) 9 scaling dimension fixed (k) 10 scaling dimension fixed (l) 11 scaling dimension fixed

Figure 5.5: Results on the squared OPE coefficients C2
i for the experiment with an

increasing number of scaling dimensions ∆i fixed. ⟨ϵϵϵϵ⟩ correlator in the 2D Ising
model. Red points represent the theoretical values while blue points represent the
experimental values for the best 10 runs, together with their averages.

96

5.3. Half-BPS Wilson line defect CFT

5.3 Half-BPS Wilson line defect CFT

In this section we will present the experiments we performed for the 1D defect CFT
defined on the 1

2
-BPS Wilson line in the 4D N = 4 super Yang-Mills theory. Previous

researches [GGJ20] were able to evaluate numerically with high precision the values of
the scaling dimensions for the first 10 operators, as well as some bounds on the first
three squared OPE coefficients [CGJP22a]. With in mind the results obtained in the
last section, we focus on finding the values of the squared OPE coefficients for operators
from the fourth to the tenth, while also making a few comments on higher-dimensional
operators.

5.3.1 Initial search and the Role of Integral Constraints

Throughout this section, every experiment will have a coupling dimension of g = 1
since it is a good compromise between weak and strong coupling, with the bounds on
the first three squared OPE coefficients being sufficiently tight as well.

The first step in our research is understanding the role and the power of the integral
constraints in (4.32). First, we need to perform experiments in order to choose the
formula for the reward from the two possibilities presented before:

R1 =
1

∥E⃗t(∆⃗, C⃗2)∥
+ w1

1

|I1|
+ w2

1

|I2|

R2 =
1

∥E⃗t(∆⃗, C⃗2)∥+ w1|I1|+ w2|I2|

(5.1)

Using the same parameters as for the Ising 2D model, we performed two grid searches
on the weights w1 and w2 for both R1 and R2. These weights play a fundamental
role since they determine the relative influence between the three components of the
reward: the norm of the crossing equations vector and the integral constraints.

An additional problem in this analysis is that the rewards cannot be directly com-
pared purely as numbers, since the weights influence both the magnitude and which
term will be dominant in the sum for R1 or in the denominator of R1. To have a
benchmark of the performance of a particular combination of weights we considered
the values of the crossing equations norm and the integral constraint, as well as the
bounds for the first three squared OPE coefficients.

In particular, we set as unknown all the squared OPE coefficients, while fixing the
scaling dimensions for the first ten operators. Let C2

i be the squared OPE coefficient
for the i-th operator, with i = 1, 2, 3. We know that for g = 1 we should have
mi ≤ C2

i ≤ Mi where mi,Mi were provided by [CGJP22b]. Suppose the location of
the best reward for a run has a coefficient indicated by Ĉi. We calculate the error of
the estimate Ĉi as

Err(Ĉi) =

|mi−Ĉi|
mi

if Ĉi < mi

0 if mi ≤ Ĉi ≤Mi

|Mi−Ĉi|
Mi

if Ĉi > Mi

(5.2)

that is the relative error with respect to the closest bound if the estimate is outside
the range. This will serve as additional information to the goodness of a combination
of weights, since it represents the objective we are pursuing: finding the squared OPE
coefficients.

97

Chapter 5. Results

We performed a search on the values of the weights for both reward formulas. For
R1 we considered w1, w2 = 10−10, 10−9, . . . , 10−3 for a total of 64 combinations, while
for R2 we tries the values corresponding to w1, w2 = 10−1, 100, . . . , 106 for a total of,
again, 64 combinations. In each case, 10 runs for each combination were performed,
resulting in 640 parallel runs for both grid searches.

In table 5.6 we present the most relevant combinations we found for the two possible
reward formulas with the metrics we considered above. Recall that, for both the integral
constraints and the crossing equations norm, the closer they are to 0, the better.

R1 R2

w1 10−7 104

w2 10−10 105

Crossing equations norm 1.56739× 10−3 2.60363× 10−3

Integral constraint 1 5.82228× 10−4 2.37865× 10−8

Integral constraint 2 9.09057× 10−5 2.05983× 10−9

Err(Ĉ1) 1.5552× 10−3 2.12069× 10−5

Err(Ĉ2) 0.13186 0.001183

Err(Ĉ3) 0.01571 0.0
Reward 638.00146 377.6412

Table 5.6: Metrics for the best-performing weights for both rewards

As we can see, the results seem generally better for the second kind of reward R2.
Let us now analyze these results more in-depth:

• The errors on the first three squared OPE coefficients are much lower for R2, we
may therefore have a better chance to find relevant results for the other C2

i we
do not have any information on.

• The integral constraints are far closer to 0 for R2, by about 4 order of magnitude.

• The crossing equations norm is closer to 0 for R1, but in this case by just a factor
of 2. This observation, with the previous one, still leads to a better general
performance by R2.

• As noted in the previous chapter, R2 forces all the 3 components in the reward
to have the same order of magnitude to improve the overall reward. In the
experiments involving R1, we noted that sometimes and for some values of the
weights the agent finds very quickly a policy that minimizes one of the integral
components. This leads to less further improvement in the crossing equations
norm which is still the most important component among the three.

Therefore, we chose to perform the rest of the experiments using the reward formula
of R2.

Since the reward values can be significantly different from the ones in the Ising 2D
model, we performed an additional grid search on the reward scale and the learning
rates for the neural networks, using the values we just identified for the weights. The
results can be found in table 5.7

98

5.3. Half-BPS Wilson line defect CFT

Parameter Values tried Final value
α {0.0001, 0.0005, 0.001, 0.005} 0.005
β {0.0001, 0.0005, 0.001, 0.005} 0.005
reward scale (α−1) {0.001, 0.01, 0.1, 1, 10} 10

Table 5.7: Grid search summary for parameters of the algorithm: 1D CFT model

In this case, the quantity to maximize was the overall reward and the selected values
were the ones performing best, although just slightly and without relevant differences.
All the subsequent experiments will then be performed using these parameters as our
final choice.

Before we show and comment on the experimental results for the weak and strong
coupling cases, which are treated separately, let us make some remarks on the rewards
that were obtained. Figure 5.6 shows the best reward from the experiments, both from
the single top-performing run as well as the average of the top 25 runs.

Figure 5.6: Experimental results on the values of the rewards for the one-dimensional
CFT model as a function of the coupling constant g. For each value of g we considered
the best 10 performing runs.

First, note the stability of the results obtained: the error band around the averages
with 1 standard deviation width is invisible and the average almost overlaps with the
reward from the best run. Therefore, we expect good precision in the C2

i estimates, at
least for lower dimensional operators. As we will see, this is not always the case, due
to the similarity of the scaling dimensions of some operators.

Second, the rewards increase monotonically as g grows, which means that the so-
lutions found by the algorithm to the crossing equations and the integral constraints
are more accurate at strong coupling. Therefore, we expect more accurate results for
large values of g. The small bump at g = 1 could be explained by the change in the

99

Chapter 5. Results

setting we apply at this value: for g < 1 we only give C2
1 as input while, for g ≥ 1, we

fix both C2
1 , C

2
2 and C2

3 .

Finally, figure 5.7 shows the reward as a function of the number of timesteps of
exploration by the agent, with the coupling constant fixed to 1 as reference. In par-
ticular, the blue lines and the light blue regions represent respectively the average and
standard deviation of the reward for the 10 runs with higher overall performance. The
rewards are averaged over 100 timesteps. Green vertical lines represent the approxi-
mated timesteps at which the neural networks are reset (the exact values are different
within each run), while red vertical lines correspond to the approximate timesteps
where the search window is reduced.

From the plot it is clear that the approach is working and the agent is learning
correctly how to achieve greater rewards, with the help of the search window reductions
as well.

5.3.2 Experiments at weak coupling

We start from the weak coupling case, in particular for values of g ≤ 1
2
. For these

values of the coupling constant, the available bounds for the second and third squared
OPE coefficients are wide, as already discussed in section 4.4. The precision is not
high enough to select a value inside the range provided by [CGJP22b] as input for the
algorithm, as we do for g ≥ 1 in section 5.3.3. Without a very good approximation for
C2

2 and C2
3 , results for further OPE coefficients would be biased toward any decision

made or, in general, not relevant.

For the first squared OPE coefficient C2
1 , on the other hand, we can fix this

value without major concerns for all values of g ≥ 1
100

, since the bounds provided
by [CGJP22a] have a width at least 8 orders of magnitude smaller than the lower
bound. The differences in values within these windows are mostly negligible for our
approach and algorithm.

In these experiments, we search for the values of the squared OPE coefficients C2
i

for 2 ≤ i ≤ 10 with a particular focus on C2
2 and C2

3 , in order to see if our results are in
accordance with the ones obtained by previous works with other methodologies. The
selected coupling constants are

g = {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 1} (5.3)

and, for each value, we ran 500 parallel runs.

Figures 5.8 and 5.9 contain the experimental results for the 25 runs with the best
reward on C2

2 and C2
3 . Colored in blue, we plot the individual values of the coefficient

for each run as well as their average value, while the theoretical bounds from [CGJP22a]
are represented by the green regions. In appendix A.2 we also give the numerical values
for our estimates and the upper and lower bounds (refer to table A.1).

100

5.3. Half-BPS Wilson line defect CFT

F
ig

ur
e

5.
7:

R
ew

ar
d

as
a

fu
nc

ti
on

of
th

e
nu

m
be

r
of

ti
m

es
te

ps
of

ex
pl

or
at

io
n

in
th

e
on

e-
di

m
en

si
on

al
m

od
el

w
it

h
co

up
lin

g
co

ns
ta

nt
g
=

1.
B

lu
e

po
in

ts
re

pr
es

en
t
th

e
av

er
ag

es
fo

r
th

e
to

p
10

ru
ns

,w
it

h
lig

ht
bl

ue
re

gi
on

s
of

he
ig

ht
1

st
an

da
rd

de
vi

at
io

n.
G

re
en

ve
rt

ic
al

lin
es

re
pr

es
en

t
th

e
ap

pr
ox

im
at

e
ti

m
e

st
ep

s
at

w
hi

ch
th

e
ne

ur
al

ne
tw

or
ks

ar
e

re
se

t,
w

it
h

re
d

lin
es

re
pr

es
en

ti
ng

th
e

w
in

do
w

re
du

ct
io

ns
.

101

Chapter 5. Results

Figure 5.8: Theoretical bounds [CGJP22a] and experimental values for C2
2 in the one

dimensional CFT model with g ≤ 1. Only the top 25 runs are considered.

Figure 5.9: Theoretical bounds [CGJP22a] and experimental values for C2
3 in the one

dimensional CFT model with g ≤ 1. Only the top 25 runs are considered.

As we can see from figures 5.8 and 5.9, the experimental estimates for C2
2 and C2

3 are
outside of the expected range, although the available windows are wide. The precision
is also very high, meaning that the algorithm always tends to find a minimum that it
believes contains the solution to the original problem. If we instead consider the sum

102

5.3. Half-BPS Wilson line defect CFT

C2
2 + C2

3 , the results found are more coherent with the theoretical bounds, as we can
see from figure 5.10.

Figure 5.10: Theoretical bounds [CGJP22a] and experimental values for C2
2 + C2

3 in
the one dimensional CFT model with g ≤ 1. Only the top 25 runs are considered.

A possible explanation lies in the fact that as g → 0 the scaling dimensions ∆2,∆3

converge to the same value. Since the conformal blocks are analytical functions of ∆,
their contribution to the conformal bootstrap equations are almost the same and can
guide the agent in the wrong direction. A more in-depth discussion of this effect can
be found in section 5.3.3 and in appendix A.2.1.

In the figures 5.8, 5.9 and 5.10 we also included the data for g = 1 as a reference
for the behavior at strong coupling. In the latter case, the average values for C2

2 , C
2
3

are not inside the bound but the confidence intervals of the form avg(C2
i) ± std(C2

i)
both include the available region, meaning that for the strong coupling case we have
more confidence on the results we obtain.

For completeness, in figure 5.11 we plot the other squared OPE coefficients C2
i with

4 ≤ i ≤ 10 as functions of the coupling constant g.

• In general, results show an increasing precision as the coupling constant grows
as expected. This can be clearly seen for C2

4 for which we expect the best
results. This also confirms the fact that the search is most complex when
g → 0, confirming the higher uncertainty for these values of the coupling constant
from [CGJP22a].

• Squared OPE coefficients C2
9 and C2

10 follow a very strange behavior, although
they are related to the highest dimensional operators where the OPE is truncated.
Therefore, we do not expect very good precision and relevance for these particular
results.

Figures A.4 and A.5 in appendix A.2 contain the same results, this time grouped
by the value of g.

103

Chapter 5. Results

(a) C2
4 (b) C2

5

(c) C2
6 (d) C2

7

(e) C2
8 (f) C2

9

(g) C2
10

Figure 5.11: Experimental results on the unknown squared OPE coefficients C2
i as a

function of the coupling constant g, one dimensional CFT model with g ≤ 1. Only the
best 25 runs are considered. Blue points represent the individual value for each run,
while yellow points and bars represent their means and standard deviations.

104

5.3. Half-BPS Wilson line defect CFT

5.3.3 Experiments at strong coupling

In this section, we present the original results we were able to obtain for the one-
dimensional CFT studied. In particular, we will study the squared OPE coefficients,
indicated by C2

i with i = 1, . . . , 10 for values of the coupling g ≥ 1. In this setting, the
bounds on C2

1 , C
2
2 , C

2
3 provided by [CGJP22b] are tight.

For the first squared OPE coefficient C2
1 , the same remarks as in section 5.3.2 apply,

with the precision being sufficient to fix this value as input. For what concerns C2
2 and

C2
3 , the difference between the upper and the lower bounds is different between the

strong coupling case and the weak coupling one. As it can be seen from figure 4.4, the
bounds start very wide and end up being very small for coupling constants g ≥ 1.

Further calculations show that, for g = 1
2

and both C2
2 and C2

3 , the distance between
the middle point of the bounds and any other point in the available window is, at its
lowest, around 3% of the lower bound. For weak coupling the window is wider for
all values of g ≤ 1

2
, even with both integral constraints applied, as we can clearly

see from figure 4.4. The case of 1
2
≤ g < 1 has more precision, but not enough to

make a confident choice on the actual value. Furthermore, as from figures 5.8 and 5.9,
experimental results on C2

2 and C2
3 are not coherent with the theoretical bounds until

g = 1, with more accuracy as the coupling constant grows.
On the other hand, at g ≥ 1 the relative error on the second and third squared

OPE coefficients go below 1% and the precision improves monotonically for 1 ≤ g ≤ 4.
To have confidence in our results, we therefore decided that for all coupling constants
g ≥ 1 the first three squared OPE coefficients would also be used as input for the
algorithm, with C2

4 , . . . , C
2
10 being the only unknown CFT data for the search. This is

in line with what we have discussed in section 4.4 and we will use the middle points of
the bounds for C2

1 , C
2
2 , C

2
3 as input values for the algorithm.

We ran experiments with the following coupling constants:

g = {1, 1.5, 2, 2.5, 3, 3.5, 4}. (5.4)

For each value, a total of 500 parallel runs were performed. Figure 5.12 shows the
experimental results obtained in the 25 runs with the best overall rewards, with each
squared OPE coefficient C2

i as a function of the coupling constant g. Light blue points
represent the individual values for each experiment (one for each of the top 25 runs)
whereas the yellow points represent the averages, with error bands of a single standard
deviation.

As we can see, the results vary significantly between different values of g. Not only
for the mere values found, which is expected, but mainly in terms of relative error. In
particular, it is evident that the ratio std(C2

i)

avg(C2
i)

changes significantly between the different
squared OPE coefficients C2

i considered. This can be seen as well in figure 5.13, where
all C2

i for a fixed coupling constant are plotted.
We refer to the appendix, section A.3, for the numerical values of the coefficients

found. In particular, tables A.2, A.3, A.4 contain the results in the form avg(C2
i) ±

std(C2
i).

We are now ready to comment on the results obtained:

• The most precise results are the ones for the squared OPE coefficient C2
4 , which

corresponds to the lowest dimensional operator with unknown data. This is
indeed something to expect since low-dimensional operators have the highest
influence on the crossing equation.

105

Chapter 5. Results

(a) C2
4 (b) C2

5

(c) C2
6 (d) C2

7

(e) C2
8 (f) C2

9

(g) C2
10

Figure 5.12: Experimental results on the unknown squared OPE coefficients C2
i as a

function of the coupling constant g, one dimensional CFT model with g ≥ 1. Only the
best 25 runs are considered. Blue points represent the individual value for each run,
while yellow points and bars represent their means and standard deviations.

106

5.3. Half-BPS Wilson line defect CFT

(a) g = 1 (b) g = 1.5

(c) g = 2 (d) g = 2.5

(e) g = 3 (f) g = 3.5

(g) g = 4

Figure 5.13: Experimental results on the unknown squared OPE coefficients C2
i , one

dimensional CFT model with g ≥ 1. Results are grouped by the value of the coupling
constant g. Only the best 25 runs are considered. Blue points represent the individual
value for each run, while yellow points and bars represent their means and standard
deviations.

107

Chapter 5. Results

• Results for C2
5 and C2

6 start well at g = 1 but lose precision as g increases. This is
counter-intuitive, since previous results on C2

1 , C
2
2 , C

2
3 with other methodologies

[CGJP22a] show the opposite behavior. We shortly try to find an explanation
for this.

• The squared OPE coefficient C2
7 shows instead an increased precision as g grows,

although this could also be related to the fact that values seem to converge to
0. Indeed, previous research with perturbative approaches [FM21] showed that,
up to the 4-th perturbative order, C2

7 → 0 as g → ∞. Our experimental results
seem to confirm this fact.

• Results for C2
8 and C2

10 are the least accurate overall in terms of relative error,
while C2

9 has surprisingly high precision. We should also keep in mind that results
for these operators, the ones with the highest scaling dimension, are the ones with
the least expected precision.

In general, squared OPE coefficients seem to follow an interesting pattern: the relative
error increases with g and we seek to find a possible explanation for this. Let us now
recall the expression of the conformal block decomposition in the model:

f(x) = FI(x) + C2
BPSFB2(x) +

∞∑
n=1

C2
nF∆n(x). (5.5)

Focusing on the last sum, which contains the conformal blocks with the unknown CFT
data, recall that F∆n(x) is

F∆(x) =
x∆+1

1−∆
2F1(∆ + 1,∆+ 2, 2∆ + 4; x) (5.6)

which is an analytical function of the scaling dimension ∆.
Taking a look back at figure 4.1, we can see that many of the scaling dimensions

converge to the same values as g →∞. In particular, ∆5 and ∆6 are almost everywhere
overlapping in the graph, with their distance becoming even smaller as g increases. This
leads to the fact that F∆5 and F∆6 have very close values for every x and, hence, could
be indistinguishable by the algorithm. With an abuse of notation, we can rewrite this
observation as

C2
5F∆5 + C2

6F∆6 ≈ (C2
5 + C2

6)F∆5 , (5.7)

with the approximation becoming more and more trustworthy as g grows. Hence, the
squared OPE coefficients C2

5 and C2
6 are in some sense correlated and, if we consider the

following transformation C2
5 7→ C2

5 + δ, C2
6 7→ C2

6 − δ with δ ∈ R small, formula (5.5),
remains almost unchanged within this approximation. It seems therefore reasonable
that the uncertainty on ∆5 and ∆6 increases as the distance between ∆5 and ∆6

decreases. This can be seen in figure 5.14 where we plotted the ratios std(C2
5)

avg(C2
5)

and
std(C2

6)

avg(C2
6)

as functions of |∆5 −∆6|.

108

5.3. Half-BPS Wilson line defect CFT

(a) Normalized uncertainty on C2
5 (b) Normalized uncertainty on C2

6

Figure 5.14: Relative error on C2
5 (left) and C2

6 (right) as a function of the distance
between ∆5 and ∆6 for the one dimensional model, g ≥ 1.

Furthermore, being

C2
5F∆5 + C2

6F∆6 ≈ (C2
5 + C2

6)F∆5 (5.8)

we should also have that (C2
5 + C2

6) has very good precision since it is the coefficient
of this combined conformal block. In fact, image 5.15 shows that the uncertainty on
C2

5 + C2
6 is lower and comparable for almost every g.

Figure 5.15: Relative error on C2
5 + C2

6 as a function of the distance between ∆5 and
∆6 for the one dimensional model, g ≥ 1

Similar reasoning is also valid for C2
9 and C2

10, as it can be seen from images 5.16
and 5.17. We are truncating the crossing equation at the tenth operator and we do not
expect much precision on ∆9 and ∆10. For some reason, the algorithm gives an almost
perfect precision on C2

9 and complete uncertainty on C2
10, although there is currently

no explanation for this behavior.

109

Chapter 5. Results

(a) Normalized uncertainty on C2
9 (b) Normalized uncertainty on C2

10

Figure 5.16: Relative error on C2
9 (left) and C2

10 (right) as a function of the distance
between ∆9 and ∆10 for the one dimensional model, g ≥ 1.

Figure 5.17: Relative error on C2
9 + C2

10 as a function of the distance between ∆9 and
∆10 for the one dimensional model, g ≥ 1

Finally, we refer to the appendix, section A.2, for a similar analysis on C2
2 , C

2
3 for

the weak coupling case.

5.4 Discussion

The Bootstrap Stochastic Optimization algorithm is a useful tool for finding the un-
known CFT data in the crossing equation, although it needs some precautions. The
nature of the Reinforcement Learning algorithm requires us to consider as most promis-
ing results the ones with the highest reward obtained by the agent. In fact, when no
analytical or numerical values are available, the reward is the only metric we have to
judge the results since it expresses how the crossing equation is closer to zero with the
estimates of the CFT data found.

For the Ising 2D model:

• The free search is a hard task and can be misleading. The highest reward
obtained was associated to values of (∆⃗, C⃗2) very different from the theoretical

110

5.4. Discussion

ones which, plugged directly into the formula, provided a smaller value for the
reward.

• High errors may be related to the approximation we have made. The
original crossing equation is truncated up to a ∆max and is tested only on a set
of Nz = 180 points in the complex plane, not on the whole range of admissible
cross-ratio values.

• Constraining the values of the scaling dimensions improves the results.
The smaller search space, related to a simplified landscape of the crossing equa-
tion helps the algorithm to find the correct CFT data.

• Constraining the problem increases the stability and the precision as
well. Results are more stable and the precision increases as we increase the
number of scaling dimensions given as input. Since in the one-dimensional CFT
the scaling dimensions for the first 10 operators are known, the results can be
promising.

We then moved to the actual model of interest: the one-dimensional CFT. In all
the experiments we gave as input the scaling dimension values ∆i for all the operators.

With some reward engineering, we determined that the best form for the reward was
given by the formula R2 in (4.38), in line with our expectation. This formula pushes
all three constraints, the crossing equation and the two integral ones, to move toward
zero in order to increase the reward. Integral constraints seem easier to optimize, as
the optimal weights found are w1 = 104, w2 = 105 and, in the experiments using the
reward R1 in 4.38, the components in the sum corresponding to the integral constraints
were the first to grow. In general, it seems that this approach of optimizing them at
the same time at the denominator is more efficient.

As seen from figure 5.7, the agent also successfully learns to achieve greater rewards
as the exploration goes on, which also means that it can find good estimates for the
solution of the crossing equation and the integral constraints. Results are also very
stable, meaning that we can trust the estimates obtained without performing a huge
number of parallel runs.

To increase even more the chance of finding meaningful results we added as input
the first squared OPE coefficient for all values of the coupling constant g for the 1D
CFT model.

For the one-dimensional model:

• Values of the coupling constant g < 1 are the hardest to explore. Our
estimates for C2

2 and C2
3 are always outside the expected range for g < 1. In

section A.2 we also try to develop further including an analysis on the sum
C2

2 + C2
3 but the weak coupling case remains still hard to tackle. Although very

precise, results are not accurate or promising compared to other approaches.

• At strong coupling, we were able to produce interesting results. As
expected, the results with the highest precision are related to the lowest dimen-
sional operators, with C2

4 being clearly the most accurate. Similarly, except for
C2

9 which makes a strange and unmotivated exception, higher dimensional oper-
ators show the least precision. This was expected, as these are also the operators
where the truncation of the OPE is performed and they could be affected by this
approximation.

111

Chapter 5. Results

• C2
7 seem to converge to 0 as g increases. From figure 5.12 it seems that

C2
7 → 0 as g →∞. This fact confirms the results in [FM21], where it was proven

up to the 4-th perturbative degree.

• Similar scaling dimensions are related to lower precision. We also in-
vestigated the results on the precision for operators with very similar scaling
dimensions. When the distance between ∆i and ∆j is small, the algorithm tends
to produce estimates of C2

i and C2
j with low precision, with their sum being more

accurate. We showed as an example the cases of C2
5 , C

2
6 and C2

9 , C
2
10 and we also

tried to explain this behavior in section 5.3.3.

112

Chapter 6

Conclusion

In this thesis, we studied how Reinforcement Learning can be applied to solve a phys-
ical equation related to the Conformal Field Theory. In particular, we developed a
particular implementation of the Soft Actor-Critic algorithm and translated the CFT
setting into an RL environment. The conformal bootstrap equation, the main equation
we want to solve, is evaluated on a set of complex points from which we calculate the
reward and the information needed for the agent to learn how to solve this optimization
problem.

In chapter 4 we described the Bootstrap Stochastic Optimization algorithm, as well
as all the remarks required to implement and use the algorithm in the CFT framework.
The two models we applied the algorithms on are the 2D Ising model, for which an
analytical solution for the crossing equation is available, and the 1D defect CFT defined
on the 1

2
Wilson line in the 4D N = 4 super Yang-Mills theory.

While the Ising 2D model is used as a toy model to validate the approach, this work
is the first application of RL to the one-dimensional model studied. In the 1D defect
CFT, previous results were able to find with sufficient numerical precision the values
for the first 10 scaling dimensions. Theoretical bounds on C2

1 , C
2
2 , C

2
3 are also available,

but the precision depends on the main parameter of the model: the coupling constant
g. This theory has also two additional integral constraints on the 4-point function that
can be enforced. With some reward engineering, we found a way to integrate these
additional constraints into the framework to constrain the search even more.

For the 2D Ising model we showed that if no additional information is provided
and the search is performed on all 22 (or more) unknowns of the crossing equation,
the results can be misleading, as the CFT data obtained by the agent corresponds
to a different solution from the analytical one but with a greater reward. We then
constrained the search by giving as input to the algorithm an increasing number of
scaling dimensions and the results started improving. The CFT data we obtained was
more accurate and precise with increased stability in the rewards as well. This setting
replicates more accurately our original experiments on the one-dimensional model,
where all the values of ∆ are given as input. With these improvements, we are more
confident that the results for the next experiments can be promising, even if there is
no complete analytical solution available.

We finally studied 1D defect CFT, making a distinction between the weak coupling
and the strong coupling cases. For small values of g, with the additional input of
the first squared OPE coefficient C2

1 , we showed that our estimates were outside the
expected range for C2

2 , C
2
3 , although the relative error was small for all g < 1. The

113

Chapter 6. Conclusion

small coupling case remains hard to tackle.
For the strong coupling case, on the other hand, the theoretical bounds for C2

2 , C
2
3

are tight enough to give their average values as input to the algorithm, leading to
a simpler optimization problem. We studied the squared OPE coefficients and their
precision as a function of the coupling constant with g ≥ 1 and we were able to obtain
estimates for C2

i , 4 ≤ i ≤ 10, for which no previous accurate results were available.
As expected, the highest dimensional operators near the cutoff are related to the least
precision, while the most accurate results were for C2

4 .
We also noticed that couples of operators with very similar scaling dimensions were

related to a lower precision, while the sum between their squared OPE coefficient had a
lower relative error. We tried to give an explanation for this observation by leveraging
the fact that the conformal blocks are analytical functions.

Finally, we also noted that C2
7 seems to converge to 0 as g →∞, in agreement with

previous results with perturbative approaches.
Possible future works in this direction include the investigation of higher dimen-

sional operators and the integration of multiple crossing equations (related to different
operators) into the same framework. Additional constraints we include in the algo-
rithm can significantly improve the precision as previous results have shown. From an
RL and ML point of view, we can improve the performance and make the search easier
by feeding the agent with additional information on the operator he is currently acting
on. As of now, operators are treated equally, with the agent identifying them with only
the repetitive cycling between them. Finally, physically informed models and neural
networks can enforce physical constraints or learn physical laws automatically and are
a concrete possibility to improve the results.

114

Appendix A

Further results

A.1 ⟨σσσσ⟩ correlator in the Ising 2D model

The ⟨σσσσ⟩ correlator leads to a more complex problem than the ⟨ϵϵϵϵ⟩ correlator:
it involves a total of 16 conformal blocks with ∆ ≤ ∆max = 10.5, leading to a total
of 32 unknowns. The results found are worse than the ⟨ϵϵϵϵ⟩ correlator, as we would
expect. The reward obtained from the theoretical values is 10590097.015 while the
average for the top 25 runs and the best individual run are respectively 3694.7704 and
5575.033, various orders of magnitudes smaller. In figures A.1 and A.2 it seems also
that the agent had not the possibility to explore widely the solution space, especially
for the scaling dimensions. The ∆ values are seemingly close to each other for the
top 25 runs while also being very far away from the analytical solution. This could be
explained by the use of non-optimal parameters since we did not perform a grid search
for this correlator in particular. This was not the main focus of this work and, being
the experiment time demanding, we chose not to study this correlator further.

Figure A.1: Results for the scaling dimensions ∆i of the operators in the ⟨σσσσ⟩
correlator, 2D Ising model. Red points represent the theoretical values and blue points
represent experimental values for the 25 runs with the best reward.

115

Appendix A. Further results

Figure A.2: Results for the squared OPE coefficients C2
i of the operators in the ⟨σσσσ⟩

correlator, 2D Ising model. Red points represent the theoretical value and blue points
represent experimental values for the 25 runs with the best reward.

For what concerns the constrained search experiments, results were worse than the
ones for the ⟨ϵϵϵϵ⟩ correlator as expected. However, even for this correlator, the relative
error on the squared OPE coefficients decreases as we give more ∆’s as input as we
can see from figure A.3.

Figure A.3: Relative error on the squared OPE coefficients C2
i as a function of the

number of scaling dimensions ∆i given as input. ⟨σσσσ⟩ correlator in the 2D Ising
model. Only the best run for each case is considered.

116

A.2. Experiments at weak coupling

A.2 Experiments at weak coupling

In this section, we provide the numerical values and some additional graphs for the
results at weak coupling in section 5.3.2. In table A.1 we collect the numerical estimates
of C2

2 , C
2
3 obtained in our experiments, together with the corresponding bounds from

[CGJP22b]. Our results are in the form avg(C2
i) ± std(C2

i), where the mean and the
standard deviation (or uncertainty) are calculated on the 25 runs that obtained the
best reward.

C2
2 Lower C2

2 Upper C2
2 experimental C2

3 Lower C2
3 Upper C2

3 experimental
g = 0.05 0.078952 0.133857 8.611± 15.708× 10−5 0.065284 0.122818 2.057± 0.001× 10−2

g = 0.10 0.085494 0.114075 5.993± 0.063× 10−2 0.085575 0.119813 1.501± 0.007× 10−1

g = 0.15 0.086939 0.107832 7.898± 0.062× 10−2 0.091939 0.122087 1.328± 0.009× 10−1

g = 0.20 0.087271 0.101766 8.225± 0.062× 10−2 0.097415 0.122897 1.305± 0.012× 10−1

g = 0.25 0.084145 0.094569 7.924± 0.035× 10−2 0.103561 0.125371 1.337± 0.008× 10−1

g = 0.30 0.078634 0.086697 7.297± 0.028× 10−2 0.110483 0.129605 1.402± 0.007× 10−1

g = 0.35 0.072357 0.078986 6.57± 0.016× 10−2 0.117757 0.134551 1.485± 0.004× 10−1

g = 0.40 0.066450 0.072044 5.736± 0.019× 10−2 0.124799 0.139115 1.578± 0.005× 10−1

g = 0.45 0.061380 0.066057 5.077± 0.015× 10−2 0.131208 0.142791 1.640± 0.003× 10−1

g = 0.50 0.057203 0.061181 4.765± 0.015× 10−2 0.136181 0.148447 1.631± 0.003× 10−1

g = 0.60 0.050998 0.053931 4.437± 0.038× 10−2 0.142468 0.148446 1.587± 0.007× 10−1

g = 0.70 0.046696 0.048706 4.172± 0.083× 10−2 0.145739 0.149352 1.563± 0.014× 10−1

g = 0.80 0.043568 0.045003 3.901± 0.11× 10−2 0.146815 0.149150 1.552± 0.017× 10−1

g = 0.90 0.041211 0.042279 3.726± 0.12× 10−2 0.146769 0.148377 1.534± 0.015× 10−1

g = 1.00 0.039378 0.040198 3.819± 0.16× 10−2 0.146175 0.147339 1.485± 0.022× 10−1

Table A.1: Theoretical bounds [CGJP22a] and experimental values for C2
2 and C2

3 in
the one dimensional CFT model with g ≤ 1. Only the top 25 runs are considered.
Experimental results are in the form avg(C2

i)± std(C2
i).

Figures A.4 and A.5 contain the the experimental results for the squared OPE
coefficients C2

i for 4 ≤ i ≤ 10 grouped by the coupling constant g.

A.2.1 Second and third squared OPE coefficients

Recall that, in section 5.3.3, we tried to give an explanation for the loss in precision
for C2

i values related to operators with very similar squared OPE coefficients. From
figure 4.1 we can also see that, as g → 0, the values for ∆2 and ∆3 tend towards the
same value of 2. This may be one of the root causes of the loss in accuracy we found
for C2

2 and C2
3 . In fact, our experimental data show that the experimental values of

these OPE coefficients are outside the expected bounds as in figures 5.8, 5.9.
We then want to investigate if the sum of the squared OPE coefficients C2

2 + C2
3 is

inside the sum of the theoretical bounds found in [CGJP22a]. Figure 5.10 represents
the experimental data for C2

2 + C2
3 , with the available region being determined by the

set sum of the individual ones.
As we can see, most experimental values are now inside the bounds which are now

very wide. The situation remains unclear since coupling constants close to g ∼ 0.4
have a greater distance between ∆2 and ∆3, but the corresponding sums C2

2 + C2
3 lie

outside the available regions.
This confirms the difficulty in finding a good approach for the weak coupling case.

117

Appendix A. Further results

(a) g = 0.05 (b) g = 0.10

(c) g = 0.15 (d) g = 0.20

(e) g = 0.25 (f) g = 0.30

(g) g = 0.35 (h) g = 0.40

Figure A.4: Experimental results on the unknown squared OPE coefficients C2
i as a

function of the coupling constant g, one dimensional CFT model with g ≤ 1. Only the
best 25 runs are considered. Blue points represent the individual value for each run,
while yellow points and bars represent their means and standard deviations.118

A.2. Experiments at weak coupling

(a) g = 0.45 (b) g = 0.50

(c) g = 0.60 (d) g = 0.70

(e) g = 0.80 (f) g = 0.90

(g) g = 1.00

Figure A.5: Experimental results on the unknown squared OPE coefficients C2
i as a

function of the coupling constant g, one dimensional CFT model with g ≤ 1. Only the
best 25 runs are considered. Blue points represent the individual value for each run,
while yellow points and bars represent their means and standard deviations.119

Appendix A. Further results

A.3 Experiments at strong coupling

In tables A.2, A.3, A.4 we summarize the results found for the 25 runs that got the
best reward for each g in the strong coupling case, as described in section 5.3.3. The
results are in the form avg(C2

i) ± std(C2
i), where the average and standard deviation

are calculated on the selected runs.

g = 1.0 g = 1.5
C2

4 1.059± 0.0313× 10−2 7.319± 6.862× 10−4

C2
5 2.696± 1.480× 10−3 1.950± 0.531× 10−2

C2
6 3.493± 0, 174× 10−2 2.273± 0.544× 10−2

C2
7 5.640± 4.825× 10−6 4.109± 3.564× 10−6

C2
8 0.966± 1.011× 10−4 8.573± 6.146× 10−4

C2
9 2.529± 0.0049× 10−2 1.349± 0.0033× 10−2

C2
10 2.035± 2.011× 10−5 2.141± 3.207× 10−5

Table A.2: Experimental values for the unknown squared OPE coefficients in the one
dimensional, CFT model, g = 1, 1.5. Only the top 25 runs are considered. Experimen-
tal results are in the form avg(C2

i)± std(C2
i).

g = 2.0 g = 2.5 g = 3.0
C2

4 8.346± 6.310× 10−4 1.648± 1.155× 10−3 4.896± 2.322× 10−3

C2
5 2.233± 0.470× 10−2 1.303± 0.589× 10−2 8.239± 6.812× 10−3

C2
6 1.561± 0.462× 10−2 2.105± 0.624× 10−2 2.061± 0.889× 10−2

C2
7 2.171± 1.611× 10−6 1.894± 1.631× 10−6 1.823± 1.460× 10−6

C2
8 8.335± 6.771× 10−4 8.915± 7.371× 10−4 7.519± 6.371× 10−4

C2
9 9.557± 0.0252× 10−3 7.723± 0.0366× 10−3 6.670± 0.0401× 10−3

C2
10 2.162± 2.089× 10−5 2.991± 3.391× 10−5 3.953± 4.130× 10−5

Table A.3: Experimental values for the unknown squared OPE coefficients in the one
dimensional, CFT model, g = 2, 2.5, 3. Only the top 25 runs are considered. Experi-
mental results are in the form avg(C2

i)± std(C2
i).

g = 3.5 g = 4.0
C2

4 1.006± 0.204× 10−2 1.662± 0.171× 10−2

C2
5 7.107± 6.139× 10−3 5.491± 3.573× 10−3

C2
6 1.512± 0.779× 10−3 8.419± 4.374× 10−3

C2
7 1.550± 0.916× 10−6 1.323± 1.070× 10−6

C2
8 6.638± 5.866× 10−4 1.228± 0.987× 10−3

C2
9 5.992± 0.0350× 10−3 5.526± 0.0362× 10−3

C2
10 4.296± 3.275× 10−5 3.439± 3.437× 10−5

Table A.4: Experimental values for the unknown squared OPE coefficients in the one
dimensional, CFT model, g = 3.5, 4. Only the top 25 runs are considered. Experimen-
tal results are in the form avg(C2

i)± std(C2
i).

120

A.4. Higher dimensional operators in the 1D CFT

A.4 Higher dimensional operators in the 1D CFT

We performed an additional experiment including as unknowns the CFT data of higher
dimensional operators. In fact, we added 5 terms to the expansion of the conformal
blocks (4.24), obtaining the following

f(x) = FI(x) + C2
BPSFB2(x) +

15∑
n=1

C2
nF∆n(x) (A.1)

We only considered the case of a coupling constant g = 1 and we fixed both the first
10 scaling dimensions ∆n, 1 ≤ n ≤ 10 and C2

1 , C
2
2 , C

2
3 as already discussed in order to

reduce the complexity of this experiment as much as possible.
Unfortunately, results on the unknown operators from the 11-th to the 15-th are

not precise at all as can be seen from figures A.6 and A.7.

Figure A.6: Experimental results on the unknown scaling dimensions ∆i of higher
dimensional operators in the one-dimensional CFT model with g = 1. Only the best
25 runs are considered. Blue points represent the individual value for each run, while
yellow points and bars represent their means and standard deviations.

121

Appendix A. Further results

Figure A.7: Experimental results on the unknown squared OPE coefficients C2
i of

higher dimensional operators in the one-dimensional CFT model with g = 1. Only the
best 25 runs are considered. Blue points represent the individual value for each run,
while yellow points and bars represent their means and standard deviations.

122

Bibliography

[BAA+11] Niklas Beisert, Changrim Ahn, Luis F. Alday, Zoltàn Bajnok, James M.
Drummond, Lisa Freyhult, Nikolay Gromov, Romuald A. Janik, Vladimir
Kazakov, Thomas Klose, Gregory P. Korchemsky, Charlotte Krist-
jansen, Marc Magro, Tristan McLoughlin, Joseph A. Minahan, Rafael I.
Nepomechie, Adam Rej, Radu Roiban, Sakura Schäfer-Nameki, Christoph
Sieg, Matthias Staudacher, Alessandro Torrielli, Arkady A. Tseytlin, Pe-
dro Vieira, Dmytro Volin, and Konstantinos Zoubos. Review of AdS/CFT
integrability: An overview. Letters in Mathematical Physics, 99(1-3):3–32,
oct 2011.

[BCN18] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods
for large-scale machine learning. SIAM Review, 60(2):223–311, 2018.

[Bot91] Françoise (Advisor (for a thesis or dissertation)) Bottou, Léon; Fogelman.
Une approche théorique de l’apprentissage connexionniste et applications à
la reconnaissance de la parole. PhD thesis, Université de Paris 11, Orsay,
France Degree-grantor, 1991.

[BPZ84] A.A. Belavin, A.M. Polyakov, and A.B. Zamolodchikov. Infinite conformal
symmetry in two-dimensional quantum field theory. Nuclear Physics B,
241(2):333–380, 1984.

[CGJP22a] Andrea Cavaglià, Nikolay Gromov, Julius Julius, and Michelangelo Preti.
Bootstrability in defect CFT: integrated correlators and sharper bounds.
Journal of High Energy Physics, 2022(5), may 2022.

[CGJP22b] Andrea Cavaglià, Nikolay Gromov, Julius Julius, and Michelangelo Preti.
Integrability and conformal bootstrap: One dimensional defect conformal
field theory. Physical Review D, 105(2), jan 2022.

[CT12] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley,
2012.

[Cyb89] G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2(4):303–314, 1989.

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient meth-
ods for online learning and stochastic optimization. Journal of Machine
Learning Research, 12(61):2121–2159, 2011.

[DK06a] Nadav Drukker and Shoichi Kawamoto. Small deformations of supersym-
metric wilson loops and open spin-chains. Journal of High Energy Physics,
2006(07):024–024, jul 2006.

123

Bibliography

[DK06b] Nadav Drukker and Shoichi Kawamoto. Small deformations of supersym-
metric wilson loops and open spin-chains. Journal of High Energy Physics,
2006(07):024–024, jul 2006.

[DKN+19] Patrick Dorey, Gregory Korchemsky, Nikita Nekrasov, Volker Schomerus,
Didina Serban, and Leticia Cugliandolo. Integrability: From Statistical
Systems to Gauge Theory: Lecture Notes of the Les Houches Summer
School: Volume 106, June 2016. Oxford University Press, 07 2019.

[DO01] F.A. Dolan and H. Osborn. Conformal four point functions and the oper-
ator product expansion. Nuclear Physics B, 599(1-2):459–496, apr 2001.

[DO04] F.A. Dolan and H. Osborn. Conformal partial waves and the operator
product expansion. Nuclear Physics B, 678(1-2):491–507, feb 2004.

[DPG+14] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
Surya Ganguli, and Yoshua Bengio. Identifying and attacking the saddle
point problem in high-dimensional non-convex optimization. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 27. Curran
Associates, Inc., 2014.

[EvHS16] Alejandro Castedo Echeverri, Benedict von Harling, and Marco Serone.
The effective bootstrap, 2016.

[FGG73] S Ferrara, A.F Grillo, and R Gatto. Tensor representations of conformal
algebra and conformally covariant operator product expansion. Annals of
Physics, 76(1):161–188, 1973.

[FK95] L.D. Faddeev and G.P. Korchemsky. High energy QCD as a completely
integrable model. Physics Letters B, 342(1-4):311–322, jan 1995.

[FM21] Pietro Ferrero and Carlo Meneghelli. Bootstrapping the half-bps line defect
cft in n=4 supersymmetric yang-mills theory at strong coupling. Phys.
Rev. D, 104(8):L081703, 2021.

[Fuk69] Kunihiko Fukushima. Visual feature extraction by a multilayered network
of analog threshold elements. IEEE Transactions on Systems Science and
Cybernetics, 5(4):322–333, 1969.

[FvHM18] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function
approximation error in actor-critic methods. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 1587–1596. PMLR, 10–15 Jul 2018.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[GGJ20] David Grabner, Nikolay Gromov, and Julius Julius. Excited states of one-
dimensional defect cfts from the quantum spectral curve. Journal of High
Energy Physics, 2020(7):42, 2020.

124

Bibliography

[GKLV14] Nikolay Gromov, Vladimir Kazakov, Sèbastien Leurent, and Dmytro
Volin. Quantum spectral curve for planar n = 4 super-yang-mills theory.
Physical Review Letters, 112(1), jan 2014.

[GKLV15] Nikolay Gromov, Vladimir Kazakov, Sébastien Leurent, and Dmytro
Volin. Quantum spectral curve for arbitrary state/operator in
AdS5/CFT4. Journal of High Energy Physics, 2015(9), sep 2015.

[GKP98] S.S. Gubser, I.R. Klebanov, and A.M. Polyakov. Gauge theory correlators
from non-critical string theory. Physics Letters B, 428(1-2):105–114, may
1998.

[GRT17] Simone Giombi, Radu Roiban, and Arkady A. Tseytlin. Half-BPS wilson
loop and AdS2/CFT1. Nuclear Physics B, 922:499–527, sep 2017.

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feed-
forward networks are universal approximators. Neural Networks, 2(5):359–
366, 1989.

[HTAL17a] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Re-
inforcement learning with deep energy-based policies. In Doina Precup
and Yee Whye Teh, editors, Proceedings of the 34th International Confer-
ence on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 1352–1361. PMLR, 06–11 Aug 2017.

[HTAL17b] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Re-
inforcement learning with deep energy-based policies, 2017.

[HZAL18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 1861–1870.
PMLR, 10–15 Jul 2018.

[JEP+21] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Fig-
urnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Au-
gustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon
A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig
Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steineg-
ger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein,
David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
meet Kohli, and Demis Hassabis. Highly accurate protein structure pre-
diction with alphafold. Nature, 596(7873):583–589, 2021.

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

125

Bibliography

[KNPR23] Gergely Kàntor, Vasilis Niarchos, Constantinos Papageorgakis, and Paul
Richmond. 6d (2,0) bootstrap with the soft-actor-critic algorithm. Physical
Review D, 107(2), jan 2023.

[KPN22a] Gergely Kàntor, Constantinos Papageorgakis, and Vasilis Niarchos. Solv-
ing conformal field theories with artificial intelligence. Physical Review
Letters, 128(4), jan 2022.

[KPN22b] Gergely Kàntor, Constantinos Papageorgakis, and Vasilis Niarchos. Solv-
ing conformal field theories with artificial intelligence. Physical Review
Letters, 128(4), jan 2022.

[KPSD14] Filip Kos, David Poland, and David Simmons-Duffin. Bootstrapping
mixed correlators in the 3d ising model. Journal of High Energy Physics,
2014(11), nov 2014.

[LHP+16] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning. In Yoshua Bengio and Yann Le-
Cun, editors, 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016.

[Lip94] L. N. Lipatov. Asymptotic behavior of multicolor qcd at high energies
in connection with exactly solvable spin models. JETP Lett., 59:596–599,
1994.

[LMM18] Pedro Liendo, Carlo Meneghelli, and Vladimir Mitev. Bootstrapping the
half-BPS line defect. Journal of High Energy Physics, 2018(10), oct 2018.

[LVS22] Alessandro Laio, Uriel Luviano Valenzuela, and Marco Serone. Monte carlo
approach to the conformal bootstrap. Physical Review D, 106(2), jul 2022.

[Mal98] Juan Maldacena. Wilson loops in large n field theories. Physical Review
Letters, 80(22):4859–4862, jun 1998.

[Mit97] T.M. Mitchell. Machine Learning. McGraw-Hill International Editions.
McGraw-Hill, 1997.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

[MNW+18] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I. Jordan, and Ion Stoica. Ray: A distributed framework for
emerging ai applications. In Proceedings of the 13th USENIX Conference
on Operating Systems Design and Implementation, OSDI’18, pages 561–
577, USA, 2018. USENIX Association.

126

Bibliography

[MZ03] Joseph A Minahan and Konstantin Zarembo. The bethe-ansatz for script n
= 4 super yang-mills. Journal of High Energy Physics, 2003(03):013–013,
mar 2003.

[Nes83] Yurii Nesterov. A method for solving the convex programming problem
with convergence rate o

(
1
k2

)
. Dokl. Akad. Nauk SSSR,, 269(3):543–547,

1983.

[NH10] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th International
Conference on International Conference on Machine Learning, ICML’10,
page 807–814, Madison, WI, USA, 2010. Omnipress.

[OMK19] Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita. A survey of the
usages of deep learning in natural language processing, 2019.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library, 2019.

[Pol64] B.T. Polyak. Some methods of speeding up the convergence of iteration
methods. USSR Computational Mathematics and Mathematical Physics,
4(5):1–17, 1964.

[Pol74] A. M. Polyakov. Nonhamiltonian approach to conformal quantum field
theory. Zh. Eksp. Teor. Fiz., 66:23–42, 1974.

[Pol98] Joseph Polchinski. String Theory, volume 1 of Cambridge Monographs on
Mathematical Physics. Cambridge University Press, 1998.

[PRER12] Duccio Pappadopulo, Slava Rychkov, Johnny Espin, and Riccardo Rat-
tazzi. OPE Convergence in Conformal Field Theory. Phys. Rev. D,
86:105043, 2012.

[PRV19] David Poland, Slava Rychkov, and Alessandro Vichi. The conformal boot-
strap: Theory, numerical techniques, and applications. Reviews of Modern
Physics, 91(1), jan 2019.

[Qua15] Joshua D. Qualls. Lectures on conformal field theory, 2015.

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learn-
ing representations by back-propagating errors. Nature, 323:533–536, 1986.

[RM51] Herbert Robbins and Sutton Monro. A stochastic approximation method.
The Annals of Mathematical Statistics, 22(3):400 – 407, 1951.

[RN94] G. Rummery and Mahesan Niranjan. On-line q-learning using connection-
ist systems. Technical Report CUED/F-INFENG/TR 166, 11 1994.

127

Bibliography

[RRSD+21] Marten Reehorst, Slava Rychkov, David Simmons-Duffin, Benoit Sirois,
Ning Su, and Balt van Rees. Navigator function for the conformal boot-
strap. SciPost Physics, 11(3), sep 2021.

[RRTV08] Riccardo Rattazzi, Vyacheslav S Rychkov, Erik Tonni, and Alessandro
Vichi. Bounding scalar operator dimensions in 4d cft. Journal of High
Energy Physics, 2008(12):031–031, dec 2008.

[Ryc17] Slava Rychkov. EPFL Lectures on Conformal Field Theory in D ≥ 3
Dimensions. Springer International Publishing, 2017.

[SAC17] John Schulman, Pieter Abbeel, and Xi Chen. Equivalence between policy
gradients and soft q-learning. CoRR, abs/1704.06440, 2017.

[SB18] R.S. Sutton and A.G. Barto. Reinforcement Learning, second edition: An
Introduction. Adaptive Computation and Machine Learning series. MIT
Press, 2018.

[Sch08] M. Schottenloher. A Mathematical Introduction to Conformal Field The-
ory. Lecture Notes in Physics. Springer Berlin Heidelberg, 2008.

[SD15] David Simmons-Duffin. A semidefinite program solver for the conformal
bootstrap, 2015.

[SD16] David Simmons-Duffin. TASI Lectures on the Conformal Bootstrap. arXiv,
2016.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27(3):379–423, 1948.

[SJLS00] Satinder Singh, Tommi Jaakkola, Michael Littman, and Csaba Szepesvári.
Convergence results for single-step on-policy reinforcement-learning algo-
rithms. Machine Learning, 38:287–308, 03 2000.

[SMG14] A Saxe, J McClelland, and S Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. In Proceedings of
the International Conference on Learning Represenatations 2014. Interna-
tional Conference on Learning Represenatations 2014, 2014.

[Sze10] Csaba Szepesvari. Algorithms for Reinforcement Learning. Morgan and
Claypool Publishers, 2010.

[Wil92] Ronald J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Mach. Learn., 8(3–4):229–256, may
1992.

[WM04] D. Wilson and Tony Martinez. The general inefficiency of batch training
for gradient descent learning. Neural networks : the official journal of the
International Neural Network Society, 16:1429–51, 01 2004.

[YLCT20] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda.
A survey of autonomous driving: Common practices and emerging tech-
nologies. IEEE Access, 8:58443–58469, 2020.

128

	Introduction
	Conformal Field Theories
	From Quantum Mechanics to Quantum Fields
	Formalism of Quantum Mechanics
	Quantum Field Theory

	Conformal Transformations
	Classification of conformal transformations

	Conformal Field Theories
	Correlators and the Operator Product Expansion
	Conformal invariance in the Euclidean plane

	Conformal Bootstrap
	Historical approaches and success

	Reinforcement Learning Generalities
	Machine Learning
	Motivations and main concepts
	Deep Feedforward Networks
	Training
	Optimization

	Reinforcement Learning
	Finite Markov Decision Processes
	Returns and Episodes
	Policies and Value functions

	Model-free and Off-policy RL
	Policy Gradient Methods
	Actor-Critic methods

	Soft Actor-Critic
	Soft Policy Iteration
	Soft Actor-Critic

	Bootstrap Stochastic Optimization with SAC
	Reinforcement learning approach for Conformal Bootstrap
	The algorithm

	Additional remarks on the SAC implementation
	2D Ising model
	1D defect CFT on the Half-BPS Wilson line
	Integral constraints and the bounds on OPE coefficients
	Final remarks on the implementation
	Previous approaches in literature

	Results
	Experimental Setup
	The benchmark model: Ising 2D
	Free search experiments
	Constrained search experiments

	Half-BPS Wilson line defect CFT
	Initial search and the Role of Integral Constraints
	Experiments at weak coupling
	Experiments at strong coupling

	Discussion

	Conclusion
	Further results
	 correlator in the Ising 2D model
	Experiments at weak coupling
	Second and third squared OPE coefficients

	Experiments at strong coupling
	Higher dimensional operators in the 1D CFT

